1
|
Gutiérrez Coronado O, Sandoval Salazar C, Muñoz Carrillo JL, Gutiérrez Villalobos OA, Miranda Beltrán MDLL, Soriano Hernández AD, Beltrán Campos V, Villalobos Gutiérrez PT. Functionalized Nanomaterials in Cancer Treatment: A Review. Int J Mol Sci 2025; 26:2633. [PMID: 40141274 PMCID: PMC11942109 DOI: 10.3390/ijms26062633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 03/04/2025] [Accepted: 03/07/2025] [Indexed: 03/28/2025] Open
Abstract
Cancer is one of the main causes of death worldwide. Chemotherapy, radiotherapy and surgery are currently the treatments of choice for cancer. However, conventional therapies have their limitations, such as non-specificity, tumor recurrence and toxicity to the target cells. Recently, nanomaterials have been considered as therapeutic agents against cancer. This is mainly due to their unique optical properties, biocompatibility, large surface area and nanoscale size. These properties are crucial as they can affect biocompatibility and uptake by the cell, reducing efficacy. However, because nanoparticles can be functionalized with biomolecules, they become more biocompatible, which improves uptake, and they can be specifically targeted against cancer cells, which improves their anticancer activity. In this review, we summarize some of the recent studies in which nanomaterials have been functionalized with the aim of increasing therapeutic efficacy in cancer treatment.
Collapse
Affiliation(s)
- Oscar Gutiérrez Coronado
- Centro Universitario de los Lagos, Universidad de Guadalajara, Lagos de Moreno 47460, Mexico; (O.G.C.); (M.d.l.L.M.B.); (A.D.S.H.)
| | - Cuauhtémoc Sandoval Salazar
- División de Ciencias de la Salud e Ingenierías, Campus Celaya-Salvatierra, Universidad de Guanajuato, Celaya 38060, Mexico; (C.S.S.); (V.B.C.)
| | - José Luis Muñoz Carrillo
- Centro Universitario de los Lagos, Universidad de Guadalajara, Lagos de Moreno 47460, Mexico; (O.G.C.); (M.d.l.L.M.B.); (A.D.S.H.)
| | | | - María de la Luz Miranda Beltrán
- Centro Universitario de los Lagos, Universidad de Guadalajara, Lagos de Moreno 47460, Mexico; (O.G.C.); (M.d.l.L.M.B.); (A.D.S.H.)
| | | | - Vicente Beltrán Campos
- División de Ciencias de la Salud e Ingenierías, Campus Celaya-Salvatierra, Universidad de Guanajuato, Celaya 38060, Mexico; (C.S.S.); (V.B.C.)
| | | |
Collapse
|
2
|
Chuang SH, Chen KJ, Cheng YT, Chen YS, Lin SY, Chou HY, Tsai HC. A thermo-responsive chemically crosslinked long-term-release chitosan hydrogel system increases the efficiency of synergy chemo-immunotherapy in treating brain tumors. Int J Biol Macromol 2024; 280:135894. [PMID: 39322160 DOI: 10.1016/j.ijbiomac.2024.135894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 09/03/2024] [Accepted: 09/19/2024] [Indexed: 09/27/2024]
Abstract
Glioblastoma multiforme (GBM) is an aggressive and common brain tumor. The blood-brain barrier prevents several treatments from reaching the tumor. This study proposes a Chemo-Immunotherapy synergy treatment chemically crosslinked hydrogel system that is injected into the tumor to treat GBM. The strategy uses doxorubicin and BMS-1 with a thermo-responsive and chemically crosslinked hydrogel for extended drug release into the affected area. The hydrogels are produced by mixing with Chitosan (Chi), modified Pluronic F-127 (PF-127) with aldehyde end group and doxorubicin and then chemically crosslinking the aldehyde and amine bonds to increase the drug retention time. PF-127-CHO/Chi, which gels at body temperatures and chemically crosslinks between PF-127-CHO and Chitosan, increases the time that the drug remains in the affected area and prevents the hydrogel from swelling and compressing surrounding tissue. The drug is released from the chemically crosslinked hydrogels, prevents tumor progression and increases survival for subjects with GBM tumors. The Synergy Chemo-Immunotherapy also allows more efficient treatment of GBM than chemotherapy. The PF-127-CHO/Chi DOX and BMS-1 group have a tumor that is 43 times smaller than the untreated group. These results show that the proposed chemically crosslinking hydrogel is an efficient intratumoral delivery platform for the treatment of tumors.
Collapse
Affiliation(s)
- Shun-Hao Chuang
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan
| | - Kuan-Ju Chen
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan
| | - Yu-Ting Cheng
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan
| | - Yu-Shuan Chen
- Bioinnovation Center, Buddhist Tzu Chi Medical Foundation, Taiwan; Department of Medical Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan; Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien 970, Taiwan
| | - Shuian-Yin Lin
- Biomedical Technology and Device Research Center, Industrial Technology Research Institute, Hsinchu, 310, Taiwan
| | - Hsiao-Ying Chou
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan
| | - Hsieh-Chih Tsai
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan; Advanced Membrane Materials Center, National Taiwan University of Science and Technology, Taipei 106, Taiwan; R&D Center for Membrane Technology, Chung Yuan Christian University, Chungli, Taoyuan 320, Taiwan.
| |
Collapse
|
3
|
Zhang P, Zhang L, Wang Z, Cheng Q, Wu W, Li J, Liang G, Narain R. Acid-Responsive Polymer Micelles for Targeted Delivery and Bioorthogonal Activation of Prodrug through Ru Catalyst in Tumor Cells. Biomacromolecules 2024; 25:5834-5846. [PMID: 39191734 DOI: 10.1021/acs.biomac.4c00489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Bioorthogonal reactions present a promising strategy for minimizing off-target toxicity in cancer chemotherapy, yet a dependable nanoplatform is urgently required. Here, we have fabricated an acid-responsive polymer micelle for the specific delivery and activation of the prodrug within tumor cells through Ru catalyst-mediated bioorthogonal reactions. The decomposition of micelles, triggered by the cleavage of the hydrazone bond in the acidic lysosomal environment, facilitated the concurrent release of Alloc-DOX and the Ru catalyst within the cells. Subsequently, the uncaging process of Alloc-DOX was demonstrated to be induced by the high levels of glutathione within tumor cells. Notably, the limited glutathione inside normal cells prevented the conversion of Alloc-DOX into active DOX, thereby minimizing the toxicity toward normal cells. In tumor-bearing mice, this nanoplatform exhibited enhanced efficacy in tumor suppression while minimizing off-target toxicity. Our study provides an innovative approach for in situ drug activation that combines safety and effectiveness in cancer chemotherapy.
Collapse
Affiliation(s)
- Panpan Zhang
- School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang 471023, P. R. China
| | - Leitao Zhang
- School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang 471023, P. R. China
| | - Zhihao Wang
- School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang 471023, P. R. China
| | - Qiuli Cheng
- School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang 471023, P. R. China
| | - Wenlan Wu
- School of Medicine, Henan University of Science & Technology, Luoyang 471023, P. R. China
| | - Junbo Li
- School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang 471023, P. R. China
| | - Gaofeng Liang
- School of Medicine, Henan University of Science & Technology, Luoyang 471023, P. R. China
| | - Ravin Narain
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6G 2G6, Canada
| |
Collapse
|
4
|
Cho H, Huh KM, Shim MS, Cho YY, Lee JY, Lee HS, Kang HC. Beyond Nanoparticle-Based Intracellular Drug Delivery: Cytosol/Organelle-Targeted Drug Release and Therapeutic Synergism. Macromol Biosci 2024; 24:e2300590. [PMID: 38488862 DOI: 10.1002/mabi.202300590] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/07/2024] [Indexed: 07/16/2024]
Abstract
Nanoparticle (NP)-based drug delivery systems are conceived to solve poor water-solubility and chemical/physical instability, and their purpose expanded to target specific sites for maximizing therapeutic effects and minimizing unwanted events of payloads. Targeted sites are also narrowed from organs/tissues and cells to cytosol/organelles. Beyond specific site targeting, the particular release of payloads at the target sites is growing in importance. This review overviews various issues and their general strategies during multiple steps, from the preparation of drug-loaded NPs to their drug release at the target cytosol/organelles. In particular, this review focuses on current strategies for "first" delivery and "later" release of drugs to the cytosol or organelles of interest using specific stimuli in the target sites. Recognizing or distinguishing the presence/absence of stimuli or their differences in concentration/level/activity in one place from those in another is applied to stimuli-triggered release via bond cleavage or nanostructural transition. In addition, future directions on understanding the intracellular balance of stimuli and their counter-stimuli are demonstrated to synergize the therapeutic effects of payloads released from stimuli-sensitive NPs.
Collapse
Affiliation(s)
- Hana Cho
- Department of Pharmacy, College of Pharmacy and Regulated Cell Death (RCD) Control·Material Research Institute, The Catholic University of Korea, Bucheon, Gyeonggi-do, 14662, Republic of Korea
| | - Kang Moo Huh
- Department of Polymer Science and Engineering, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Min Suk Shim
- Division of Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Yong-Yeon Cho
- Department of Pharmacy, College of Pharmacy and Regulated Cell Death (RCD) Control·Material Research Institute, The Catholic University of Korea, Bucheon, Gyeonggi-do, 14662, Republic of Korea
| | - Joo Young Lee
- Department of Pharmacy, College of Pharmacy and Regulated Cell Death (RCD) Control·Material Research Institute, The Catholic University of Korea, Bucheon, Gyeonggi-do, 14662, Republic of Korea
| | - Hye Suk Lee
- Department of Pharmacy, College of Pharmacy and Regulated Cell Death (RCD) Control·Material Research Institute, The Catholic University of Korea, Bucheon, Gyeonggi-do, 14662, Republic of Korea
| | - Han Chang Kang
- Department of Pharmacy, College of Pharmacy and Regulated Cell Death (RCD) Control·Material Research Institute, The Catholic University of Korea, Bucheon, Gyeonggi-do, 14662, Republic of Korea
| |
Collapse
|
5
|
Li Y, Yang Y, Li W, Chen C, Lin Q, Huang H, Gu Y, Jin X, Qian Z. Fiber optic-based integrated system for in vivo multiscale pharmacokinetic monitoring. BIOMEDICAL OPTICS EXPRESS 2024; 15:3770-3782. [PMID: 38867773 PMCID: PMC11166437 DOI: 10.1364/boe.523179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/07/2024] [Accepted: 04/14/2024] [Indexed: 06/14/2024]
Abstract
This paper presents the development of a fiber-optic-based fluorescence detection system for multi-scale monitoring of drug distribution in living animals. The integrated system utilized dual laser sources at the wavelengths of 488 nm and 650 nm and three photomultiplier channels for multi-color fluorescence detection. The emission spectra of fluorescent substances were tracked using the time-resolved fluorescence spectroscopy module to continuously monitor their blood kinetics. The fiber bundle, consisting of 30,000 optic filaments, was designed for wide-field mesoscopic imaging of the drug's interactions within organs. The inclusion of a gradient refractive index (GRIN) lens within the setup enabled fluorescence confocal laser scanning microscopy to visualize the drug distribution at the cellular level. The system performance was verified by imaging hepatic and renal tissues in mice using cadmium telluride quantum dots (CdTe QDs) and R3. By acquiring multi-level images and real-time data, our integrated system underscores its potential as a potent tool for drug assessment, specifically within the realms of pharmacokinetic and pharmacodynamic investigations.
Collapse
Affiliation(s)
- Yiran Li
- Department of Biomedical Engineering, College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
| | - Yamin Yang
- Department of Biomedical Engineering, College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
| | - Weitao Li
- Department of Biomedical Engineering, College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
| | - Chaofan Chen
- Department of Biomedical Engineering, College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
| | - Qiao Lin
- Department of Biomedical Engineering, College of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Haipeng Huang
- Department of Biomedical Engineering, College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
| | - Yueqing Gu
- Department of Biomedical Engineering, College of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Xiaofei Jin
- Department of Biomedical Engineering, College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
| | - Zhiyu Qian
- Department of Biomedical Engineering, College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
| |
Collapse
|
6
|
Peng Y, Yang Z, Sun H, Li J, Lan X, Liu S. Nanomaterials in Medicine: Understanding Cellular Uptake, Localization, and Retention for Enhanced Disease Diagnosis and Therapy. Aging Dis 2024; 16:AD.2024.0206-1. [PMID: 38421835 PMCID: PMC11745437 DOI: 10.14336/ad.2024.0206-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 02/06/2024] [Indexed: 03/02/2024] Open
Abstract
Nanomaterials (NMs) have emerged as promising tools for disease diagnosis and therapy due to their unique physicochemical properties. To maximize the effectiveness and design of NMs-based medical applications, it is essential to comprehend the complex mechanisms of cellular uptake, subcellular localization, and cellular retention. This review illuminates the various pathways that NMs take to get from the extracellular environment to certain intracellular compartments by investigating the various mechanisms that underlie their interaction with cells. The cellular uptake of NMs involves complex interactions with cell membranes, encompassing endocytosis, phagocytosis, and other active transport mechanisms. Unique uptake patterns across cell types highlight the necessity for customized NMs designs. After internalization, NMs move through a variety of intracellular routes that affect where they are located subcellularly. Understanding these pathways is pivotal for enhancing the targeted delivery of therapeutic agents and imaging probes. Furthermore, the cellular retention of NMs plays a critical role in sustained therapeutic efficacy and long-term imaging capabilities. Factors influencing cellular retention include nanoparticle size, surface chemistry, and the cellular microenvironment. Strategies for prolonging cellular retention are discussed, including surface modifications and encapsulation techniques. In conclusion, a comprehensive understanding of the mechanisms governing cellular uptake, subcellular localization, and cellular retention of NMs is essential for advancing their application in disease diagnosis and therapy. This review provides insights into the intricate interplay between NMs and biological systems, offering a foundation for the rational design of next-generation nanomedicines.
Collapse
Affiliation(s)
- Yue Peng
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine & Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Colleges and Universities Key Laboratory of Biological Molecular Medicine Research & Guangxi Key Laboratory of Brain Science, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China
| | - Zhengshuang Yang
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine & Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Colleges and Universities Key Laboratory of Biological Molecular Medicine Research & Guangxi Key Laboratory of Brain Science, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China
| | - Hui Sun
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine & Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Colleges and Universities Key Laboratory of Biological Molecular Medicine Research & Guangxi Key Laboratory of Brain Science, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China
| | - Jinling Li
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine & Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Colleges and Universities Key Laboratory of Biological Molecular Medicine Research & Guangxi Key Laboratory of Brain Science, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China
| | - Xiuwan Lan
- Guangxi Colleges and Universities Key Laboratory of Biological Molecular Medicine Research & Guangxi Key Laboratory of Brain Science, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China
| | - Sijia Liu
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine & Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Colleges and Universities Key Laboratory of Biological Molecular Medicine Research & Guangxi Key Laboratory of Brain Science, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
7
|
Wang X, Cai H, Huang X, Lu Z, Zhang L, Hu J, Tian D, Fu J, Zhang G, Meng Y, Zheng G, Chang C. Formulation and evaluation of a two-stage targeted liposome coated with hyaluronic acid for improving lung cancer chemotherapy and overcoming multidrug resistance. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2023; 34:1928-1951. [PMID: 37060335 DOI: 10.1080/09205063.2023.2201815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 03/29/2023] [Indexed: 04/16/2023]
Abstract
Multidrug resistance (MDR) has emerged as a prominent challenge contributing to the ineffectiveness of chemotherapy in treating non-small cell lung cancer (NSCLC) patients. Currently, mitochondria of cancer cells are identified as a promising target for overcoming MDR due to their crucial role in intrinsic apoptosis pathway and energy supply centers. Here, a two-stage targeted liposome (HA/TT LP/PTX) was successfully developed via a two-step process: PTX-loaded cationic liposome (TT LP/PTX) were formulated by lipid film hydration & ultrasound technique, followed by further coating with natural anionic polysaccharide hyaluronic acid (HA). TT, an amphipathic polymer conjugate of triphenylphosphine (TPP)-tocopheryl polyethylene glycol succinate (TPGS), was used to modify the liposomes for mitochondrial targeting. The average particle size, zeta potential and encapsulation efficiency (EE%) of HA/TT LP/PTX were found to be 153 nm, -30.3 mV and 92.1% based on the optimal prescription of HA/TT LP/PTX. Compared to cationic liposome, HA-coated liposomes showed improved stability and safety, including biological stability in serum, cytocompatibility, and lower hemolysis percentage. In drug-resistant A549/T cells, HA was shown to improve the cellular uptake of PTX through CD44 receptor-mediated endocytosis and subsequent degradation by hyaluronidase (HAase) in endosomes. Following this, the exposure of TT polymer facilitated the accumulation of PTX within the mitochondria. As a result, the function of mitochondria in A549/T cells was disturbed, leading to an increased ROS level, decreased ATP level, dissipated MMP, and increased G2/M phase arrest. This resulted in a higher apoptotic rate and stronger anticancer efficacy.
Collapse
Affiliation(s)
- Xuelian Wang
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Hongye Cai
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Xinyu Huang
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Zhuhang Lu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Luxi Zhang
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Junjie Hu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Daizhi Tian
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Jiyu Fu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Guizhi Zhang
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Yan Meng
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Guohua Zheng
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Cong Chang
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| |
Collapse
|
8
|
Application Prospects of Triphenylphosphine-Based Mitochondria-Targeted Cancer Therapy. Cancers (Basel) 2023; 15:cancers15030666. [PMID: 36765624 PMCID: PMC9913854 DOI: 10.3390/cancers15030666] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/15/2023] [Accepted: 01/19/2023] [Indexed: 01/25/2023] Open
Abstract
Cancer is one of the leading causes of death and the most important impediments to the efforts to increase life expectancy worldwide. Currently, chemotherapy is the main treatment for cancer, but it is often accompanied by side effects that affect normal tissues and organs. The search for new alternatives to chemotherapy has been a hot research topic in the field of antineoplastic medicine. Drugs targeting diseased tissues or cells can significantly improve the efficacy of drugs. Therefore, organelle-targeted antitumor drugs are being explored, such as mitochondria-targeted antitumor drugs. Mitochondria is the central site of cellular energy production and plays an important role in cell survival and death. Moreover, a large number of studies have shown a close association between mitochondrial metabolism and tumorigenesis and progression, making mitochondria a promising new target for cancer therapy. Combining mitochondrial targeting agents with drug molecules is an effective way of mitochondrial targeting. In addition, hyperpolarized tumor cell membranes and mitochondrial membrane potentially allow selective accumulation of mitochondria-targeted drugs. This enhances the direct killing of tumor cells by drug molecules while minimizing the potential toxicity to normal cells. In this review, we discuss the common pro-mitochondrial agents, the advantages of triphenylphosphine (TPP) in mitochondrial-targeted cancer therapy and systematically summarize various TPP-based mitochondria-targeting anticancer drugs.
Collapse
|
9
|
Zheng N, Wang Q, Zhang S, Mao C, He L, Liu S. Recent advances in nanotechnology mediated mitochondria-targeted imaging. J Mater Chem B 2022; 10:7450-7459. [PMID: 35894786 DOI: 10.1039/d2tb00935h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mitochondria play a critical role in cell growth and metabolism. And mitochondrial dysfunction is closely related to various diseases, such as cancers, and neurodegenerative and cardiovascular diseases. Therefore, it is of vital importance to monitor mitochondrial dynamics and function. One of the most widely used methods is to use nanotechnology-mediated mitochondria targeting and imaging. It has gained increasing attention in the past few years because of the flexibility, versatility and effectiveness of nanotechnology. In the past few years, researchers have implemented various types of design and construction of the mitochondrial structure dependent nanoprobes following assorted nanotechnology pathways. This review presents an overview on the recent development of mitochondrial structure dependent target imaging probes and classifies it into two main sections: mitochondrial membrane targeting and mitochondrial microenvironment targeting. Also, the significant impact of previous research as well as the application and perspectives will be demonstrated.
Collapse
Affiliation(s)
- Nannan Zheng
- School of Medicine and Health, Key Laboratory of Microsystems and Microstructures Manufacturing (Ministry of Education), Harbin Institute of Technology, Harbin, 150001, China.
| | - Qinghui Wang
- School of Medicine and Health, Key Laboratory of Microsystems and Microstructures Manufacturing (Ministry of Education), Harbin Institute of Technology, Harbin, 150001, China.
| | - Shijin Zhang
- School of Medicine and Health, Key Laboratory of Microsystems and Microstructures Manufacturing (Ministry of Education), Harbin Institute of Technology, Harbin, 150001, China.
| | - Chenchen Mao
- Department of Electrical, Computer and Energy Engineering, University of Colorado Boulder, Boulder, Colorado, 80303, USA
| | - Liangcan He
- School of Medicine and Health, Key Laboratory of Microsystems and Microstructures Manufacturing (Ministry of Education), Harbin Institute of Technology, Harbin, 150001, China.
| | - Shaoqin Liu
- School of Medicine and Health, Key Laboratory of Microsystems and Microstructures Manufacturing (Ministry of Education), Harbin Institute of Technology, Harbin, 150001, China.
| |
Collapse
|
10
|
Mandal AK. Mitochondrial targeting of potent nanoparticulated drugs in combating diseases. J Biomater Appl 2022; 37:614-633. [PMID: 35790487 DOI: 10.1177/08853282221111656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Mitochondrial dysfunction, characterized by the electron transport chain (ETC) leakage and reduced adenosine tri-phosphate synthesis, occurs primarily due to free radicals -induced mutations in either the mitochondrial deoxyribonucleic acid (mtDNA) or nuclear (n) DNA caused by pathogenic infections, toxicant exposures, adverse drug-effects, or other environmental exposures, leading to secondary dysfunction affecting ischemic, diabetic, cancerous, and degenerative diseases. In these concerns, mitochondria-targeted remedies may include a significant role in the protection and treatment of mitochondrial function to enhance its activity. Coenzyme Q10 pyridinol and pyrimidinol antioxidant analogues and other potent drug-compounds for their multifunctional radical quencher and other anti-toxic activities may take a significant therapeutic effectivity for ameliorating mitochondrial dysfunction. Moreover, the encapsulation of these bioactive ligands-attached potent compounds in vesicular system may enable them a superb biological effective for the treatment of mitochondria-targeted dysfunction-related diseases with least side effects. This review depicts mainly on mitochondrial enzymatic dysfunction and their amelioration by potent drugs with the usages of nanoparticulated delivery system against mitochondria-affected diseases.
Collapse
|
11
|
Qiao L, Yuan X, Peng H, Shan G, Gao M, Yi X, He X. Targeted delivery and stimulus-responsive release of anticancer drugs for efficient chemotherapy. Drug Deliv 2021; 28:2218-2228. [PMID: 34668829 PMCID: PMC8530493 DOI: 10.1080/10717544.2021.1986602] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
Chemotherapy is currently an irreplaceable strategy for cancer treatment. Doxorubicin hydrochloride (DOX) is a clinical first-line drug for cancer chemotherapy. While its efficacy for cancer treatment is greatly compromised due to invalid enrichment or serious side effects. To increase the content of intracellular targets and boost the antitumor effect of DOX, a novel biotinylated hyaluronic acid-guided dual-functionalized CaCO3-based drug delivery system (DOX@BHNP) with target specificity and acid-triggered drug-releasing capability was synthesized. The ability of the drug delivery system on enriching DOX in mitochondria and nucleus, which further cause significant tumor inhibition, were investigated to provide a more comprehensive understanding of this CaCO3-based drug delivery system. After targeted endocytosis by tumor cells, DOX could release faster in the weakly acidic lysosome, and further enrich in mitochondria and nucleus, which cause mitochondrial destruction and nuclear DNA leakage, and result in cell cycle arrest and cell apoptosis. Virtually, an effective tumor inhibition was observed in vitro and in vivo. More importantly, the batch-to-batch variation of DOX loading level in the DOX@BHNP system is negligible, and no obvious histological changes in the main organs were observed, indicating the promising application of this functionalized drug delivery system in cancer treatment.
Collapse
Affiliation(s)
- Lei Qiao
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Xue Yuan
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Life Sciences, Anhui Medical University, Hefei, China
| | - Hui Peng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Life Sciences, Anhui Medical University, Hefei, China
| | - Guisong Shan
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Life Sciences, Anhui Medical University, Hefei, China
| | - Min Gao
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xiaoqing Yi
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, China
| | - Xiaoyan He
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Life Sciences, Anhui Medical University, Hefei, China
| |
Collapse
|
12
|
Sun Y, Yang Q, Xia X, Li X, Ruan W, Zheng M, Zou Y, Shi B. Polymeric Nanoparticles for Mitochondria Targeting Mediated Robust Cancer Therapy. Front Bioeng Biotechnol 2021; 9:755727. [PMID: 34692665 PMCID: PMC8526929 DOI: 10.3389/fbioe.2021.755727] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 09/24/2021] [Indexed: 12/19/2022] Open
Abstract
Despite all sorts of innovations in medical researches over the past decades, cancer remains a major threat to human health. Mitochondria are essential organelles in eukaryotic cells, and their dysfunctions contribute to numerous diseases including cancers. Mitochondria-targeted cancer therapy, which specifically delivers drugs into the mitochondria, is a promising strategy for enhancing anticancer treatment efficiency. However, owing to their special double-layered membrane system and highly negative potentials, mitochondria remain a challenging target for therapeutic agents to reach and access. Polymeric nanoparticles exceed in cancer therapy ascribed to their unique features including ideal biocompatibility, readily design and synthesis, as well as flexible ligand decoration. Significant efforts have been put forward to develop mitochondria-targeted polymeric nanoparticles. In this review, we focused on the smart design of polymeric nanosystems for mitochondria targeting and summarized the current applications in improving cancer therapy.
Collapse
Affiliation(s)
- Yajing Sun
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, China
- Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences and School of Pharmacy, Henan University, Kaifeng, China
| | - Qingshan Yang
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, China
- Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences and School of Pharmacy, Henan University, Kaifeng, China
| | - Xue Xia
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, China
- Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences and School of Pharmacy, Henan University, Kaifeng, China
| | - Xiaozhe Li
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, China
- Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences and School of Pharmacy, Henan University, Kaifeng, China
| | - Weimin Ruan
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, China
- Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences and School of Pharmacy, Henan University, Kaifeng, China
| | - Meng Zheng
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, China
- Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences and School of Pharmacy, Henan University, Kaifeng, China
| | - Yan Zou
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, China
- Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences and School of Pharmacy, Henan University, Kaifeng, China
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Bingyang Shi
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, China
- Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences and School of Pharmacy, Henan University, Kaifeng, China
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
13
|
S Allemailem K, Almatroudi A, Alsahli MA, Aljaghwani A, M El-Kady A, Rahmani AH, Khan AA. Novel Strategies for Disrupting Cancer-Cell Functions with Mitochondria-Targeted Antitumor Drug-Loaded Nanoformulations. Int J Nanomedicine 2021; 16:3907-3936. [PMID: 34135584 PMCID: PMC8200140 DOI: 10.2147/ijn.s303832] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/24/2021] [Indexed: 12/16/2022] Open
Abstract
Any variation in normal cellular function results in mitochondrial dysregulation that occurs in several diseases, including cancer. Such processes as oxidative stress, metabolism, signaling, and biogenesis play significant roles in cancer initiation and progression. Due to their central role in cellular metabolism, mitochondria are favorable therapeutic targets for the prevention and treatment of conditions like neurodegenerative diseases, diabetes, and cancer. Subcellular mitochondria-specific theranostic nanoformulations for simultaneous targeting, drug delivery, and imaging of these organelles are of immense interest in cancer therapy. It is a challenging task to cross multiple barriers to target mitochondria in diseased cells. To overcome these multiple barriers, several mitochondriotropic nanoformulations have been engineered for the transportation of mitochondria-specific drugs. These nanoformulations include liposomes, dendrimers, carbon nanotubes, polymeric nanoparticles (NPs), and inorganic NPs. These nanoformulations are made mitochondriotropic by conjugating them with moieties like dequalinium, Mito-Porter, triphenylphosphonium, and Mitochondria-penetrating peptides. Most of these nanoformulations are meticulously tailored to control their size, charge, shape, mitochondriotropic drug loading, and specific cell-membrane interactions. Recently, some novel mitochondria-selective antitumor compounds known as mitocans have shown high toxicity against cancer cells. These selective compounds form vicious oxidative stress and reactive oxygen species cycles within cancer cells and ultimately push them to cell death. Nanoformulations approved by the FDA and EMA for clinical applications in cancer patients include Doxil, NK105, and Abraxane. The novel use of these NPs still faces tremendous challenges and an immense amount of research is needed to understand the proper mechanisms of cancer progression and control by these NPs. Here in this review, we summarize current advancements and novel strategies of delivering different anticancer therapeutic agents to mitochondria with the help of various nanoformulations.
Collapse
Affiliation(s)
- Khaled S Allemailem
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Mohammed A Alsahli
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Aseel Aljaghwani
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Asmaa M El-Kady
- Department of Medical Parasitology, Faculty of Medicine, South Valley University, Qena, Egypt
| | - Arshad Husain Rahmani
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Amjad Ali Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| |
Collapse
|
14
|
Wang H, Fang B, Peng B, Wang L, Xue Y, Bai H, Lu S, Voelcker NH, Li L, Fu L, Huang W. Recent Advances in Chemical Biology of Mitochondria Targeting. Front Chem 2021; 9:683220. [PMID: 34012953 PMCID: PMC8126688 DOI: 10.3389/fchem.2021.683220] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 04/19/2021] [Indexed: 12/14/2022] Open
Abstract
Mitochondria are vital subcellular organelles that generate most cellular chemical energy, regulate cell metabolism and maintain cell function. Mitochondrial dysfunction is directly linked to numerous diseases including neurodegenerative disorders, diabetes, thyroid squamous disease, cancer and septicemia. Thus, the design of specific mitochondria-targeting molecules and the realization of real-time acquisition of mitochondrial activity are powerful tools in the study and treatment of mitochondria dysfunction in related diseases. Recent advances in mitochondria-targeting agents have led to several important mitochondria chemical probes that offer the opportunity for selective targeting molecules, novel biological applications and therapeutic strategies. This review details the structural and physiological functional characteristics of mitochondria, and comprehensively summarizes and classifies mitochondria-targeting agents. In addition, their pros and cons and their related chemical biological applications are discussed. Finally, the potential biomedical applications of these agents are briefly prospected.
Collapse
Affiliation(s)
- Haiwei Wang
- Frontiers Science Center for Flexible Electronics, Xi’an Institute of Flexible Electronics (IFE) and Xi’an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, Xi’an, China
| | - Bin Fang
- Frontiers Science Center for Flexible Electronics, Xi’an Institute of Flexible Electronics (IFE) and Xi’an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, Xi’an, China
- School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, China
| | - Bo Peng
- Frontiers Science Center for Flexible Electronics, Xi’an Institute of Flexible Electronics (IFE) and Xi’an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, Xi’an, China
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, VIC, Australia
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Limin Wang
- Frontiers Science Center for Flexible Electronics, Xi’an Institute of Flexible Electronics (IFE) and Xi’an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, Xi’an, China
| | - Yufei Xue
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, VIC, Australia
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Hua Bai
- Frontiers Science Center for Flexible Electronics, Xi’an Institute of Flexible Electronics (IFE) and Xi’an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, Xi’an, China
| | - Shenci Lu
- Frontiers Science Center for Flexible Electronics, Xi’an Institute of Flexible Electronics (IFE) and Xi’an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, Xi’an, China
| | - Nicolas H. Voelcker
- Frontiers Science Center for Flexible Electronics, Xi’an Institute of Flexible Electronics (IFE) and Xi’an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, Xi’an, China
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, VIC, Australia
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, VIC, Australia
- Department of Materials Science & Engineering, Monash University, Clayton, VIC, Australia
| | - Lin Li
- Frontiers Science Center for Flexible Electronics, Xi’an Institute of Flexible Electronics (IFE) and Xi’an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, Xi’an, China
| | - Li Fu
- School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, China
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics, Xi’an Institute of Flexible Electronics (IFE) and Xi’an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, Xi’an, China
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, China
| |
Collapse
|
15
|
Pan Y, Zhao S, Chen F. The potential value of dequalinium chloride in the treatment of cancer: Focus on malignant glioma. Clin Exp Pharmacol Physiol 2021; 48:445-454. [PMID: 33496065 DOI: 10.1111/1440-1681.13466] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 01/05/2021] [Indexed: 12/12/2022]
Abstract
Dequalinium chloride has been known as one kind of antibiotic that displays a broad antimicrobial spectrum and has been clinically proven to be very safe. In recent years, studies have shown that dequalinium chloride can inhibit the growth of malignant tumours, and reports were mainly used for solid tumours. Glioblastoma is the most common malignant neuroepithelial tumour of the central nervous system in adults, and the prognosis of glioblastoma is poor as it has a high resistance to apoptosis. This review summarizes the current understanding of dequalinium chloride-induced cancer cell apoptosis and its potential role in glioblastoma resistance and progression. Particularly, we focus on dequalinium chloride as it exerts a wide range of anti-cancer activity through its ability to target and accumulate in the mitochondria, and it effectively inhibits the growth of glioblastoma cells in vitro and vivo. Dequalinium chloride is an inhibitor of XIAP and can also act as a mitochondrial targeting agent, which gives it an interesting perspective regarding recent advances in the treatment of malignant glioma.
Collapse
Affiliation(s)
- Yuehai Pan
- Department of Hand and foot surgery, The affiliated hospital of QingDao university, ShangDong, China
| | - Shuai Zhao
- Department of Anesthesiology, Bonn University, Bonn, Germany
| | - Fan Chen
- Department of Neurosurgery, The affiliated hospital of QingDao university, ShangDong, China
| |
Collapse
|
16
|
Hu P, Zhang Y, Wang D, Qi G, Jin Y. Glutathione Content Detection of Single Cells under Ingested Doxorubicin by Functionalized Glass Nanopores. Anal Chem 2021; 93:4240-4245. [DOI: 10.1021/acs.analchem.0c05004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Ping Hu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Ying Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Dandan Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Guohua Qi
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongdong Jin
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei, Anhui 230026, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
17
|
Ma C, Xia F, Kelley SO. Mitochondrial Targeting of Probes and Therapeutics to the Powerhouse of the Cell. Bioconjug Chem 2020; 31:2650-2667. [PMID: 33191743 DOI: 10.1021/acs.bioconjchem.0c00470] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Mitochondria, colloquially known as "the powerhouse of the cell", play important roles in production, but also in processes critical for cellular fate such as cell death, differentiation, signaling, metabolic homeostasis, and innate immunity. Due to its many functions in the cell, the mitochondria have been linked to a variety of human illnesses such as diabetes, cancer, and neurodegenerative diseases. In order to further our understanding and pharmaceutical targeting of this critical organelle, effective strategies must be employed to breach the complex barriers and microenvironment of mitochondria. Here, we summarize advancements in mitochondria-targeted probes and therapeutics.
Collapse
Affiliation(s)
- Cindy Ma
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada M5S 3M2
| | - Fan Xia
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, Ontario, Canada M5S 3M2
| | - Shana O Kelley
- Departments of Chemistry, Biochemistry, and Pharmaceutical Sciences and the Institute for Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada M5S 3M2
| |
Collapse
|
18
|
Mekonnen TW, Andrgie AT, Darge HF, Birhan YS, Hanurry EY, Chou HY, Lai JY, Tsai HC, Yang JM, Chang YH. Bioinspired Composite, pH-Responsive Sodium Deoxycholate Hydrogel and Generation 4.5 Poly(amidoamine) Dendrimer Improves Cancer Treatment Efficacy via Doxorubicin and Resveratrol Co-Delivery. Pharmaceutics 2020; 12:E1069. [PMID: 33182410 PMCID: PMC7696475 DOI: 10.3390/pharmaceutics12111069] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/01/2020] [Accepted: 11/04/2020] [Indexed: 12/31/2022] Open
Abstract
Maximizing the antitumor efficacy of doxorubicin (DOX) with a new drug delivery strategy is always desired in the field of biomedical science. Because the clinical applications of DOX in the treatment of cancer is limited by the side effects related to the dose. Herein, we report the co-loading of DOX and resveratrol (RESV) using an injectable in situ formed sodium deoxycholate hydrogel (Na-DOC-hyd) at the pH of the tumor extracellular microenvironment. The sequential, controlled, and sustained release of RESV and DOX for synergistic antitumor effects was confirmed by entrapping G4.5-DOX in the RESV-loaded Na-DOC hydrogel (Na-DOC-hyd-RESV). The synergistic antitumor activity of Na-DOC-hyd-RESV+G4.5-DOX was assessed on HeLa cell xenograft tumor in BALB/c nude mice. In the MTT biocompatibility assay, both the G4.5 PAMAM dendrimer and Na-DOC-hyd exhibited negligible cytotoxicity up to the highest dose of 2.0 mg mL-1 in HeLa, MDA-MB-231, and HaCaT cells. The release profiles of DOX and RESV from the Na-DOC-hyd-RESV+G4.5-DOX confirmed the relatively rapid release of RESV (70.43 ± 1.39%), followed by that of DOX (54.58 ± 0.62%) at pH 6.5 in the 7 days of drug release studies. A single intratumoral injection of Na-DOC-hyd-RESV+G4.5-DOX maximally suppressed tumor growth during the 28 days of the treatment period. Na-DOC-hyd-RESV+G4.5-DOX did not cause any histological damage in the major visceral organs. Therefore, this Na-DOC-hydrogel for dual drugs (DOX and RESV) delivery at the pH of the tumor extracellular microenvironment is a promising, safe, and effective combination for antitumor chemotherapy.
Collapse
Affiliation(s)
- Tefera Worku Mekonnen
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan; (T.W.M.); (A.T.A.); (H.F.D.); (Y.S.B.); (E.Y.H.); (H.-Y.C.); (J.-Y.L.)
| | - Abegaz Tizazu Andrgie
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan; (T.W.M.); (A.T.A.); (H.F.D.); (Y.S.B.); (E.Y.H.); (H.-Y.C.); (J.-Y.L.)
| | - Haile Fentahun Darge
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan; (T.W.M.); (A.T.A.); (H.F.D.); (Y.S.B.); (E.Y.H.); (H.-Y.C.); (J.-Y.L.)
| | - Yihenew Simegniew Birhan
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan; (T.W.M.); (A.T.A.); (H.F.D.); (Y.S.B.); (E.Y.H.); (H.-Y.C.); (J.-Y.L.)
| | - Endiries Yibru Hanurry
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan; (T.W.M.); (A.T.A.); (H.F.D.); (Y.S.B.); (E.Y.H.); (H.-Y.C.); (J.-Y.L.)
| | - Hsiao-Ying Chou
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan; (T.W.M.); (A.T.A.); (H.F.D.); (Y.S.B.); (E.Y.H.); (H.-Y.C.); (J.-Y.L.)
| | - Juin-Yih Lai
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan; (T.W.M.); (A.T.A.); (H.F.D.); (Y.S.B.); (E.Y.H.); (H.-Y.C.); (J.-Y.L.)
- Advanced Membrane Materials Center, National Taiwan University of Science and Technology, Taipei 106, Taiwan
- R & D Center for Membrane Technology, Chung Yuan Christian University, Chungli, Taoyuan 320, Taiwan
| | - Hsieh-Chih Tsai
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan; (T.W.M.); (A.T.A.); (H.F.D.); (Y.S.B.); (E.Y.H.); (H.-Y.C.); (J.-Y.L.)
- Advanced Membrane Materials Center, National Taiwan University of Science and Technology, Taipei 106, Taiwan
- R & D Center for Membrane Technology, Chung Yuan Christian University, Chungli, Taoyuan 320, Taiwan
| | - Jen Ming Yang
- Department of General Dentistry, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan;
- Department of Chemical and Materials Engineering, Chang Gung University, Taoyuan 333, Taiwan
| | - Yen-Hsiang Chang
- Department of General Dentistry, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan;
| |
Collapse
|
19
|
Mitocans Revisited: Mitochondrial Targeting as Efficient Anti-Cancer Therapy. Int J Mol Sci 2020; 21:ijms21217941. [PMID: 33114695 PMCID: PMC7663685 DOI: 10.3390/ijms21217941] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 10/19/2020] [Accepted: 10/24/2020] [Indexed: 12/14/2022] Open
Abstract
Mitochondria are essential cellular organelles, controlling multiple signalling pathways critical for cell survival and cell death. Increasing evidence suggests that mitochondrial metabolism and functions are indispensable in tumorigenesis and cancer progression, rendering mitochondria and mitochondrial functions as plausible targets for anti-cancer therapeutics. In this review, we summarised the major strategies of selective targeting of mitochondria and their functions to combat cancer, including targeting mitochondrial metabolism, the electron transport chain and tricarboxylic acid cycle, mitochondrial redox signalling pathways, and ROS homeostasis. We highlight that delivering anti-cancer drugs into mitochondria exhibits enormous potential for future cancer therapeutic strategies, with a great advantage of potentially overcoming drug resistance. Mitocans, exemplified by mitochondrially targeted vitamin E succinate and tamoxifen (MitoTam), selectively target cancer cell mitochondria and efficiently kill multiple types of cancer cells by disrupting mitochondrial function, with MitoTam currently undergoing a clinical trial.
Collapse
|
20
|
Nair JB, Joseph MM, Arya JS, Sreedevi P, Sujai PT, Maiti KK. Elucidating a Thermoresponsive Multimodal Photo-Chemotherapeutic Nanodelivery Vehicle to Overcome the Barriers of Doxorubicin Therapy. ACS APPLIED MATERIALS & INTERFACES 2020; 12:43365-43379. [PMID: 32880178 DOI: 10.1021/acsami.0c08762] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In an attempt to circumvent the major pitfalls associated with conventional chemotherapy including drug resistance and off-target toxicity, we have adopted a strategy to simultaneously target both mitochondrial DNA (Mt-DNA) and nuclear DNA (n-DNA) with the aid of a targeted theranostic nanodelivery vehicle (TTNDV). Herein, folic acid-anchored p-sulfo-calix[4]arene (SC4)-capped hollow gold nanoparticles (HGNPs) were meticulously loaded with antineoplastic doxorubicin (Dox) and its mitochondrion-targeted analogue, Mt-Dox, in a pretuned ratio (1:100) for sustained thermoresponsive release of cargo. This therapeutic strategy was enabled to eradicate both n-DNA and Mt-DNA leaving no space to develop drug resistance. The SC4-capped HGNPs (HGNPSC4) were experimented for the first time as a photothermal (PTT) agent with 61.6% photothermal conversion efficiency, and they generated tunable localized heat more efficiently than bare HGNPs. Moreover, the cavity of SC4 facilitated the formation of an inclusion complex with folic acid to target the folate receptor expressing cancer cells and imparted enhanced biocompatibility. The as-synthesized TTNDV was demonstrated to be an ideal substrate for surface-enhanced Raman scattering (SERS) to monitor the molecular-level therapeutic progression in cells and a spheroidal model. A significant reduction in the tumor mass with a marked survival benefit was achieved in syngraft murine models through this synergistic photo-chemotherapy. Collectively, this multifunctional nanoplatform offers a robust approach to treat cancer without any scope of generating Dox resistance and off-target toxicity.
Collapse
Affiliation(s)
- Jyothi B Nair
- Chemical Sciences & Technology Division (CSTD), Organic Chemistry Section, CSIR-National Institute for Interdisciplinary Science & Technology (CSIR-NIIST), Industrial Estate, Pappanamcode, Thiruvananthapuram, 695019 Kerala, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Manu M Joseph
- Chemical Sciences & Technology Division (CSTD), Organic Chemistry Section, CSIR-National Institute for Interdisciplinary Science & Technology (CSIR-NIIST), Industrial Estate, Pappanamcode, Thiruvananthapuram, 695019 Kerala, India
| | - Jayadev S Arya
- Chemical Sciences & Technology Division (CSTD), Organic Chemistry Section, CSIR-National Institute for Interdisciplinary Science & Technology (CSIR-NIIST), Industrial Estate, Pappanamcode, Thiruvananthapuram, 695019 Kerala, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Padincharapad Sreedevi
- Chemical Sciences & Technology Division (CSTD), Organic Chemistry Section, CSIR-National Institute for Interdisciplinary Science & Technology (CSIR-NIIST), Industrial Estate, Pappanamcode, Thiruvananthapuram, 695019 Kerala, India
| | - Palasseri T Sujai
- Chemical Sciences & Technology Division (CSTD), Organic Chemistry Section, CSIR-National Institute for Interdisciplinary Science & Technology (CSIR-NIIST), Industrial Estate, Pappanamcode, Thiruvananthapuram, 695019 Kerala, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Kaustabh Kumar Maiti
- Chemical Sciences & Technology Division (CSTD), Organic Chemistry Section, CSIR-National Institute for Interdisciplinary Science & Technology (CSIR-NIIST), Industrial Estate, Pappanamcode, Thiruvananthapuram, 695019 Kerala, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
21
|
Morimoto N, Oishi Y, Yamamoto M. Control of Mitochondrial Localization Using Thermoresponsive Sulfobetaine Polymer. Macromol Biosci 2020; 20:e2000205. [PMID: 32924287 DOI: 10.1002/mabi.202000205] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 08/26/2020] [Indexed: 11/06/2022]
Abstract
Fast intracellular migration and controlled localization of molecules represent significant challenges for future applications of drug discovery and related fields. In this study, thermoresponsive sulfobetaine polymers with pyridinium cations are evaluated as biocompatible and mitochondria-localizing agents. Among the polymers, poly(3-(4-(2-methacrylamido)ethyl pyridinio-1-yl)propane-1-sulfonate), P(E-PySMAAm)14k (Mn = 14 000 g mol-1 ) exhibit thermoresponsiveness with an upper critical solution temperature like behavior in cell culture medium containing serum with minimal cytotoxicity. Upon the addition of P(E-PySMAAm)14k to HeLa cells at temperatures above the clearing point at 37 °C, effective localization is observed in mitochondria. However, increased intensity but nonspecific localization is observed below the clearing point at 4 °C. Doxorubicin is conjugated to the P(E-PySMAAm) and achieves effective mitochondrial delivery while maintaining drug efficacy. Such sulfobetaine polymers represent promising tools for intracellular delivery of molecules.
Collapse
Affiliation(s)
- Nobuyuki Morimoto
- Department of Material Processing, Graduate School of Engineering, Tohoku University, 6-6-02 Aramaki-aza Aoba, Aoba-ku, Sendai, 980-8579, Japan
| | - Yoshifumi Oishi
- Department of Material Processing, Graduate School of Engineering, Tohoku University, 6-6-02 Aramaki-aza Aoba, Aoba-ku, Sendai, 980-8579, Japan
| | - Masaya Yamamoto
- Department of Material Processing, Graduate School of Engineering, Tohoku University, 6-6-02 Aramaki-aza Aoba, Aoba-ku, Sendai, 980-8579, Japan.,Graduate School of Medical Engineering, Tohoku University, 6-6-12 Aramaki-aza Aoba, Aoba-ku, Sendai, 980-8579, Japan
| |
Collapse
|
22
|
Gao D, Zhu Q, Ruan J, Sun T, Han L. Polyplexes by Polymerized Dequalinium and Bifunctional Aptamer for Mitochondrial Targeting Drug Release to Overcome Drug Resistance. ACS APPLIED BIO MATERIALS 2020; 3:5182-5192. [DOI: 10.1021/acsabm.0c00610] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Duo Gao
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Qiuning Zhu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Jianqing Ruan
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Tao Sun
- Key Laboratory of Smart Drug Delivery (Ministry of Education), State Key Laboratory of Medical Neurobiology, Department of Pharmaceutics, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, P. R. China
| | - Liang Han
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
- Stake Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China
| |
Collapse
|
23
|
Mitochondrial Delivery of an Anticancer Drug Via Systemic Administration Using a Mitochondrial Delivery System That Inhibits the Growth of Drug-Resistant Cancer Engrafted on Mice. J Pharm Sci 2020; 109:2493-2500. [PMID: 32376272 DOI: 10.1016/j.xphs.2020.04.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 04/27/2020] [Accepted: 04/28/2020] [Indexed: 11/20/2022]
Abstract
Mitochondrial delivery of an anticancer drug targeting cancer cells would eventually result in cell death. To achieve this, a drug delivery system targeting mitochondria is needed. We recently developed a MITO-Porter, a liposome that delivers its cargo to mitochondria. We reported that such a MITO-Porter could deliver doxorubicin (DOX), an anticancer drug, to mitochondria in OS-RC-2 cells, a drug resistant cancer cell, resulting in inhibiting the cell growth, based in in vitro experiments. Herein, we report on validating the benefit of such a therapeutic strategy for treating drug resistant cancers by the in vivo targeting of mitochondria. We prepared a DOX-MITO-Porter, in which DOX was encapsulated in the MITO-Porter and optimized its retention in blood circulation. When the DOX-MITO-Porter was administered to mice bearing OS-RC-2 cells via tail vein injection, tumor size was significantly decreased, compared to DOX itself and to the DOX-encapsulated polyethylene glycol-modified liposome (DOX-PEG-LP). Intracellular observation confirmed that the DOX-MITO-Porter had accumulated in tumor mitochondria. It was also found a relationship between anti-tumor effect and the mitochondrial function, as indicated by the depolarization of mitochondrial membrane potential. This study provides support for the utility of an in vivo mitochondrial delivery system in drug resistant cancer therapies.
Collapse
|
24
|
Pei X, Zhu Z, Gan Z, Chen J, Zhang X, Cheng X, Wan Q, Wang J. PEGylated nano-graphene oxide as a nanocarrier for delivering mixed anticancer drugs to improve anticancer activity. Sci Rep 2020; 10:2717. [PMID: 32066812 PMCID: PMC7026168 DOI: 10.1038/s41598-020-59624-w] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 02/03/2020] [Indexed: 02/05/2023] Open
Abstract
Due to their high specific surface area, graphene oxide and graphene oxide-base nanoparticles have great potential both in dual-drug delivery and combination chemotherapy. Herein, we developed cisplatin (Pt) and doxorubicin (DOX) dual-drug-loaded PEGylated nano-graphene oxide (pGO) to facilitate combined chemotherapy in one system. In this study, nano-sized pGO-Pt/DOX ranged around 161.50 nm was fabricated and characterized using zeta-potential, AFM, TEM, Raman, UV-Vis, and FTIR analyses. The drug delivery efficacy of Pt was enhanced through the introduction of pGO, and the final weight ratio of DOX: Pt: pGO was optimized to 0.376: 0.376: 1. In vitro studies revealed that pGO-Pt/DOX nanoparticles could be effectively delivered into tumor cells, in which they induced prominent cell apoptosis and necrosis and exhibited higher growth inhibition than the single drug delivery system or free drugs. The pGO-Pt/DOX induced the most prominent cancer cell apoptosis and necrosis rate with 18.6%, which was observed almost 2 times higher than that of pGO-Pt or pGO-DOX groups. in the apoptosis and necrotic quadrants In vivo data confirmed that the pGO-Pt/DOX dual-drug delivery system attenuated the toxicity of Pt and DOX to normal organs compared to free drugs. The tumor inhibition data, histopathology observations, and immunohistochemical staining confirmed that the dual-drug delivery system presented a better anticancer effect than free drugs. These results clearly indicated that the pGO-Pt/DOX dual-drug delivery system provided the means for combination drug delivery in cancer treatment.
Collapse
Affiliation(s)
- Xibo Pei
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China.
| | - Zhou Zhu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Zhoujie Gan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Junyu Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Xin Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Xinting Cheng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Qianbing Wan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Jian Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China.
| |
Collapse
|
25
|
Yin HQ, Shao G, Gan F, Ye G. One-step, Rapid and Green Synthesis of Multifunctional Gold Nanoparticles for Tumor-Targeted Imaging and Therapy. NANOSCALE RESEARCH LETTERS 2020; 15:29. [PMID: 32006199 PMCID: PMC6994604 DOI: 10.1186/s11671-019-3232-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 12/15/2019] [Indexed: 06/10/2023]
Abstract
Gold nanoparticles (GNPs) have always been used as doxorubicin (DOX) transport vectors for tumor diagnosis and therapy; however, the synthesis process of these vectors is to prepare GNPs via chemical reduction method firstly, followed by conjugation with DOX or specific peptides, so these meth•ods faced some common problems including multiple steps, high cost, time consuming, complicated preparation, and post-processing. Here, we present a one-step strategy to prepare the DOX-conjugated GNPs on the basis of DOX's chemical constitution for the first time. Moreover, we prepare a multifunctional GNPs (DRN-GNPs) with a one-step method by the aid of the reductive functional groups possessed by DOX, RGD peptides, and nuclear localization peptides (NLS), which only needs 30 min. The results of scattering images and cell TEM studies indicated that the DRN-GNPs could target the Hela cells' nucleus. The tumor inhibition rates of DRN-GNPs via tumor and tail vein injection of nude mice were 66.7% and 57.7%, respectively, which were significantly enhanced compared to control groups. One step synthesis of multifunctional GNPs not only saves time, materials, but also it is in line with the development direction of green chemistry, and it would lay the foundation for large-scale applications within the near future. Our results suggested that the fabrication strategy is efficient, and our prepared DRN-GNPs possess good colloidal stability in the physiological system; they are a potentially contrast agent and an efficient DOX transport vector for cervical cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Hua Qin Yin
- School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275 People’s Republic of China
| | - Guang Shao
- School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275 People’s Republic of China
| | - Feng Gan
- School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275 People’s Republic of China
| | - Gang Ye
- Department of Gastroenterology, the First Affiliated Hospital of Jinan University, Guangzhou, 510630 People’s Republic of China
| |
Collapse
|
26
|
Alekseeva AS, Chugunov AO, Volynsky PE, Onishchenko NR, Molotkovsky JG, Efremov RG, Boldyrev IA, Vodovozova EL. Behavior of Doxorubicin Lipophilic Conjugates in Liposomal Lipid Bilayers. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2019. [DOI: 10.1134/s1068162019010023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
27
|
Battogtokh G, Choi YS, Kang DS, Park SJ, Shim MS, Huh KM, Cho YY, Lee JY, Lee HS, Kang HC. Mitochondria-targeting drug conjugates for cytotoxic, anti-oxidizing and sensing purposes: current strategies and future perspectives. Acta Pharm Sin B 2018; 8:862-880. [PMID: 30505656 PMCID: PMC6251809 DOI: 10.1016/j.apsb.2018.05.006] [Citation(s) in RCA: 191] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 04/04/2018] [Accepted: 04/18/2018] [Indexed: 12/26/2022] Open
Abstract
Mitochondrial targeting is a promising approach for solving current issues in clinical application of chemotherapy and diagnosis of several disorders. Here, we discuss direct conjugation of mitochondrial-targeting moieties to anticancer drugs, antioxidants and sensor molecules. Among them, the most widely applied mitochondrial targeting moiety is triphenylphosphonium (TPP), which is a delocalized cationic lipid that readily accumulates and penetrates through the mitochondrial membrane due to the highly negative mitochondrial membrane potential. Other moieties, including short peptides, dequalinium, guanidine, rhodamine, and F16, are also known to be promising mitochondrial targeting agents. Direct conjugation of mitochondrial targeting moieties to anticancer drugs, antioxidants and sensors results in increased cytotoxicity, anti-oxidizing activity and sensing activity, respectively, compared with their non-targeting counterparts, especially in drug-resistant cells. Although many mitochondria-targeted anticancer drug conjugates have been investigated in vitro and in vivo, further clinical studies are still needed. On the other hand, several mitochondria-targeting antioxidants have been analyzed in clinical phases I, II and III trials, and one conjugate has been approved for treating eye disease in Russia. There are numerous ongoing studies of mitochondria-targeted sensors.
Collapse
Key Words
- (Fx, r)3, (l-cyclohexyl alanine-d-arginine)3
- 4-AT, 4-amino-TEMPO
- 5-FU, 5-Fluorouracil
- AD, Alzheimer׳s disease
- AIE, aggregation-induced emission
- ATP, adenosine triphosphate
- Anticancer agents
- Antioxidants
- Arg, arginine
- Aβ, beta amyloid
- BODIPY, boron-dipyrromethene
- C-dots, carbon dots
- CAT, catalase
- COX, cytochrome c oxidase
- CZBI, carbazole and benzo[e]indolium
- CoA, coenzyme A
- DDS, drug delivery system
- DEPMPO, 5-(diethylphosphono)-5-methyl-1-pyrroline N-oxide
- DIPPMPO, 5-(diisopropoxyphosphoryl)-5-methyl-1-pyrroline-N-oxide
- DQA, dequalinium
- Direct conjugation
- Dmt, dimethyltyrosine
- EPR, enhanced permeability and retention
- F16, (E)-4-(1H-indol-3-ylvinyl)-N-methylpyridinium iodide
- GPX, glutathione peroxidase
- GS, gramicidin S
- HTPP, 5-(4-hydroxy-phenyl)-10,15,20-triphenylporphyrin
- IMM, inner mitochondrial membrane
- IMS, intermembrane space
- IOA, imidazole-substituted oleic acid
- LA, lipoic acid
- LAH2, dihydrolipoic acid
- Lys, lysine
- MET, mesenchymal-epithelial transition
- MLS, mitochondria localization sequences
- MPO, myeloperoxidase
- MPP, mitochondria-penetrating peptides
- MitoChlor, TPP-chlorambucil
- MitoE, TPP-vitamin E
- MitoLA, TPP-lipoic acid
- MitoQ, TPP-ubiquinone
- MitoVES, TPP-vitamin E succinate
- Mitochondria-targeting
- Nit, nitrooxy
- NitDOX, nitrooxy-DOX
- OMM, outer mitochondrial membrane
- OXPHOS, oxidative phosphorylation
- PD, Parkinson׳s disease
- PDT, photodynamic therapy
- PET, photoinduced electron transfer
- PS, photosensitizer
- PTPC, permeability transition pore complex
- Phe, phenylalanine
- RNS, reactive nitrogen species
- ROS, reactive oxygen species
- SOD, superoxide dismutase
- SS peptide, Szeto-Schiller peptides
- Sensing agents
- SkQ1, Skulachev ion-quinone
- TEMPOL, 4-hydroxy-2,2,6,6-tetramethylpiperidine-N-oxyl
- TPEY-TEMPO, [2-(1-oxyl-2,2,6,6-tetramethylpiperidin-4-ylimino)-ethyl]-triphenyl-phosphonium
- TPP, triphenylphosphonium
- Tyr, tyrosine
- VDAC/ANT, voltage-dependent anion channel/adenine nucleotide translocase
- VES, vitamin E succinate
- XO, xanthine oxidase
- mitoTEMPO, (2-(2,2,6,6-tetramethylpiperidin-1-oxyl-4-ylamino)-2-oxoethyl)triphenylphosphonium)
- mtCbl, (Fx,r)3-chlorambucil
- mtDNA, mitochondrial DNA
- mtPt, mitochondria-targeting (Fx,r)3-platinum(II)
- nDNA, nuclear DNA
- αTOS, alpha-tocopheryl succinate.
Collapse
Affiliation(s)
- Gantumur Battogtokh
- Department of Pharmacy, Integrated Research Institute of Pharmaceutical Sciences, and BK21 PLUS Team for Creative Leader Program for Pharmacomics-based Future Pharmacy, College of Pharmacy, The Catholic University of Korea, Gyeonggi-do 14662, Republic of Korea
| | - Yeon Su Choi
- Department of Pharmacy, Integrated Research Institute of Pharmaceutical Sciences, and BK21 PLUS Team for Creative Leader Program for Pharmacomics-based Future Pharmacy, College of Pharmacy, The Catholic University of Korea, Gyeonggi-do 14662, Republic of Korea
| | - Dong Seop Kang
- Department of Pharmacy, Integrated Research Institute of Pharmaceutical Sciences, and BK21 PLUS Team for Creative Leader Program for Pharmacomics-based Future Pharmacy, College of Pharmacy, The Catholic University of Korea, Gyeonggi-do 14662, Republic of Korea
| | - Sang Jun Park
- Department of Pharmacy, Integrated Research Institute of Pharmaceutical Sciences, and BK21 PLUS Team for Creative Leader Program for Pharmacomics-based Future Pharmacy, College of Pharmacy, The Catholic University of Korea, Gyeonggi-do 14662, Republic of Korea
| | - Min Suk Shim
- Division of Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Kang Moo Huh
- Department of Polymer Science and Engineering, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Yong-Yeon Cho
- Department of Pharmacy, Integrated Research Institute of Pharmaceutical Sciences, and BK21 PLUS Team for Creative Leader Program for Pharmacomics-based Future Pharmacy, College of Pharmacy, The Catholic University of Korea, Gyeonggi-do 14662, Republic of Korea
| | - Joo Young Lee
- Department of Pharmacy, Integrated Research Institute of Pharmaceutical Sciences, and BK21 PLUS Team for Creative Leader Program for Pharmacomics-based Future Pharmacy, College of Pharmacy, The Catholic University of Korea, Gyeonggi-do 14662, Republic of Korea
| | - Hye Suk Lee
- Department of Pharmacy, Integrated Research Institute of Pharmaceutical Sciences, and BK21 PLUS Team for Creative Leader Program for Pharmacomics-based Future Pharmacy, College of Pharmacy, The Catholic University of Korea, Gyeonggi-do 14662, Republic of Korea
| | - Han Chang Kang
- Department of Pharmacy, Integrated Research Institute of Pharmaceutical Sciences, and BK21 PLUS Team for Creative Leader Program for Pharmacomics-based Future Pharmacy, College of Pharmacy, The Catholic University of Korea, Gyeonggi-do 14662, Republic of Korea
| |
Collapse
|
28
|
Battogtokh G, Cho YY, Lee JY, Lee HS, Kang HC. Mitochondrial-Targeting Anticancer Agent Conjugates and Nanocarrier Systems for Cancer Treatment. Front Pharmacol 2018; 9:922. [PMID: 30174604 PMCID: PMC6107715 DOI: 10.3389/fphar.2018.00922] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 07/26/2018] [Indexed: 12/30/2022] Open
Abstract
The mitochondrion is an important intracellular organelle for drug targeting due to its key roles and functions in cellular proliferation and death. In the last few decades, several studies have revealed mitochondrial functions, attracting the focus of many researchers to work in this field over nuclear targeting. Mitochondrial targeting was initiated in 1995 with a triphenylphosphonium-thiobutyl conjugate as an antioxidant agent. The major driving force for mitochondrial targeting in cancer cells is the higher mitochondrial membrane potential compared with that of the cytosol, which allows some molecules to selectively target mitochondria. In this review, we discuss mitochondria-targeting ligand-conjugated anticancer agents and their in vitro and in vivo behaviors. In addition, we describe a mitochondria-targeting nanocarrier system for anticancer drug delivery. As previously reported, several agents have been known to have mitochondrial targeting potential; however, they are not sufficient for direct application for cancer therapy. Thus, many studies have focused on direct conjugation of targeting ligands to therapeutic agents to improve their efficacy. There are many variables for optimal mitochondria-targeted agent development, such as choosing a correct targeting ligand and linker. However, using the nanocarrier system could solve some issues related to solubility and selectivity. Thus, this review focuses on mitochondria-targeting drug conjugates and mitochondria-targeted nanocarrier systems for anticancer agent delivery.
Collapse
Affiliation(s)
| | | | | | | | - Han Chang Kang
- Department of Pharmacy, College of Pharmacy, The Catholic University of Korea, Bucheon, South Korea
| |
Collapse
|
29
|
Shi M, Zhang J, Li X, Pan S, Li J, Yang C, Hu H, Qiao M, Chen D, Zhao X. Mitochondria-targeted delivery of doxorubicin to enhance antitumor activity with HER-2 peptide-mediated multifunctional pH-sensitive DQAsomes. Int J Nanomedicine 2018; 13:4209-4226. [PMID: 30140154 PMCID: PMC6054761 DOI: 10.2147/ijn.s163858] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Introduction Multidrug resistance (MDR) of breast cancer is the major challenge to successful chemotherapy while mitochondria-targeting therapy was a promising strategy to overcome MDR. Materials and methods In this study, HER-2 peptide-PEG2000-Schiff base-cholesterol (HPSC) derivate was synthesized successfully and incorporated it on the surface of the doxorubicin (DOX)-loaded dequalinium (DQA) chloride vesicle (HPS-DQAsomes) to treat drug-resistant breast cancer. Evaluations were performed using human breast cancer cell and DOX-resistant breast cancer cell lines (MCF-7 and MCF-7/ADR). Results The particle size of HPS-DQAsomes was ~110 nm with spherical shape. In vitro cytotoxicity assay indicated that HPS-DQAsomes could increase the cytotoxicity against MCF-7/ADR cell line. Cellular uptake and mitochondria-targeting assay demonstrated that HPS-DQAsomes could target delivering therapeutical agent to mitochondria and inducing mitochondria-driven apoptosis process. In vivo antitumor assay suggested that HPS-DQAsomes could reach favorable antitumor activity due to both tumor targetability and sub-organelles’ targetability. Histological assay also indicated that HPS-DQAsomes showed a strong apoptosis-inducing effect. No obvious systematic toxicity of HPS-DQAsomes could be observed. Conclusion In summary, multifunctional HPS-DQAsomes provide a novel and versatile approach for overcoming MDR via mitochondrial pathway in cancer treatment.
Collapse
Affiliation(s)
- Menghao Shi
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, People's Republic of China,
| | - Jiulong Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, People's Republic of China,
| | - Xiaowei Li
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, People's Republic of China,
| | - Shuang Pan
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, People's Republic of China,
| | - Jie Li
- Department of Pharmacy, Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, People's Republic of China
| | - Chunrong Yang
- College Pharmacy of Jiamusi University, Jiamusi, Heilongjiang 154007, People's Republic of China
| | - Haiyang Hu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, People's Republic of China,
| | - Mingxi Qiao
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, People's Republic of China,
| | - Dawei Chen
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, People's Republic of China,
| | - Xiuli Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, People's Republic of China,
| |
Collapse
|
30
|
Song YF, Liu DZ, Cheng Y, Teng ZH, Cui H, Liu M, Zhang BL, Mei QB, Zhou SY. Charge Reversible and Mitochondria/Nucleus Dual Target Lipid Hybrid Nanoparticles To Enhance Antitumor Activity of Doxorubicin. Mol Pharm 2018; 15:1296-1308. [PMID: 29432025 DOI: 10.1021/acs.molpharmaceut.7b01109] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The experiment aims to increase antitumor activity while decreasing the systemic toxicity of doxorubicin (DOX). Charge reversible and mitochondria/nucleus dual target lipid hybrid nanoparticles (LNPs) was prepared. The in vitro experimental results indicated that LNPs released more amount of DOX in acidic environment and delivered more amount of DOX to the mitochondria and nucleus of tumor cells than did free DOX, which resulted in the reduction of mitochondrial membrane potential and the enhancement of cytotoxicity of LNPs on tumor cells. Furthermore, the in vivo experimental results indicated that LNPs delivered more DOX to tumor tissue and significantly prolonged the retention time of DOX in tumor tissue as compared with free DOX, which consequently resulted in the high antitumor activity and low systemic toxicity of LNPs on tumor-bearing nude mice. The above results indicated that charge reversible mitochondria/nucleus dual targeted lipid hybrid nanoparticles greatly enhanced therapeutic efficacy of DOX for treating lung cancer.
Collapse
|
31
|
Battistella C, Klok HA. Controlling and Monitoring Intracellular Delivery of Anticancer Polymer Nanomedicines. Macromol Biosci 2017; 17. [DOI: 10.1002/mabi.201700022] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Revised: 03/03/2017] [Indexed: 12/31/2022]
Affiliation(s)
- Claudia Battistella
- École Polytechnique Fédérale de Lausanne (EPFL); Institut des Matériaux et Institut des Sciences et Ingénierie Chimiques; Laboratoire des Polymères; Bâtiment MXD; Station 12 CH-1015 Lausanne Switzerland
| | - Harm-Anton Klok
- École Polytechnique Fédérale de Lausanne (EPFL); Institut des Matériaux et Institut des Sciences et Ingénierie Chimiques; Laboratoire des Polymères; Bâtiment MXD; Station 12 CH-1015 Lausanne Switzerland
| |
Collapse
|
32
|
Huang L, Zhang Q, Dai L, Shen X, Chen W, Cai K. Phenylboronic acid-modified hollow silica nanoparticles for dual-responsive delivery of doxorubicin for targeted tumor therapy. Regen Biomater 2017; 4:111-124. [PMID: 30792886 PMCID: PMC6371689 DOI: 10.1093/rb/rbw045] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 11/22/2016] [Accepted: 12/03/2016] [Indexed: 01/01/2023] Open
Abstract
This work reports a multifunctional nanocarrier based on hollow mesoporous silica nanoparticles (HMSNs) for targeting tumor therapy. Doxorubicin (DOX) was loaded into HMSNs and blocked with cytochrome C conjugated lactobionic acid (CytC-LA) via redox-cleavable disulfide bonds and pH-disassociation boronate ester bonds as intermediate linkers. The CytC-LA was used both as sealing agent and targeting motif. A series of characterizations demonstrated the successful construction of the drug delivery system. The system demonstrated pH and redox dual-responsive drug release behavior in vitro. The DOX loading HMSNs system displayed a good biocompatibility, which could be specifically endocytosed by HepG2 cells and led to high cytotoxicity against tumor cells by inducing cell apoptosis. In vivo data (tumor volume, tumor weight, terminal deoxynucleotidyl transferase dUTP nick end labeling and hematoxylin and eosin staining) proved that the system could deliver DOX to tumor site with high efficiency and inhibit tumor growth with minimal toxic side effect.
Collapse
Affiliation(s)
| | | | | | | | | | - Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing 400044, P. R. China
| |
Collapse
|
33
|
Kang MK, Mao W, Lee JB, Yoo HS. Epidermal growth factor (EGF) fragment-guided anticancer theranostic particles for pH-responsive release of doxorubicin. Int J Pharm 2017; 519:104-112. [DOI: 10.1016/j.ijpharm.2017.01.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 12/23/2016] [Accepted: 01/09/2017] [Indexed: 10/20/2022]
|
34
|
Doxorubicin and resveratrol co-delivery nanoparticle to overcome doxorubicin resistance. Sci Rep 2016; 6:35267. [PMID: 27731405 PMCID: PMC5059704 DOI: 10.1038/srep35267] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 09/27/2016] [Indexed: 02/08/2023] Open
Abstract
With the extensive application of doxorubicin (DOX), DOX resistance has become one of the main obstacles to the effective treatment of breast cancer. In this paper, DOX and resveratrol (RES) were co-encapsulated in a modified PLGA nanoparticle (NPS) to overcome the DOX resistance. CLSM results indicated that DOX and RES were simultaneously delivered into the nucleus of DOX-resistant human breast cancer cells by DOX/RES-loaded NPS. Consequently, DOX/RES-loaded NPS showed significant cytotoxicity on MDA-MB-231/ADR cells and MCF-7/ADR cells. Furthermore, DOX/RES-loaded NPS could overcome DOX resistance by inhibiting the expression of drug resistance-related protein such as P-gp, MRP-1 and BCRP, and induce apoptosis through down-regulating the expression of NF-κB and BCL-2. In tumor-bearing mice, DOX/RES-loaded NPS mainly delivered DOX and RES to tumor tissue. Compared with free DOX, DOX/RES-loaded NPS significantly inhibited the DOX-resistant tumor growth in tumor-bearing mice without causing significant systemic toxicity. In a word, DOX/RES-loaded NPS could overcome the DOX resistance and had the potential in the treatment of DOX-resistant breast cancer.
Collapse
|
35
|
Sato Y, Nakamura T, Yamada Y, Harashima H. Development of a multifunctional envelope-type nano device and its application to nanomedicine. J Control Release 2016; 244:194-204. [PMID: 27374187 DOI: 10.1016/j.jconrel.2016.06.042] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 06/21/2016] [Accepted: 06/28/2016] [Indexed: 02/06/2023]
Abstract
Successful nanomedicines should be based on sound drug delivery systems (DDS) the permit intracellular trafficking as well as the biodistribution of cargos to be controlled. We have been developing new types of DDS that are multifunctional envelope-type nano devices referred to as MENDs. First, we will focus the in vivo delivery of siRNA to hepatocytes using a YSK-MEND which is composed of pH-responsive cationic lipids. The YSK-MEND is capable of inducing efficient silencing activity in hepatocytes and can be used to cure mice that are infected with hepatitis C or B. The YSK-MEND can also be applied to cancer immunotherapy through the activation of immune cells by delivering different compounds such as cyclic-di-GMP, siRNA or alpha-galactosylceramide as a lipid antigen. The findings indicate that, as predicted, these compounds, when encapsulated in the YSK-MEND, can be delivered to the site of action and induced immune activation through different mechanisms. Finally, a MITO-Porter, a membrane fusion-based delivery system to mitochondria, is introduced as an organelle targeting DDS and a new strategy for cancer therapy is proposed by delivering gentamicin to mitochondria of cancer cells. These new technologies are expected to extend the therapeutic area of Nanomedicine by increasing the power of DDS, especially from the view point of controlled intracellular trafficking.
Collapse
Affiliation(s)
- Yusuke Sato
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Takashi Nakamura
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Yuma Yamada
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Hideyoshi Harashima
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan.
| |
Collapse
|
36
|
Mallick A, More P, Syed MMK, Basu S. Nanoparticle-Mediated Mitochondrial Damage Induces Apoptosis in Cancer. ACS APPLIED MATERIALS & INTERFACES 2016; 8:13218-13231. [PMID: 27160664 DOI: 10.1021/acsami.6b00263] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Detouring of conventional DNA damaging anticancer drugs into mitochondria to damage mitochondrial DNA is evolving as a promising strategy in chemotherapy. Inhibiting single target in mitochondria would eventually lead to the emergence of drug resistance. Moreover, targeting mitochondria selectively in cancer cells, keeping them intact in healthy cells, remains a major challenge. Herein, triphenylphosphine (TPP)-coated positively charged 131.6 nm spherical nanoparticles (NPs) comprised of α-tocopheryl succinate (TOS, inhibitor of complex II in electron transport chain) and obatoclax (Obt, inhibitor of Bcl-2) were engineered. The TOS-TPP-Obt-NPs entered into acidic lysosomes via macropinocytosis, followed by lysosomal escape and finally homed into mitochondria over a period of 24 h. Subsequently, these TOS-TPP-Obt-NPs triggered mitochondrial outer membrane permeabilization (MOMP) by inhibiting antiapoptotic Bcl-2, leading to Cytochrome C release. These TOS-TPP-Obt-NPs mediated mitochondrial damage induced cellular apoptosis through caspase-9 and caspase-3 cleavage to show improved efficacy in HeLa cells. Moreover, TOS-TPP-Obt-NPs induced MOMP in drug-resistant triple negative breast cancer cells (MDA-MB-231), leading to remarkable efficacy, compared to the combination of free drugs in higher drug concentrations. Results presented here clearly stimulate the usage of multiple drugs to perturb simultaneously diverse targets, selectively in mitochondria, as next-generation cancer therapeutics.
Collapse
Affiliation(s)
- Abhik Mallick
- Department of Chemistry, Indian Institute of Science Education and Research (IISER)-Pune , Pune, 411008, Maharashtra, India
| | - Piyush More
- Department of Chemistry, Indian Institute of Science Education and Research (IISER)-Pune , Pune, 411008, Maharashtra, India
| | - Muhammed Muazzam Kamil Syed
- Department of Chemistry, Indian Institute of Science Education and Research (IISER)-Pune , Pune, 411008, Maharashtra, India
| | - Sudipta Basu
- Department of Chemistry, Indian Institute of Science Education and Research (IISER)-Pune , Pune, 411008, Maharashtra, India
| |
Collapse
|
37
|
Du JB, Cheng Y, Teng ZH, Huan ML, Liu M, Cui H, Zhang BL, Zhou SY. pH-Triggered Surface Charge Reversed Nanoparticle with Active Targeting To Enhance the Antitumor Activity of Doxorubicin. Mol Pharm 2016; 13:1711-22. [DOI: 10.1021/acs.molpharmaceut.6b00158] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jiang-bo Du
- Department of Pharmaceutics,
School of Pharmacy, Fourth Military Medical University, Xi’an, 710032, China
| | - Ying Cheng
- Department of Pharmaceutics,
School of Pharmacy, Fourth Military Medical University, Xi’an, 710032, China
| | - Zeng-hui Teng
- Department of Pharmaceutics,
School of Pharmacy, Fourth Military Medical University, Xi’an, 710032, China
| | - Meng-lei Huan
- Department of Pharmaceutics,
School of Pharmacy, Fourth Military Medical University, Xi’an, 710032, China
| | - Miao Liu
- Department of Pharmaceutics,
School of Pharmacy, Fourth Military Medical University, Xi’an, 710032, China
| | - Han Cui
- Department of Pharmaceutics,
School of Pharmacy, Fourth Military Medical University, Xi’an, 710032, China
| | - Bang-le Zhang
- Department of Pharmaceutics,
School of Pharmacy, Fourth Military Medical University, Xi’an, 710032, China
| | - Si-yuan Zhou
- Department of Pharmaceutics,
School of Pharmacy, Fourth Military Medical University, Xi’an, 710032, China
| |
Collapse
|
38
|
Yu X, Zhang B, Wang T, Zhang J, Mu S, Liu C, Zhang N. Two-stage pH-sensitive doxorubicin hydrochloride loaded core–shell nanoparticles with dual drug-loading strategies for the potential anti-tumor treatment. RSC Adv 2016. [DOI: 10.1039/c6ra19242d] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Two-stage pH-sensitive DOX·HCl loaded core–shell nanoparticles (CPOD) with dual drug-loading strategies showed pretty in vivo anti-tumor efficacy.
Collapse
Affiliation(s)
- Xiaoyue Yu
- Department of Pharmaceutics
- School of Pharmaceutical Science
- Shandong University
- Jinan 250012
- China
| | - Bo Zhang
- Department of Pharmaceutics
- School of Pharmaceutical Science
- Shandong University
- Jinan 250012
- China
| | - Tianqi Wang
- Department of Pharmaceutics
- School of Pharmaceutical Science
- Shandong University
- Jinan 250012
- China
| | - Jing Zhang
- Department of Pharmaceutics
- School of Pharmaceutical Science
- Shandong University
- Jinan 250012
- China
| | - Shengjun Mu
- Department of Pharmaceutics
- School of Pharmaceutical Science
- Shandong University
- Jinan 250012
- China
| | - Chunxi Liu
- Pharmaceutical Department
- Qilu Hospital of Shandong University
- Jinan 250012
- China
| | - Na Zhang
- Department of Pharmaceutics
- School of Pharmaceutical Science
- Shandong University
- Jinan 250012
- China
| |
Collapse
|