1
|
Nakata N, Ishibashi Y, Miyata S. Efficient Cell Impedance Measurement by Dielectrophoretic Cell Accumulation and Evaluation of Chondrogenic Phenotypes. MICROMACHINES 2022; 13:mi13060837. [PMID: 35744451 PMCID: PMC9230527 DOI: 10.3390/mi13060837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/22/2022] [Accepted: 05/24/2022] [Indexed: 02/04/2023]
Abstract
The quantitative and functional analyses of cells are important for cell-based therapies. In this study, to establish the quantitative cell analysis method, we propose an impedance measurement method supported by dielectrophoretic cell accumulation. An impedance measurement and dielectrophoresis device was constructed using opposing comb-shaped electrodes. Using dielectrophoresis, cells were accumulated to form chain-like aggregates on the electrodes to improve the measurement sensitivity of the electrical impedance device. To validate the proposed method, the electrical impedance and capacitance of primary and de-differentiated chondrocytes were measured. As a result, the impedance of the chondrocytes decreased with an increase in the passage number, whereas the capacitance increased. Therefore, the impedance measurement method proposed in this study has the potential to identify chondrocyte phenotypes.
Collapse
Affiliation(s)
- Natsumi Nakata
- Department of Mechanical Engineering, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Yokohama 223-8522, Japan;
| | - Yuko Ishibashi
- Graduate School of Science and Technology, Keio University, 3-14-1 Hiyoshi, Yokohama 223-8522, Japan;
| | - Shogo Miyata
- Department of Mechanical Engineering, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Yokohama 223-8522, Japan;
- Correspondence: ; Tel.: +81-45-566-1827
| |
Collapse
|
2
|
Application of Alginate Hydrogels for Next-Generation Articular Cartilage Regeneration. Int J Mol Sci 2022; 23:ijms23031147. [PMID: 35163071 PMCID: PMC8835677 DOI: 10.3390/ijms23031147] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/14/2022] [Accepted: 01/18/2022] [Indexed: 12/28/2022] Open
Abstract
The articular cartilage has insufficient intrinsic healing abilities, and articular cartilage injuries often progress to osteoarthritis. Alginate-based scaffolds are attractive biomaterials for cartilage repair and regeneration, allowing for the delivery of cells and therapeutic drugs and gene sequences. In light of the heterogeneity of findings reporting the benefits of using alginate for cartilage regeneration, a better understanding of alginate-based systems is needed in order to improve the approaches aiming to enhance cartilage regeneration with this compound. This review provides an in-depth evaluation of the literature, focusing on the manipulation of alginate as a tool to support the processes involved in cartilage healing in order to demonstrate how such a material, used as a direct compound or combined with cell and gene therapy and with scaffold-guided gene transfer procedures, may assist cartilage regeneration in an optimal manner for future applications in patients.
Collapse
|
3
|
Li X, Li S, Qian J, Chen Y, Zhou Y, Fu P. Early Efficacy of Type I Collagen-Based Matrix-Assisted Autologous Chondrocyte Transplantation for the Treatment of Articular Cartilage Lesions. Front Bioeng Biotechnol 2021; 9:760179. [PMID: 34778233 PMCID: PMC8584836 DOI: 10.3389/fbioe.2021.760179] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 10/18/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Articular cartilage is a complex structure that allows for low frictional gliding and effective shock absorption. Various sports injuries and inflammatory conditions can lead to lesions in the articular cartilage, which has limited regenerative potential. Type I collagen combined with autologous chondrocytes in a three-dimensional culture were used to induce the regeneration of single-layer autologous expanded chondrocytes without chondrogenic differentiation. Purpose: To assess the clinical, radiological, and histological changes following collagen-based autologous chondrocyte transplantation (MACT) for chondral knee lesions. Methods: The study prospectively enrolled 20 patients with symptomatic knee chondral lesions (mean size lesion was 2.41 ± 0.43 cm2, range: 2.0-3.4 cm2) in the lateral femoral condyle and femoral groove who underwent type I collagen-based MACT between July 2017 and July 2019. knee injury and osteoarthritis outcome score (KOOS) was assessed before the procedure, and periodic clinical follow-up was conducted every 3 months for a maximum of 12 months following the procedure and at 1-year intervals thereafter. Magnetic resonance imaging (MRI) T2 mapping of repaired cartilage was also used for the quantitative analysis of regeneration. In one patient, second-look arthroscopy was performed to assess cartilage regeneration characteristics, and a portion of regenerated cartilage was harvested for histological evaluation 12 months after implantation. Results: At pre-operation and at three, six, 12, and 24 months after the operation, KOOS pain, symptoms, daily life activities, sports and recreation, as well as the quality of life were significantly improved between every two time points. Hematoxylin and eosin (HE) staining indicated that the newly formed cartilage was comprised of naive chondrocytes. Safranin O-fast (S-O) green staining of the regenerated tissue revealed fibroblast-like cells surrounded by glycosaminoglycans. Immunohistochemistry (IHC) analysis indicated that collagen type II was uniformly distributed at the deep zone of articular cartilage and type I collagen mainly depositing in the superficial cartilage layer. The T2 values for repaired tissue gradually decreased, eventually approaching near-average values. Conclusion: The present study demonstrated that type I collagen-based MACT is a clinically effective treatment for improving functionality and pain levels. Histological evidence confirmed hyaline cartilage induction and showed that repaired cartilage tended to emerge from the deep to the superficial layer. The quantitative MRI T2 mapping test indicated that there still was a difference between the transplanted cartilage and the surrounding hyaline cartilage. Taken together, the current method represents an efficient approach for the restoration of knee cartilage lesions.
Collapse
Affiliation(s)
- Xiang Li
- Department of Arthroplasty Surgery, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Shiao Li
- Department of Arthroplasty Surgery, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Jiatian Qian
- Department of Arthroplasty Surgery, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Yancheng Chen
- Department of Arthroplasty Surgery, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Yiqin Zhou
- Department of Arthroplasty Surgery, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Peiliang Fu
- Department of Arthroplasty Surgery, Changzheng Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
4
|
Chen L, Xu J, Lv S, Zhao Y, Sun D, Zheng Y, Li X, Zhang L, Chi G, Li Y. Overexpression of long non-coding RNA AP001505.9 inhibits human hyaline chondrocyte dedifferentiation. Aging (Albany NY) 2021; 13:11433-11454. [PMID: 33839696 PMCID: PMC8109079 DOI: 10.18632/aging.202833] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 02/18/2021] [Indexed: 12/21/2022]
Abstract
Autologous chondrocyte implantation (ACI) is an effective method for treating chronic articular cartilage injury and degeneration; however, it requires large numbers of hyaline chondrocytes, and human hyaline chondrocytes often undergo dedifferentiation in vitro. Moreover, although long non-coding RNAs (lncRNAs) regulate gene expression in many pathological and physiological processes, their role in human hyaline chondrocyte dedifferentiation remains unclear. Here, we examined lncRNA and mRNA expression profiles in human hyaline chondrocyte dedifferentiation using microarray analysis. Among the many lncRNAs and mRNAs that showed differential expression, lncRNA AP001505.9 (ENST00000569966) was significantly downregulated in chondrocytes after dedifferentiation. We next performed gene ontology, pathway, and CNC (coding-non-coding gene co-expression) analyses to investigate potential regulatory mechanisms for AP001505.9. Pellet cultures were then used to redifferentiate dedifferentiated chondrocytes, and AP001505.9 expression was upregulated after redifferentiation. Finally, both in vitro and in vivo experiments demonstrated that AP001505.9 overexpression inhibited dedifferentiation of chondrocytes. This study characterizes lncRNA expression profiles in human hyaline chondrocyte dedifferentiation, thereby identifying new potential mechanisms of chondrocyte dedifferentiation worthy of further investigation.
Collapse
Affiliation(s)
- Lin Chen
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China.,Department of Gastrointestinal and Colorectal Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Jinying Xu
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Shuang Lv
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Yan Zhao
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China.,Department of Operating Room, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Dongjie Sun
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Yangyang Zheng
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Xianglan Li
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China.,Department of Dermatology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Lihong Zhang
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Guangfan Chi
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Yulin Li
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| |
Collapse
|
5
|
Khella CM, Asgarian R, Horvath JM, Rolauffs B, Hart ML. An Evidence-Based Systematic Review of Human Knee Post-Traumatic Osteoarthritis (PTOA): Timeline of Clinical Presentation and Disease Markers, Comparison of Knee Joint PTOA Models and Early Disease Implications. Int J Mol Sci 2021; 22:1996. [PMID: 33671471 PMCID: PMC7922905 DOI: 10.3390/ijms22041996] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/05/2021] [Accepted: 02/08/2021] [Indexed: 12/15/2022] Open
Abstract
Understanding the causality of the post-traumatic osteoarthritis (PTOA) disease process of the knee joint is important for diagnosing early disease and developing new and effective preventions or treatments. The aim of this review was to provide detailed clinical data on inflammatory and other biomarkers obtained from patients after acute knee trauma in order to (i) present a timeline of events that occur in the acute, subacute, and chronic post-traumatic phases and in PTOA, and (ii) to identify key factors present in the synovial fluid, serum/plasma and urine, leading to PTOA of the knee in 23-50% of individuals who had acute knee trauma. In this context, we additionally discuss methods of simulating knee trauma and inflammation in in vivo, ex vivo articular cartilage explant and in vitro chondrocyte models, and answer whether these models are representative of the clinical inflammatory stages following knee trauma. Moreover, we compare the pro-inflammatory cytokine concentrations used in such models and demonstrate that, compared to concentrations in the synovial fluid after knee trauma, they are exceedingly high. We then used the Bradford Hill Framework to present evidence that TNF-α and IL-6 cytokines are causal factors, while IL-1β and IL-17 are credible factors in inducing knee PTOA disease progresssion. Lastly, we discuss beneficial infrastructure for future studies to dissect the role of local vs. systemic inflammation in PTOA progression with an emphasis on early disease.
Collapse
Affiliation(s)
| | | | | | | | - Melanie L. Hart
- G.E.R.N. Center for Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Medical Center—Albert-Ludwigs-University of Freiburg, 79085 Freiburg im Breisgau, Germany; (C.M.K.); (R.A.); (J.M.H.); (B.R.)
| |
Collapse
|
6
|
Yao Y, Wang C. Dedifferentiation: inspiration for devising engineering strategies for regenerative medicine. NPJ Regen Med 2020; 5:14. [PMID: 32821434 PMCID: PMC7395755 DOI: 10.1038/s41536-020-00099-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 07/08/2020] [Indexed: 02/07/2023] Open
Abstract
Cell dedifferentiation is the process by which cells grow reversely from a partially or terminally differentiated stage to a less differentiated stage within their own lineage. This extraordinary phenomenon, observed in many physiological processes, inspires the possibility of developing new therapeutic approaches to regenerate damaged tissue and organs. Meanwhile, studies also indicate that dedifferentiation can cause pathological changes. In this review, we compile the literature describing recent advances in research on dedifferentiation, with an emphasis on tissue-specific findings, cellular mechanisms, and potential therapeutic applications from an engineering perspective. A critical understanding of such knowledge may provide fresh insights for designing new therapeutic strategies for regenerative medicine based on the principle of cell dedifferentiation.
Collapse
Affiliation(s)
- Yongchang Yao
- Department of Joint Surgery, The First Affiliated Hospital of Guangzhou Medical University, 510120 Guangzhou, China.,Guangdong Key Laboratory of Orthopaedic Technology and Implant Materials, Guangzhou, China
| | - Chunming Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, China
| |
Collapse
|
7
|
Selig M, Lauer JC, Hart ML, Rolauffs B. Mechanotransduction and Stiffness-Sensing: Mechanisms and Opportunities to Control Multiple Molecular Aspects of Cell Phenotype as a Design Cornerstone of Cell-Instructive Biomaterials for Articular Cartilage Repair. Int J Mol Sci 2020; 21:E5399. [PMID: 32751354 PMCID: PMC7432012 DOI: 10.3390/ijms21155399] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/23/2020] [Accepted: 07/27/2020] [Indexed: 02/06/2023] Open
Abstract
Since material stiffness controls many cell functions, we reviewed the currently available knowledge on stiffness sensing and elucidated what is known in the context of clinical and experimental articular cartilage (AC) repair. Remarkably, no stiffness information on the various biomaterials for clinical AC repair was accessible. Using mRNA expression profiles and morphology as surrogate markers of stiffness-related effects, we deduced that the various clinically available biomaterials control chondrocyte (CH) phenotype well, but not to equal extents, and only in non-degenerative settings. Ample evidence demonstrates that multiple molecular aspects of CH and mesenchymal stromal cell (MSC) phenotype are susceptible to material stiffness, because proliferation, migration, lineage determination, shape, cytoskeletal properties, expression profiles, cell surface receptor composition, integrin subunit expression, and nuclear shape and composition of CHs and/or MSCs are stiffness-regulated. Moreover, material stiffness modulates MSC immuno-modulatory and angiogenic properties, transforming growth factor beta 1 (TGF-β1)-induced lineage determination, and CH re-differentiation/de-differentiation, collagen type II fragment production, and TGF-β1- and interleukin 1 beta (IL-1β)-induced changes in cell stiffness and traction force. We then integrated the available molecular signaling data into a stiffness-regulated CH phenotype model. Overall, we recommend using material stiffness for controlling cell phenotype, as this would be a promising design cornerstone for novel future-oriented, cell-instructive biomaterials for clinical high-quality AC repair tissue.
Collapse
Affiliation(s)
- Mischa Selig
- G.E.R.N. Research Center for Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Medical Center—Albert-Ludwigs-University of Freiburg, 79085 Freiburg im Breisgau, Germany; (M.S.); (J.C.L.); (M.L.H.)
- Faculty of Biology, University of Freiburg, Schaenzlestrasse 1, D-79104 Freiburg, Germany
| | - Jasmin C. Lauer
- G.E.R.N. Research Center for Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Medical Center—Albert-Ludwigs-University of Freiburg, 79085 Freiburg im Breisgau, Germany; (M.S.); (J.C.L.); (M.L.H.)
- Faculty of Biology, University of Freiburg, Schaenzlestrasse 1, D-79104 Freiburg, Germany
| | - Melanie L. Hart
- G.E.R.N. Research Center for Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Medical Center—Albert-Ludwigs-University of Freiburg, 79085 Freiburg im Breisgau, Germany; (M.S.); (J.C.L.); (M.L.H.)
| | - Bernd Rolauffs
- G.E.R.N. Research Center for Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Medical Center—Albert-Ludwigs-University of Freiburg, 79085 Freiburg im Breisgau, Germany; (M.S.); (J.C.L.); (M.L.H.)
| |
Collapse
|
8
|
Hamamoto S, Chijimatsu R, Shimomura K, Kobayashi M, Jacob G, Yano F, Saito T, Chung UI, Tanaka S, Nakamura N. Enhancement of chondrogenic differentiation supplemented by a novel small compound for chondrocyte-based tissue engineering. J Exp Orthop 2020; 7:10. [PMID: 32146609 PMCID: PMC7060980 DOI: 10.1186/s40634-020-00228-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 02/26/2020] [Indexed: 12/16/2022] Open
Abstract
Purpose Chondrocyte -based tissue engineering has been a promising option for the treatment of cartilage lesions. In previous literature, TD198946 has been shown to promote chondrogenic differentiation which could prove useful in cartilage regeneration therapies. Our study aimed to investigate the effects of TD198946 in generating engineered cartilage using dedifferentiated chondrocyte-seeded collagen scaffolds treated with TD198946. Methods Articular chondrocytes were isolated from mini pig knees and expanded in 2-dimensional cell culture and subsequently used in the experiments. 3-D pellets were then cultured for two weeks. Cells were also cultured in a type I collagen scaffolds for four weeks. Specimens were cultured with TD198946, BMP-2, or both in combination. Outcomes were determined by gene expression levels of RUNX1, SOX9, ACAN, COL1A1, COL2A1 and COL10A1, the glycosaminoglycan content, and characteristics of histology and immunohistochemistry. Furthermore, the maturity of the engineered cartilage cultured for two weeks was evaluated through subcutaneous implantation in nude mice for four weeks. Results Addition of TD198946 demonstrated the upregulation of gene expression level except for ACAN, type II collagen and glycosaminoglycan synthesis in both pellet and 3D scaffold cultures. TD198946 and BMP-2 combination cultures showed higher chondrogenic differentiation than TD198946 or BMP-2 alone. The engineered cartilage maintained its extracellular matrices for four weeks post implantation. In contrast, engineered cartilage treated with either TD198946 or BMP-2 alone was mostly absorbed. Conclusions Our results indicate that TD198946 could improve quality of engineered cartilage by redifferentiation of dedifferentiated chondrocytes pre-implantation and promoting collagen and glycosaminoglycan synthesis.
Collapse
Affiliation(s)
- Shuichi Hamamoto
- Orthopaedic Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Ryota Chijimatsu
- Bone and Cartilage Regenerative Medicine, The University of Tokyo, Tokyo, Japan
| | - Kazunori Shimomura
- Orthopaedic Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Masato Kobayashi
- Orthopaedic Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - George Jacob
- Orthopaedic Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Fumiko Yano
- Bone and Cartilage Regenerative Medicine, The University of Tokyo, Tokyo, Japan.,Center for Disease Biology and Integrative Medicine, The University of Tokyo, Tokyo, Japan
| | - Taku Saito
- Sensory and Motor System Medicine, The University of Tokyo, Tokyo, Japan
| | - Ung-Il Chung
- Center for Disease Biology and Integrative Medicine, The University of Tokyo, Tokyo, Japan
| | - Sakae Tanaka
- Sensory and Motor System Medicine, The University of Tokyo, Tokyo, Japan
| | - Norimasa Nakamura
- Orthopaedic Surgery, Osaka University Graduate School of Medicine, Suita, Japan. .,Global Center of Medical Engineering and Informatics, Osaka University, Suita, Japan. .,Institute for Medical Science in Sports, Osaka Health Science University, Osaka, Japan.
| |
Collapse
|
9
|
Zhang QY, Bai JD, Wu XA, Liu XN, Zhang M, Chen WY. Microniche geometry modulates the mechanical properties and calcium signaling of chondrocytes. J Biomech 2020; 104:109729. [PMID: 32147239 DOI: 10.1016/j.jbiomech.2020.109729] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/24/2020] [Accepted: 02/25/2020] [Indexed: 12/24/2022]
Abstract
In articular cartilage, the function of chondrocytes is strongly related to their zone-specific microniche geometry defined by pericellular matrix. Microniche geometry is critical for regulating the phenotype and function of the chondrocyte in native cartilage and tissue engineering constructs. However the role of microniche geometry in the mechanical properties and calcium signaling of chondrocytes remains unknown. To recapitulate microniche geometry at single-cell level, we engineered three basic physiological-related polydimethylsiloxane (PDMS) microniches geometries fabricated using soft lithography. We cultured chondrocytes in these microniche geometries and quantified cell mechanical properties using atomic force microscopy (AFM). Fluorescent calcium indicator was used to record and quantify cytosolic Ca2+ oscillation of chondrocytes in different geometries. Our work showed that microniche geometry modulated the mechanical behavior and calcium signaling of chondrocytes. The ellipsoidal microniches significantly enhanced the mechanical properties of chondrocytes compared to spheroidal microniche. Additionally, ellipsoidal microniches can markedly improved the amplitude but weakened the frequency of cytosolic Ca2+ oscillation in chondrocytes than spheroidal microniche. Our work might reveal a novel understanding of chondrocyte mechanotransduction and therefore be useful for designing cell-instructive scaffolds for functional cartilage tissue engineering.
Collapse
Affiliation(s)
- Quan-You Zhang
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, China; Department of Orthopaedics, the Second Hospital of Shanxi Medical University, Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Taiyuan 030001, China.
| | - Jia-Dong Bai
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Xiao-An Wu
- Department of Physiology and Biophysics, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Xiao-Na Liu
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Min Zhang
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Wei-Yi Chen
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, China.
| |
Collapse
|
10
|
Charlier E, Deroyer C, Ciregia F, Malaise O, Neuville S, Plener Z, Malaise M, de Seny D. Chondrocyte dedifferentiation and osteoarthritis (OA). Biochem Pharmacol 2019; 165:49-65. [PMID: 30853397 DOI: 10.1016/j.bcp.2019.02.036] [Citation(s) in RCA: 297] [Impact Index Per Article: 49.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 02/28/2019] [Indexed: 02/08/2023]
|
11
|
Jiménez G, Venkateswaran S, López-Ruiz E, Perán M, Pernagallo S, Díaz-Monchón JJ, Canadas RF, Antich C, Oliveira JM, Callanan A, Walllace R, Reis RL, Montañez E, Carrillo E, Bradley M, Marchal JA. A soft 3D polyacrylate hydrogel recapitulates the cartilage niche and allows growth-factor free tissue engineering of human articular cartilage. Acta Biomater 2019; 90:146-156. [PMID: 30910621 DOI: 10.1016/j.actbio.2019.03.040] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 03/19/2019] [Accepted: 03/20/2019] [Indexed: 11/30/2022]
Abstract
Cartilage degeneration or damage treatment is still a challenge, but, tissue engineering strategies, which combine cell therapy strategies, which combine cell therapy and scaffolds, and have emerged as a promising new approach. In this regard, polyurethanes and polyacrylates polymers have been shown to have clinical potential to treat osteochondral injuries. Here, we have used polymer microarrays technology to screen 380 different polyurethanes and polyacrylates polymers. The top polymers with potential to maintain chondrocyte viability were selected, with scale-up studies performed to evaluate their ability to support chondrocyte proliferation during long-term culture, while maintaining their characteristic phenotype. Among the selected polymers, poly (methylmethacrylate-co-methacrylic acid), showed the highest level of chondrogenic potential and was used to create a 3D hydrogel. Ultrastructural morphology, microstructure and mechanical testing of this novel hydrogel revealed robust characteristics to support chondrocyte growth. Furthermore, in vitro and in vivo biological assays demonstrated that chondrocytes cultured on the hydrogel had the capacity to produce extracellular matrix similar to hyaline cartilage, as shown by increased expression of collagen type II, aggrecan and Sox9, and the reduced expression of the fibrotic marker's collagen type I. In conclusion, hydrogels generated from poly (methylmethacrylate-co-methacrylic acid) created the appropriate niche for chondrocyte growth and phenotype maintenance and might be an optimal candidate for cartilage tissue-engineering applications. SIGNIFICANCE STATEMENT: Articular cartilage has limited self-repair ability due to its avascular nature, therefore tissue engineering strategies have emerged as a promising new approach. Synthetic polymers displaygreat potential and are widely used in the clinical setting. In our study, using the polymer microarray technique a novel type of synthetic polyacrylate was identified, that was converted into hydrogels for articular cartilage regeneration studies. The hydrogel based on poly (methylmethacrylate-co-methacrylic acid-co-PEG-diacrylate) had a controlable ultrastructural morphology, microstructure (porosity) and mechanical properties (stiffness) appropriate for cartilage engineering. Our hydrogel created the optimal niche for chondrocyte growth and phenotype maintenance for long-term culture, producing a hyaline-like cartilage extracellular matrix. We propose that this novel polyacrylate hydrogel could be an appropriate support to help in the treatment efficient cartilage regeneration.
Collapse
Affiliation(s)
- Gema Jiménez
- Biopathology and Regenerative Medicine Institute, Centre for Biomedical Research, University of Granada, 18100 Granada, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, Universidad de Granada, 18100 Granada, Spain; Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, 18016 Granada, Spain; Excellence Research Unit "Modeling Nature" (MNat), University of Granada, Spain
| | - Seshasailam Venkateswaran
- School of Chemistry, EaStCHEM, University of Edinburgh, King's Buildings, West Mains Road, Edinburgh EH9 3JJ, UK
| | - Elena López-Ruiz
- Biopathology and Regenerative Medicine Institute, Centre for Biomedical Research, University of Granada, 18100 Granada, Spain; Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, 18016 Granada, Spain; Excellence Research Unit "Modeling Nature" (MNat), University of Granada, Spain; Department of Health Sciences, University of Jaén, Jaén E-23071, Spain
| | - Macarena Perán
- Biopathology and Regenerative Medicine Institute, Centre for Biomedical Research, University of Granada, 18100 Granada, Spain; Excellence Research Unit "Modeling Nature" (MNat), University of Granada, Spain; Department of Health Sciences, University of Jaén, Jaén E-23071, Spain
| | - Salvatore Pernagallo
- DestiNAGenomica S.L. Parque Tecnológico Ciencias de la Salud, Avenida de la Innovación 1, Edificio Business Innovation Centre, 18016 Granada, Spain
| | - Juan J Díaz-Monchón
- Pfizer-Universidad de Granada-Junta de Andalucía Centre for Genomics and Oncological Research (GENYO), Parque Tecnológico de Ciencias de la Salud, 18016 Granada, Spain; Faculty of Pharmacy, University of Granada, 18071 Granada, Spain
| | - Raphael F Canadas
- 3Bs Research Group, Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4805-017 Barco, Guimarães, Portugal; ICVS/3Bs, PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Cristina Antich
- Biopathology and Regenerative Medicine Institute, Centre for Biomedical Research, University of Granada, 18100 Granada, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, Universidad de Granada, 18100 Granada, Spain; Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, 18016 Granada, Spain; Excellence Research Unit "Modeling Nature" (MNat), University of Granada, Spain
| | - Joaquím M Oliveira
- 3Bs Research Group, Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4805-017 Barco, Guimarães, Portugal; ICVS/3Bs, PT Government Associate Laboratory, Braga, Guimarães, Portugal; The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Avepark, 4805-017 Barco, Guimarães, Portugal
| | - Anthony Callanan
- Institute for Bioengineering, School of Engineering, University of Edinburgh, EH93JL Edinburgh, UK
| | - Robert Walllace
- Department of Orthopaedics, The University of Edinburgh, EH16 4SB Edinburgh, UK
| | - Rui L Reis
- 3Bs Research Group, Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4805-017 Barco, Guimarães, Portugal; ICVS/3Bs, PT Government Associate Laboratory, Braga, Guimarães, Portugal; The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Avepark, 4805-017 Barco, Guimarães, Portugal
| | - Elvira Montañez
- Department of Orthopedic Surgery and Traumatology, Virgen de la Victoria University Hospital, 29010 Málaga, Spain
| | - Esmeralda Carrillo
- Biopathology and Regenerative Medicine Institute, Centre for Biomedical Research, University of Granada, 18100 Granada, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, Universidad de Granada, 18100 Granada, Spain; Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, 18016 Granada, Spain; Excellence Research Unit "Modeling Nature" (MNat), University of Granada, Spain
| | - Mark Bradley
- School of Chemistry, EaStCHEM, University of Edinburgh, King's Buildings, West Mains Road, Edinburgh EH9 3JJ, UK.
| | - Juan A Marchal
- Biopathology and Regenerative Medicine Institute, Centre for Biomedical Research, University of Granada, 18100 Granada, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, Universidad de Granada, 18100 Granada, Spain; Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, 18016 Granada, Spain; Excellence Research Unit "Modeling Nature" (MNat), University of Granada, Spain
| |
Collapse
|
12
|
Stichopus chloronotus aqueous extract as a chondroprotective agent for human chondrocytes isolated from osteoarthitis articular cartilage in vitro. Cytotechnology 2019; 71:521-537. [PMID: 30719603 DOI: 10.1007/s10616-019-00298-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 01/17/2019] [Indexed: 12/13/2022] Open
Abstract
The proinflammatory cytokines, metalloproteinases family (MMPs), inflammatory mediators PGE2, COX-2 and NO are the most important group of compounds responsible for the loss of metabolic homeostasis of articular cartilage by promoting catabolic and destructive processes in the pathogenesis of osteoarthritis (OA). Stichopus chloronotus, a marine sea cucumber which is rich in n-3 PUFAs and phenolic compound, may exert a favorable influence on the course of the disease. The objective of this study was to investigate the regeneration and anti-inflammatory potential of S. chloronotus aqueous extract (SCAE) on human OA articular chondrocytes (HOC). METHODS The HOC isolated from knee joint cartilage removed during surgery were cultured with SCAE for 7 days. The effect of SCAE on anabolic and catabolic gene expression was verified by real-time PCR. Monolayer chondrocytes were stained with toluidine blue whereas sGAG, NO and PGE2 production in medium were analyzed by ELISA. RESULTS The HOC cultured in various SCAE have polygonal morphology maintaining their chondrocytes characteristic. SAE supplementation tested was found to be effective pro-chondrogenic, anti-inflammatory and anti-oxidative agents, as evidenced by upregulation of cartilage specific markers collagen type II, aggrecan core protein and sox-9 expression and downregulation of collagen type 1, IL-1, IL-6, IL-8, MMP-1, MMP-3, MMP-13, COX-2, iNOS and PAR-2 expression. The presence of SCAE in the culture was able to increase sGAG and reduce NO and PGE2 production significantly. CONCLUSIONS These results suggested that SCAE demonstrated chondroprotective ability by suppressing catabolic activities, oxidative damage and effectively promoting chondrocytes growth.
Collapse
|
13
|
Abstract
Osteochondral (OC) lesions are a major cause of chronic musculoskeletal pain and functional disability, which reduces the quality of life of the patients and entails high costs to the society. Currently, there are no effective treatments, so in vitro and in vivo disease models are critically important to obtain knowledge about the causes and to develop effective treatments for OC injuries. In vitro models are essential to clarify the causes of the disease and the subsequent design of the first barrier to test potential therapeutics. On the other hand, in vivo models are anatomically more similar to humans allowing to reproduce the pattern and progression of the lesion in a controlled scene and offering the opportunity to study the symptoms and responses to new treatments. Moreover, in vivo models are the most suitable preclinical model, being a fundamental and a mandatory step to ensure the successful transfer to clinical trials. Both in vitro and in vitro models have a number of advantages and limitation, and the choice of the most appropriate model for each study depends on many factors, such as the purpose of the study, handling or the ease to obtain, and cost, among others. In this chapter, we present the main in vitro and in vivo OC disease models that have been used over the years in the study of origin, progress, and treatment approaches of OC defects.
Collapse
|
14
|
Aurich M, Hofmann GO, Gras F, Rolauffs B. Human osteochondritis dissecans fragment-derived chondrocyte characteristics ex vivo, after monolayer expansion-induced de-differentiation, and after re-differentiation in alginate bead culture. BMC Musculoskelet Disord 2018; 19:168. [PMID: 29793458 PMCID: PMC5968539 DOI: 10.1186/s12891-018-2079-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 05/07/2018] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Autologous chondrocyte implantation (ACI) is a therapy for articular cartilage and osteochondral lesions that relies on notch- or trochlea-derived primary chondrocytes. An alternative cell source for ACI could be osteochondritis dissecans (OCD) fragment-derived chondrocytes. Assessing the potential of these cells, we investigated their characteristics ex vivo and after monolayer expansion, as monolayer expansion is an integral step of ACI. However, as monolayer expansion can induce de-differentiation, we asked whether monolayer-induced de-differentiation can be reverted through successive alginate bead culture. METHODS Chondrocytes were isolated from the OCD fragments of 15 patient knees with ICRS grades 3-4 lesions for ex vivo analyses, primary alginate bead culture, monolayer expansion, and alginate bead culture following monolayer expansion for attempting re-differentiation. We determined yield, viability, and the mRNA expression of aggrecan and type I, II, and X collagen. RESULTS OCD fragment-derived chondrocyte isolation yielded high numbers of viable cells with a low type I:II collagen expression ratio (< 1) and a relatively high aggrecan and type II and X collagen mRNA expression, indicating chondrogenic and hypertrophic characteristics. As expected, monolayer expansion induced de-differentiation. Alginate bead culture of monolayer-expanded cells significantly improved the expression profile of all genes investigated, being most successful in decreasing the hypertrophy marker type X collagen to 1.5% of its ex vivo value. However, the chondrogenic phenotype was not fully restored, as the collagen type I:II expression ratio decreased significantly but remained > 1. CONCLUSION OCD fragment derived human chondrocytes may hold not yet utilized clinical potential for cartilage repair.
Collapse
Affiliation(s)
- Matthias Aurich
- Center for Orthopaedic and Trauma Surgery, Klinikum Mittleres Erzgebirge, Alte Marienberger, Str. 52, 09405, Zschopau, Germany
- Department of Trauma, Hand and Reconstructive Surgery, Universitätsklinikum Jena, Erlanger Allee 101, 07747, Jena, Germany
- Department of Biochemistry, Rush Medical College, 1735 W. Harrison St, Chicago, IL, 60612, USA
| | - Gunther O Hofmann
- Department of Trauma, Hand and Reconstructive Surgery, Universitätsklinikum Jena, Erlanger Allee 101, 07747, Jena, Germany
| | - Florian Gras
- Department of Trauma, Hand and Reconstructive Surgery, Universitätsklinikum Jena, Erlanger Allee 101, 07747, Jena, Germany
| | - Bernd Rolauffs
- G.E.R.N. Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Medical Center - Albert-Ludwigs-University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Hugstetter Straße 55, 79106, Freiburg, Germany.
- Massachusetts Institute of Technology, Center for Biomedical Engineering, 500 Technology Sq, Cambridge, MA, 02139, USA.
| |
Collapse
|
15
|
López-Ruiz E, Jiménez G, Kwiatkowski W, Montañez E, Arrebola F, Carrillo E, Choe S, Marchal J, Perán M, Perán M. Impact of TGF-β family-related growth factors on chondrogenic differentiation of adipose-derived stem cells isolated from lipoaspirates and infrapatellar fat pads of osteoarthritic patients. Eur Cell Mater 2018; 35:209-224. [PMID: 29652075 PMCID: PMC5922762 DOI: 10.22203/ecm.v035a15] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The success of cell-based approaches for the treatment of cartilage defects requires an optimal autologous cell source with chondrogenic differentiation ability that maintains its differentiated properties and stability following implantation. The objective of this study was to compare the chondrogenic capacity of mesenchymal stem cells (MSCs) isolated from lipoaspirates (ASCs) and the infrapatellar fat pad (IFPSCs) of osteoarthritic patients and treated with transforming growth factor (TGF)-β family-related growth factors. Cells were cultured for 6 weeks in a 3D pellet culture system with the chimeric activin A/bone morphogenic protein (BMP)-2 ligand (AB235), the chimeric nodal/BMP-2 ligand (NB260) or BMP-2. To investigate the stability of the new cartilage, ASCs-treated pellets were transplanted subcutaneously into severe combined immunodeficiency (SCID) mice. Histological and immunohistochemical assessment confirmed that the growth factors induced cartilage differentiation in both isolated cell types. However, reverse transcription-quantitative PCR results showed that ASCs presented a higher chondrogenic potential than IFPSCs. In vivo results revealed that AB235-treated ASCs pellets were larger in size and could form stable cartilage-like tissue as compared to NB260-treated pellets, while BMP-2-treated pellets underwent calcification. The chondrogenic induction of ASCs by AB235 treatment was mediated by SMAD2/3 activation, as proved by immunofluorescence analysis. The results of this study indicated that the combination of ASCs and AB235 might lead to a cell-based cartilage regeneration treatment.
Collapse
Affiliation(s)
- E. López-Ruiz
- Department of Health Sciences, University of Jaén, Jaén, Spain,Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, University of Granada, Granada, Spain
| | - G. Jiménez
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, University of Granada, Granada, Spain,Department of Human Anatomy and Embryology, Faculty of Medicine and Excellence Research Unit “Modelling Nature” (MNat), University of Granada, Spain,Biosanitary Research Institute of Granada (ibs.GRANADA), University Hospitals of Granada-University of Granada, Granada, Spain
| | - W. Kwiatkowski
- Drug Discovery Collaboratory, Qualcomm Institute, University of California, La Jolla, California, USA
| | - E. Montañez
- Department of Orthopaedic Surgery and Traumatology, Virgen de la Victoria University Hospital, Málaga, Spain,Institute of Biomedical Research in Malaga (IBIMA), Málaga, Spain
| | - F. Arrebola
- Department of Histology, Faculty of Medicine, University of Granada, Granada, Spain
| | - E. Carrillo
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, University of Granada, Granada, Spain,Department of Human Anatomy and Embryology, Faculty of Medicine and Excellence Research Unit “Modelling Nature” (MNat), University of Granada, Spain,Biosanitary Research Institute of Granada (ibs.GRANADA), University Hospitals of Granada-University of Granada, Granada, Spain
| | - S. Choe
- Drug Discovery Collaboratory, Qualcomm Institute, University of California, La Jolla, California, USA
| | - J.A. Marchal
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, University of Granada, Granada, Spain,Department of Human Anatomy and Embryology, Faculty of Medicine and Excellence Research Unit “Modelling Nature” (MNat), University of Granada, Spain,Biosanitary Research Institute of Granada (ibs.GRANADA), University Hospitals of Granada-University of Granada, Granada, Spain
| | - M. Perán
- Department of Health Sciences, University of Jaén, Jaén, Spain,Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, University of Granada, Granada, Spain,Address for correspondence: Macarena Perán, Department of Health Sciences, University of Jaén, Jaén E-23071, Spain. Telephone number: +34 953213656, Fax number: +34 953212943,
| | | |
Collapse
|
16
|
Yang Y, Lin H, Shen H, Wang B, Lei G, Tuan RS. Mesenchymal stem cell-derived extracellular matrix enhances chondrogenic phenotype of and cartilage formation by encapsulated chondrocytes in vitro and in vivo. Acta Biomater 2018; 69:71-82. [PMID: 29317369 DOI: 10.1016/j.actbio.2017.12.043] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 12/27/2017] [Accepted: 12/29/2017] [Indexed: 01/24/2023]
Abstract
Mesenchymal stem cell derived extracellular matrix (MSC-ECM) is a natural biomaterial with robust bioactivity and good biocompatibility, and has been studied as a scaffold for tissue engineering. In this investigation, we tested the applicability of using decellularized human bone marrow derived MSC-ECM (hBMSC-ECM) as a culture substrate for chondrocyte expansion in vitro, as well as a scaffold for chondrocyte-based cartilage repair. hBMSC-ECM deposited by hBMSCs cultured on tissue culture plastic (TCP) was harvested, and then subjected to a decellularization process to remove hBMSCs. Compared with chondrocytes grown on TCP, chondrocytes seeded onto hBMSC-ECM exhibited significantly increased proliferation rate, and maintained better chondrocytic phenotype than TCP group. After being expanded to the same cell number and placed in high-density micromass cultures, chondrocytes from the ECM group showed better chondrogenic differentiation profile than those from the TCP group. To test cartilage formation ability, composites of hBMSC-ECM impregnated with chondrocytes were subjected to brief trypsin treatment to allow cell-mediated contraction, and folded to form 3-dimensional chondrocyte-impregnated hBMSC-ECM (Cell/ECM constructs). Upon culture in vitro in chondrogenic medium for 21 days, robust cartilage formation was observed in the Cell/ECM constructs. Similarly prepared Cell/ECM constructs were tested in vivo by subcutaneous implantation into SCID mice. Prominent cartilage formation was observed in the implanted Cell/ECM constructs 14 days post-implantation, with higher sGAG deposition compared to controls consisting of chondrocyte cell sheets. Taken together, these findings demonstrate that hBMSC-ECM is a superior culture substrate for chondrocyte expansion and a bioactive matrix potentially applicable for cartilage regeneration in vivo. STATEMENT OF SIGNIFICANCE Current cell-based treatments for focal cartilage defects face challenges, including chondrocyte dedifferentiation, need for xenogenic scaffolds, and suboptimal cartilage formation. We present here a novel technique that utilizes adult stem cell-derived extracellular matrix, as a culture substrate and/or encapsulation scaffold for human adult chondrocytes, for the repair of cartilage defects. Chondrocytes cultured in stem cell-derived matrix showed higher proliferation, better chondrocytic phenotype, and improved redifferentiation ability upon in vitro culture expansion. Most importantly, 3-dimensional constructs formed from chondrocytes folded within stem cell matrix manifested excellent cartilage formation both in vitro and in vivo. These findings demonstrate the suitability of stem cell-derived extracellular matrix as a culture substrate for chondrocyte expansion as well as a candidate bioactive matrix for cartilage regeneration.
Collapse
Affiliation(s)
- Yuanheng Yang
- Department of Orthopaedic Surgery, Xiangya hospital, Central South University, Changsha, Hunan, China; Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; The Third Xiangya hospital, Central South University, Changsha, Hunan, China
| | - Hang Lin
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - He Shen
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou, Jiangsu, China
| | - Bing Wang
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Guanghua Lei
- Department of Orthopaedic Surgery, Xiangya hospital, Central South University, Changsha, Hunan, China.
| | - Rocky S Tuan
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
17
|
RNA Interference and BMP-2 Stimulation Allows Equine Chondrocytes Redifferentiation in 3D-Hypoxia Cell Culture Model: Application for Matrix-Induced Autologous Chondrocyte Implantation. Int J Mol Sci 2017; 18:ijms18091842. [PMID: 28837082 PMCID: PMC5618491 DOI: 10.3390/ijms18091842] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 08/18/2017] [Accepted: 08/22/2017] [Indexed: 12/29/2022] Open
Abstract
As in humans, osteoarthritis (OA) causes considerable economic loss to the equine industry. New hopes for cartilage repair have emerged with the matrix-associated autologous chondrocyte implantation (MACI). Nevertheless, its limitation is due to the dedifferentiation occurring during the chondrocyte amplification phase, leading to the loss of its capacity to produce a hyaline extracellular matrix (ECM). To enhance the MACI therapy efficiency, we have developed a strategy for chondrocyte redifferentiation, and demonstrated its feasibility in the equine model. Thus, to mimic the cartilage microenvironment, the equine dedifferentiated chondrocytes were cultured in type I/III collagen sponges for 7 days under hypoxia in the presence of BMP-2. In addition, chondrocytes were transfected by siRNA targeting Col1a1 and Htra1 mRNAs, which are overexpressed during dedifferentiation and OA. To investigate the quality of the neo-synthesized ECM, specific and atypical cartilage markers were evaluated by RT-qPCR and Western blot. Our results show that the combination of 3D hypoxia cell culture, BMP-2 (Bone morphogenetic protein-2), and RNA interference, increases the chondrocytes functional indexes (Col2a1/Col1a1, Acan/Col1a1), leading to an effective chondrocyte redifferentiation. These data represent a proof of concept for this process of application, in vitro, in the equine model, and will lead to the improvement of the MACI efficiency for cartilage tissue engineering therapy in preclinical/clinical trials, both in equine and human medicine.
Collapse
|
18
|
Aurich M, Hofmann GO, Rolauffs B. Tissue engineering-relevant characteristics of ex vivo and monolayer-expanded chondrocytes from the notch versus trochlea of human knee joints. INTERNATIONAL ORTHOPAEDICS 2017; 41:2327-2335. [PMID: 28828504 DOI: 10.1007/s00264-017-3615-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Accepted: 08/09/2017] [Indexed: 11/29/2022]
Abstract
PURPOSE The aim was to analyse the biological characteristics of chondrocytes from the two biopsy sites notch vs. trochlea of human knee joints. The question was whether tissue engineering-relevant characteristics such as viability and mRNA expression profile would be comparable ex vivo and after monolayer expansion, as these are parts of routine autologous chondrocyte implantation (ACI). METHODS Biopsies from the intercondylar notch and the lateral aspect of the trochlea from 20 patients with ICRS grades 3 and 4 cartilage defects were harvested during arthroscopy. Collagen types 1, 2, and 10 mRNA were quantified by polymerase chain reaction. RESULTS Compared with notch chondrocytes, ex vivo trochlea chondrocytes had comparable cell numbers, vitality and aggrecan, collagen types 1, -2 and -10 mRNA expression. After monolayer expansion both notch and trochlea chondrocyte characteristics were comparably altered, regardless of their biopsy origin, and no significant differences in viability and mRNA expression were noted. CONCLUSIONS Collectively, these findings suggest that tissue engineering-relevant characteristics of notch and trochlea chondrocytes are comparable ex vivo and after monolayer expansion. Thus, trochlea chondrocytes promise clinical potential and chondrocytes for ACI could potentially be generated from both notch and trochlea biopsy sites.
Collapse
Affiliation(s)
- Matthias Aurich
- Center of Orthopaedic and Trauma Surgery, Klinikum Ingolstadt, Krumenauerstr. 25, 85049, Ingolstadt, Germany. .,Department of Trauma, Hand and Reconstructive Surgery, University Hospital Jena, Erlanger Allee 101, 07747, Jena, Germany. .,Department of Biochemistry, Rush Medical College, 1735 W. Harrison St., Chicago, IL, 60612, USA.
| | - Gunther Olaf Hofmann
- Department of Trauma, Hand and Reconstructive Surgery, University Hospital Jena, Erlanger Allee 101, 07747, Jena, Germany
| | - Bernd Rolauffs
- G.E.R.N. Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Medical Center - Albert-Ludwigs-University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Hugstetter Straße 55, 79106, Freiburg, Germany.,Massachusetts Institute of Technology, Center for Biomedical Engineering, 500 Technology Sq, Cambridge, MA, 02139, USA
| |
Collapse
|
19
|
Aurich M, Hofmann GO, Best N, Rolauffs B. Induced Redifferentiation of Human Chondrocytes from Articular Cartilage Lesion in Alginate Bead Culture After Monolayer Dedifferentiation: An Alternative Cell Source for Cell-Based Therapies? Tissue Eng Part A 2017; 24:275-286. [PMID: 28610480 DOI: 10.1089/ten.tea.2016.0505] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Human chondrocytes isolated from articular cartilage (AC) lesions as an alternative cell source to the standard nonweight-bearing notch biopsy site may hold clinical potential for cell-based therapies. The aim was to characterize human AC lesion site chondrocytes, compare them to notch chondrocytes, and evaluate their redifferentiation potential after monolayer expansion and subsequent three-dimensional (3D) alginate bead culture. Lesion chondrocytes from knee joints of 20 patients with International Cartilage Repair Society (ICRS) grade 3 and 4 cartilage defects were analyzed ex vivo or cultured in primary alginate bead culture, monolayer expansion, or redifferentiated in alginate culture following monolayer expansion. The mRNA expression of the types I, II, and X collagen, and the proteoglycan aggrecan was compared between the four groups. In addition, notch chondrocytes of nine patients were compared to lesion chondrocytes ex vivo. AC lesion chondrocytes displayed ex vivo a nondegenerative phenotype, characterized by a relatively high mRNA expression of aggrecan and type II and X collagen, but a low type I collagen expression and a low ratio of type I to II collagen mRNA expression. Compared to notch chondrocytes, the mRNA expression of aggrecan and type II collagen was comparable and the ratio of type I to II collagen mRNA expression was below 1 in both groups, indicating a functional chondrocyte phenotype. Dedifferentiation led to a significantly altered degenerative mRNA expression profile. Induced redifferentiation in alginate beads after monolayer expansion significantly improved the mRNA expression of aggrecan, the type I and II collagen, and the type I to II collagen ratio, compared to monolayer expansion only. These data suggested that redifferentiating lesion chondrocytes after monolayer expansion in alginate beads resulted in a pool of cells with greater chondrogenic potential, compared to expanded dedifferentiated chondrocytes. Collectively, these data suggest that ex vivo and redifferentiated lesion chondrocytes may hold nonutilized clinical potential for the tissue engineering of AC.
Collapse
Affiliation(s)
- Matthias Aurich
- 1 Center for Orthopaedic and Trauma Surgery, Ingolstadt Hospital , Ingolstadt, Germany .,2 Department of Trauma, Hand and Reconstructive Surgery, Universitätsklinikum Jena , Jena, Germany .,3 Department of Biochemistry, Rush Medical College , Chicago, Illinois
| | - Gunther O Hofmann
- 2 Department of Trauma, Hand and Reconstructive Surgery, Universitätsklinikum Jena , Jena, Germany
| | - Norman Best
- 4 Institute of Physiotherapy, Universitätsklinikum Jena , Jena, Germany
| | - Bernd Rolauffs
- 5 G.E.R.N. Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Medical Center, Albert-Ludwigs-University of Freiburg , Freiburg, Germany .,6 Faculty of Medicine, Albert-Ludwigs-University of Freiburg , Freiburg, Germany .,7 Massachusetts Institute of Technology , Center for Biomedical Engineering, Cambridge, Massachusetts
| |
Collapse
|
20
|
López-Ruiz E, Venkateswaran S, Perán M, Jiménez G, Pernagallo S, Díaz-Mochón JJ, Tura-Ceide O, Arrebola F, Melchor J, Soto J, Rus G, Real PJ, Diaz-Ricart M, Conde-González A, Bradley M, Marchal JA. Poly(ethylmethacrylate-co-diethylaminoethyl acrylate) coating improves endothelial re-population, bio-mechanical and anti-thrombogenic properties of decellularized carotid arteries for blood vessel replacement. Sci Rep 2017; 7:407. [PMID: 28341826 PMCID: PMC5412652 DOI: 10.1038/s41598-017-00294-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Accepted: 02/17/2017] [Indexed: 12/02/2022] Open
Abstract
Decellularized vascular scaffolds are promising materials for vessel replacements. However, despite the natural origin of decellularized vessels, issues such as biomechanical incompatibility, immunogenicity risks and the hazards of thrombus formation, still need to be addressed. In this study, we coated decellularized vessels obtained from porcine carotid arteries with poly (ethylmethacrylate-co-diethylaminoethylacrylate) (8g7) with the purpose of improving endothelial coverage and minimizing platelet attachment while enhancing the mechanical properties of the decellularized vascular scaffolds. The polymer facilitated binding of endothelial cells (ECs) with high affinity and also induced endothelial cell capillary tube formation. In addition, platelets showed reduced adhesion on the polymer under flow conditions. Moreover, the coating of the decellularized arteries improved biomechanical properties by increasing its tensile strength and load. In addition, after 5 days in culture, ECs seeded on the luminal surface of 8g7-coated decellularized arteries showed good regeneration of the endothelium. Overall, this study shows that polymer coating of decellularized vessels provides a new strategy to improve re-endothelialization of vascular grafts, maintaining or enhancing mechanical properties while reducing the risk of thrombogenesis. These results could have potential applications in improving tissue-engineered vascular grafts for cardiovascular therapies with small caliber vessels.
Collapse
Affiliation(s)
- Elena López-Ruiz
- Department of Health Sciences, University of Jaén, Jaén, Spain.,Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, University of Granada, Granada, Spain
| | | | - Macarena Perán
- Department of Health Sciences, University of Jaén, Jaén, Spain.,Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, University of Granada, Granada, Spain
| | - Gema Jiménez
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, University of Granada, Granada, Spain.,Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada, Spain.,Biosanitary Research Institute of Granada (ibs.GRANADA), University Hospitals of Granada-University of Granada, Granada, Spain
| | - Salvatore Pernagallo
- School of Chemistry, EaStCHEM, University of Edinburgh, King's Buildings, Edinburgh, UK
| | - Juan J Díaz-Mochón
- Pfizer-Universidad de Granada-Junta de Andalucía Centre for Genomics and Oncological Research (GENYO), Granada, Spain
| | - Olga Tura-Ceide
- Department of Pulmonary Medicine, Hospital Clínic; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain.,Biomedical Research Networking Center on Respiratory Diseases (CIBERES), Madrid, Spain
| | - Francisco Arrebola
- Department of Histology, Faculty of Medicine, Institute of Neuroscience, Biomedical Research Centre, University of Granada, Granada, Spain
| | - Juan Melchor
- Biosanitary Research Institute of Granada (ibs.GRANADA), University Hospitals of Granada-University of Granada, Granada, Spain.,Department of Structural Mechanics, University of Granada, Politécnico de Fuentenueva, Granada, Spain
| | - Juan Soto
- Department of Structural Mechanics, University of Granada, Politécnico de Fuentenueva, Granada, Spain
| | - Guillermo Rus
- Biosanitary Research Institute of Granada (ibs.GRANADA), University Hospitals of Granada-University of Granada, Granada, Spain.,Department of Structural Mechanics, University of Granada, Politécnico de Fuentenueva, Granada, Spain
| | - Pedro J Real
- Pfizer-Universidad de Granada-Junta de Andalucía Centre for Genomics and Oncological Research (GENYO), Granada, Spain
| | - María Diaz-Ricart
- Department of Hemotherapy and Hemostasis, Hospital Clinic, Centre de Diagnostic Biomedic (CDB), Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | | | - Mark Bradley
- School of Chemistry, EaStCHEM, University of Edinburgh, King's Buildings, Edinburgh, UK.
| | - Juan A Marchal
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, University of Granada, Granada, Spain. .,Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada, Spain. .,Biosanitary Research Institute of Granada (ibs.GRANADA), University Hospitals of Granada-University of Granada, Granada, Spain.
| |
Collapse
|
21
|
López-Ruiz E, Jiménez G, García MÁ, Antich C, Boulaiz H, Marchal JA, Perán M. Polymers, scaffolds and bioactive molecules with therapeutic properties in osteochondral pathologies: what’s new? Expert Opin Ther Pat 2016; 26:877-90. [DOI: 10.1080/13543776.2016.1203903] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Elena López-Ruiz
- Department of Health Sciences, University of Jaén, Jaén, Spain
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, University of Granada, Granada, Spain
| | - Gema Jiménez
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, University of Granada, Granada, Spain
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada, Spain
- Biosanitary Research Institute of Granada (ibs.GRANADA), University Hospitals of Granada-University of Granada, Granada, Spain
| | - María Ángel García
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, University of Granada, Granada, Spain
- Biosanitary Research Institute of Granada (ibs.GRANADA), University Hospitals of Granada-University of Granada, Granada, Spain
- Department of Oncology, University Hospital Virgen de las Nieves, Granada, Spain
| | - Cristina Antich
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, University of Granada, Granada, Spain
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada, Spain
- Biosanitary Research Institute of Granada (ibs.GRANADA), University Hospitals of Granada-University of Granada, Granada, Spain
| | - Houria Boulaiz
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, University of Granada, Granada, Spain
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada, Spain
- Biosanitary Research Institute of Granada (ibs.GRANADA), University Hospitals of Granada-University of Granada, Granada, Spain
| | - Juan Antonio Marchal
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, University of Granada, Granada, Spain
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada, Spain
- Biosanitary Research Institute of Granada (ibs.GRANADA), University Hospitals of Granada-University of Granada, Granada, Spain
| | - Macarena Perán
- Department of Health Sciences, University of Jaén, Jaén, Spain
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, University of Granada, Granada, Spain
| |
Collapse
|