1
|
Veletanlic V, Sartalamacchia K, Diller JR, Ogden KM. Multiple rotavirus species encode fusion-associated small transmembrane (FAST) proteins with cell type-specific activity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.07.536061. [PMID: 37066280 PMCID: PMC10104117 DOI: 10.1101/2023.04.07.536061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Fusion-associated small transmembrane (FAST) proteins are viral nonstructural proteins that mediate cell-cell fusion to form multinucleated syncytia. We previously reported that human species B rotavirus NSP1-1 is a FAST protein that induces syncytia in primate epithelial cells but not rodent fibroblasts. We hypothesized that the NSP1-1 proteins of other rotavirus species could also mediate cell-cell fusion and that fusion activity might be limited to cell types derived from homologous hosts. To test this hypothesis, we predicted the structure and domain organization of NSP1-1 proteins of species B rotavirus from a human, goat, and pig, species G rotavirus from a pigeon and turkey, and species I rotavirus from a dog and cat. We cloned these sequences into plasmids and transiently expressed the NSP1-1 proteins in avian, canine, hamster, human, porcine, and simian cells. Regardless of host origin of the virus, each NSP1-1 protein induced syncytia in primate cells, while few induced syncytia in other cell types. To identify the domains that determined cell-specific fusion activity for human species B rotavirus NSP1-1, we engineered chimeric proteins containing domain exchanges with the p10 FAST protein from Nelson Bay orthoreovirus. Using the chimeric proteins, we found that the N-terminal and transmembrane domains determined the cell type specificity of fusion activity. Although the species and cell type criteria for fusion activity remain unclear, these findings suggest that rotavirus species B, G, and I NSP1-1 are functional FAST proteins whose N termini play a role in specifying the cells in which they mediate syncytia formation.
Collapse
Affiliation(s)
- Vanesa Veletanlic
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Kylie Sartalamacchia
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Julia R. Diller
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Kristen M. Ogden
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
3
|
Tao XL, Zhao W, Tong W, Wang XF, Dou LL, Chen JM, Liu N, Lu Y, Zhang YB, Jin XP, Shen YF, Zhao HY, Jin H, Li YG. The effects of autophagy on the replication of Nelson Bay orthoreovirus. Virol J 2019; 16:90. [PMID: 31319897 PMCID: PMC6639940 DOI: 10.1186/s12985-019-1196-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 06/26/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Nelson Bay orthoreovirus (NBV) was first isolated over 40 years ago from a fruit bat in Australia. Normally, NBV does not cause human diseases, but recently several NBV strains have been associated with human respiratory tract infections, thus attracting clinical attention. Autophagy, an evolutionarily conserved process in eukaryotic cells, degrades intracellular substrates, participates in multiple physiological processes, and maintains cellular homeostasis. In addition, autophagy is intimately involved in viral infection. METHODS A new strain of NBV, isolated from a patient with a respiratory tract infection who returned to Japan from Bali, Indonesia, in 2007, was used in this study. NBV was rescued using a reverse genetics system involving cotransfection of BHK cells with 11 plasmids (pT7-L1 MB, pT7-L2 MB, pT7-L3 MB, pT7-M1 MB, pT7-M2 MB, pT7-M3 MB, pT7-S1 MB, pT7-S2 MB, pT7-S3 MB, pT7-S4 MB, and pcDNA3.1-T7), yielding NBV-MB. Recovered viruses were confirmed by immunofluorescence. The effect of NBV-MB on autophagy was evaluated by measuring the LC3-I/II proteins by immunoblot analysis after infection of BHK cells. Furthermore, after treatment with rapamycin (RAPA), 3-methyladenine (3-MA), chloroquine (CQ), or plasmid (GFP-LC3) transfection, the changes in expression of the LC3 gene and the amount of LC3-I/II protein were examined. In addition, variations in viral titer were assayed after treatment of BHK cells with drugs or after transfection with plasmids pCAGM3 and pCAGS3, which encode virus nonstructural proteins μNS and σNS, respectively. RESULTS NBV-MB infection induced autophagy in host cells; however, the level of induction was dependent on viral replication. Induction of autophagy increased viral replication. By contrast, inhibiting autophagy suppressed NBV replication, albeit not significantly. The NBV-MB nonstructural protein μNS was involved in the induction of autophagy with viral infection. CONCLUSIONS NBV-MB infection triggered autophagy. Also, the NBV nonstructural protein μNS may contribute to augmentation of autophagy upon viral infection.
Collapse
Affiliation(s)
- Xiao-Li Tao
- Department of Pathogenic Microbiology, College of Basic Medical Sciences, China Medical University, No. 77, Puhe Road, Shenyang North New Area, Shenyang City, 110013, Liaoning Province, People's Republic of China.,Department of Pathogenic Microbiology, College of Basic Medical Sciences, Jinzhou Medical University, No. 40, the Third Section of SongPo Rd, Jinzhou City, 121200, Liaoning Province, China
| | - Wei Zhao
- Department of Pathogenic Microbiology, College of Basic Medical Sciences, Jinzhou Medical University, No. 40, the Third Section of SongPo Rd, Jinzhou City, 121200, Liaoning Province, China
| | - Wei Tong
- Department of Pathogenic Microbiology, College of Basic Medical Sciences, Jinzhou Medical University, No. 40, the Third Section of SongPo Rd, Jinzhou City, 121200, Liaoning Province, China
| | - Xiao-Fang Wang
- Department of Pathogenic Microbiology, College of Basic Medical Sciences, Jinzhou Medical University, No. 40, the Third Section of SongPo Rd, Jinzhou City, 121200, Liaoning Province, China
| | - Li-Li Dou
- Department of Pathogenic Microbiology, College of Basic Medical Sciences, Jinzhou Medical University, No. 40, the Third Section of SongPo Rd, Jinzhou City, 121200, Liaoning Province, China
| | - Jiang-Man Chen
- Department of Pathogenic Microbiology, College of Basic Medical Sciences, Jinzhou Medical University, No. 40, the Third Section of SongPo Rd, Jinzhou City, 121200, Liaoning Province, China
| | - Nian Liu
- Department of Pathogenic Microbiology, College of Basic Medical Sciences, Jinzhou Medical University, No. 40, the Third Section of SongPo Rd, Jinzhou City, 121200, Liaoning Province, China
| | - Ying Lu
- Department of Pathogenic Microbiology, College of Basic Medical Sciences, Jinzhou Medical University, No. 40, the Third Section of SongPo Rd, Jinzhou City, 121200, Liaoning Province, China
| | - Yi-Bo Zhang
- Department of Pathogenic Microbiology, College of Basic Medical Sciences, Jinzhou Medical University, No. 40, the Third Section of SongPo Rd, Jinzhou City, 121200, Liaoning Province, China
| | - Xu-Peng Jin
- Department of Pathogenic Microbiology, College of Basic Medical Sciences, Jinzhou Medical University, No. 40, the Third Section of SongPo Rd, Jinzhou City, 121200, Liaoning Province, China
| | - Yan-Fei Shen
- Department of Pathogenic Microbiology, College of Basic Medical Sciences, Jinzhou Medical University, No. 40, the Third Section of SongPo Rd, Jinzhou City, 121200, Liaoning Province, China
| | - Hong-Yan Zhao
- Department of Pathogenic Microbiology, College of Basic Medical Sciences, Jinzhou Medical University, No. 40, the Third Section of SongPo Rd, Jinzhou City, 121200, Liaoning Province, China
| | - Hong Jin
- Department of Pathogenic Microbiology, College of Basic Medical Sciences, China Medical University, No. 77, Puhe Road, Shenyang North New Area, Shenyang City, 110013, Liaoning Province, People's Republic of China.
| | - Yong-Gang Li
- Department of Pathogenic Microbiology, College of Basic Medical Sciences, Jinzhou Medical University, No. 40, the Third Section of SongPo Rd, Jinzhou City, 121200, Liaoning Province, China.
| |
Collapse
|
6
|
Virulence, pathology, and pathogenesis of Pteropine orthoreovirus (PRV) in BALB/c mice: Development of an animal infection model for PRV. PLoS Negl Trop Dis 2017; 11:e0006076. [PMID: 29240753 PMCID: PMC5730109 DOI: 10.1371/journal.pntd.0006076] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 10/27/2017] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Cases of acute respiratory tract infection caused by Pteropine orthoreovirus (PRV) of the genus Orthoreovirus (family: Reoviridae) have been reported in Southeast Asia, where it was isolated from humans and bats. It is possible that PRV-associated respiratory infections might be prevalent in Southeast Asia. The clinical course of PRV is not fully elucidated. METHODS The virulence, pathology, and pathogenesis of two PRV strains, a human-borne PRV strain (isolated from a patient, who returned to Japan from Bali, Indonesia in 2007) and a bat-borne PRV (isolated from a bat [Eonycteris spelaea] in the Philippines in 2013) were investigated in BALB/c mice using virological, pathological, and immunological study methods. RESULTS The intranasal inoculation of BALB/c mice with human-borne PRV caused respiratory infection. In addition, all mice with immunity induced by pre-inoculation with a non-lethal dose of PRV were completely protected against lethal PRV infection. Mice treated with antiserum with neutralizing antibody activity after inoculation with a lethal dose of PRV showed a reduced fatality rate. In this mouse model, bat-borne PRV caused respiratory infection similar to human-borne PRV. PRV caused lethal respiratory disease in an animal model of PRV infection, in which BALB/c mice were used. CONCLUSIONS The BALB/c mouse model might help to accelerate research on the virulence of PRV and be useful for evaluating the efficacy of therapeutic agents and vaccines for the treatment and prevention of PRV infection. PRV was shown for the first time to be a causative virus of respiratory disease on the basis of Koch's postulations by the additional demonstration that PRV caused respiratory disease in mice through their intranasal inoculation with PRV.
Collapse
|
8
|
Reverse Genetics for Fusogenic Bat-Borne Orthoreovirus Associated with Acute Respiratory Tract Infections in Humans: Role of Outer Capsid Protein σC in Viral Replication and Pathogenesis. PLoS Pathog 2016; 12:e1005455. [PMID: 26901882 PMCID: PMC4762779 DOI: 10.1371/journal.ppat.1005455] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 01/24/2016] [Indexed: 12/26/2022] Open
Abstract
Nelson Bay orthoreoviruses (NBVs) are members of the fusogenic orthoreoviruses and possess 10-segmented double-stranded RNA genomes. NBV was first isolated from a fruit bat in Australia more than 40 years ago, but it was not associated with any disease. However, several NBV strains have been recently identified as causative agents for respiratory tract infections in humans. Isolation of these pathogenic bat reoviruses from patients suggests that NBVs have evolved to propagate in humans in the form of zoonosis. To date, no strategy has been developed to rescue infectious viruses from cloned cDNA for any member of the fusogenic orthoreoviruses. In this study, we report the development of a plasmid-based reverse genetics system free of helper viruses and independent of any selection for NBV isolated from humans with acute respiratory infection. cDNAs corresponding to each of the 10 full-length RNA gene segments of NBV were cotransfected into culture cells expressing T7 RNA polymerase, and viable NBV was isolated using a plaque assay. The growth kinetics and cell-to-cell fusion activity of recombinant strains, rescued using the reverse genetics system, were indistinguishable from those of native strains. We used the reverse genetics system to generate viruses deficient in the cell attachment protein σC to define the biological function of this protein in the viral life cycle. Our results with σC-deficient viruses demonstrated that σC is dispensable for cell attachment in several cell lines, including murine fibroblast L929 cells but not in human lung epithelial A549 cells, and plays a critical role in viral pathogenesis. We also used the system to rescue a virus that expresses a yellow fluorescent protein. The reverse genetics system developed in this study can be applied to study the propagation and pathogenesis of pathogenic NBVs and in the generation of recombinant NBVs for future vaccines and therapeutics. Nelson Bay orthoreoviruses (NBVs) are members of the fusogenic orthoreoviruses that have various host species, including reptiles, birds, and mammals. Recently, several NBV strains have been isolated from patients with acute respiratory tract infections. Isolation of these pathogenic reoviruses raises concerns about the potential emerging infections of bat-borne orthoreoviruses in humans. The development of an entirely plasmid-based reverse genetics system for double-stranded RNA viruses has trailed other systems of major animal RNA virus groups because of the technical complexities involved in the manipulation of genomes composed of 10 or more segments. In this study, we developed a plasmid-based reverse genetics system for a pathogenic NBV strain. We used this system to generate viruses incapable of expressing the cell attachment protein σC and to rescue a replication-competent virus that expresses a yellow fluorescent protein. Our studies using σC-deficient viruses suggest that NBVs may engage multiple independent viral ligands and cellular receptors for efficient cell attachment and viral pathogenesis, thus providing new insight into the biology of orthoreoviruses. The reverse genetics approach described in this study can be exploited for fusogenic orthoreovirus biology and used to develop vaccines, diagnostics, and therapeutics.
Collapse
|