1
|
Gallo MC, Elias A, Reynolds J, Ball JR, Lieberman JR. Regional Gene Therapy for Bone Tissue Engineering: A Current Concepts Review. Bioengineering (Basel) 2025; 12:120. [PMID: 40001640 PMCID: PMC11852166 DOI: 10.3390/bioengineering12020120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 01/20/2025] [Accepted: 01/24/2025] [Indexed: 02/27/2025] Open
Abstract
The management of segmental bone defects presents a complex reconstruction challenge for orthopedic surgeons. Current treatment options are limited by efficacy across the spectrum of injury, morbidity, and cost. Regional gene therapy is a promising tissue engineering strategy for bone repair, as it allows for local implantation of nucleic acids or genetically modified cells to direct specific protein expression. In cell-based gene therapy approaches, a variety of different cell types have been described including mesenchymal stem cells (MSCs) derived from multiple sources-bone marrow, adipose, skeletal muscle, and umbilical cord tissue, among others. MSCs, in particular, have been well studied, as they serve as a source of osteoprogenitor cells in addition to providing a vehicle for transgene delivery. Furthermore, MSCs possess immunomodulatory properties, which may support the development of an allogeneic "off-the-shelf" gene therapy product. Identifying an optimal cell type is paramount to the successful clinical translation of cell-based gene therapy approaches. Here, we review current strategies for the management of segmental bone loss in orthopedic surgery, including bone grafting, bone graft substitutes, and operative techniques. We also highlight regional gene therapy as a tissue engineering strategy for bone repair, with a focus on cell types and cell sources suitable for this application.
Collapse
Affiliation(s)
- Matthew C. Gallo
- Department of Orthopaedic Surgery, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033, USA; (M.C.G.); (A.E.); (J.R.); (J.R.B.)
| | - Aura Elias
- Department of Orthopaedic Surgery, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033, USA; (M.C.G.); (A.E.); (J.R.); (J.R.B.)
| | - Julius Reynolds
- Department of Orthopaedic Surgery, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033, USA; (M.C.G.); (A.E.); (J.R.); (J.R.B.)
| | - Jacob R. Ball
- Department of Orthopaedic Surgery, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033, USA; (M.C.G.); (A.E.); (J.R.); (J.R.B.)
| | - Jay R. Lieberman
- Department of Orthopaedic Surgery, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033, USA; (M.C.G.); (A.E.); (J.R.); (J.R.B.)
- Alfred E. Mann Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
2
|
Pulat G, Gökmen O, Özcan Ş, Karaman O. Collagen binding and mimetic peptide-functionalized self-assembled peptide hydrogel enhance chondrogenic differentiation of human mesenchymal stem cells. J Biomed Mater Res A 2025; 113:e37786. [PMID: 39237470 DOI: 10.1002/jbm.a.37786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 08/01/2024] [Accepted: 08/02/2024] [Indexed: 09/07/2024]
Abstract
The avascular structure and low cell migration to the damaged area due to the low number of cells do not allow spontaneous repair of the articular cartilage tissue. Therefore, functional scaffolds obtained from biomaterials are used for the regeneration of cartilage tissue. Here, we functionalized one of the self-assembling peptide (SAP) scaffolds KLD (KLDLKLDLKLDL) with short bioactive motifs, which are the α1 chain of type II collagen binding peptide WYRGRL (C1) and the triple helical collagen mimetic peptide GFOGER (C2) by direct coupling. Our goal was to develop injectable functional SAP hydrogels with proper mechanical characteristics that would improve chondrogenesis. Scanning electron microscopy (SEM) was used to observe the integration of peptide scaffold structure at the molecular level. To assure the stability of SAPs, the rheological characteristics and degradation profile of SAP hydrogels were assessed. The biochemical study of the DNA, glycosaminoglycan (GAG), and collagen content revealed that the developed bioactive SAP hydrogels greatly increased hMSCs proliferation compared with KLD scaffolds. Moreover, the addition of bioactive peptides to KLD dramatically increased the expression levels of important chondrogenic markers such as aggrecan, SOX-9, and collagen Type II as evaluated by real-time polymerase chain reaction (PCR). We showed that hMSC proliferation and chondrogenic differentiation were encouraged by the developed SAP scaffolds. Although the chondrogenic potentials of WYRGRL and GFOGER were previously investigated, no study compares the effect of the two peptides integrated into 3-D SAP hydrogels in chondrogenic differentiation. Our findings imply that these specifically created bioactive peptide scaffolds might help enhance cartilage tissue regeneration.
Collapse
Affiliation(s)
- Günnur Pulat
- Tissue Engineering and Regenerative Medicine Laboratory, Department of Biomedical Engineering, İzmir Katip Çelebi University, İzmir, Turkey
| | - Oğuzhan Gökmen
- Tissue Engineering and Regenerative Medicine Laboratory, Department of Biomedical Engineering, İzmir Katip Çelebi University, İzmir, Turkey
| | - Şerife Özcan
- Tissue Engineering and Regenerative Medicine Laboratory, Department of Biomedical Engineering, İzmir Katip Çelebi University, İzmir, Turkey
| | - Ozan Karaman
- Tissue Engineering and Regenerative Medicine Laboratory, Department of Biomedical Engineering, İzmir Katip Çelebi University, İzmir, Turkey
- Bonegraft Biomaterials Co., Ege University Technopolis, İzmir, Turkey
| |
Collapse
|
3
|
Nguyen TT, Phuong MT, Shrestha M, Park J, Le Minh P, Kim JO, Choi H, Nam JW, Jiang HL, Kim HS, Jeong JH, Park JB, Yook S. Scalable and Uniform Fabrication of Dexamethasone-Eluting Depot-Engineered Stem Cell Spheroids as a Microtissue Construct to Target Bone Regeneration. ACS APPLIED MATERIALS & INTERFACES 2023; 15:26373-26384. [PMID: 37219569 DOI: 10.1021/acsami.3c03102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Potentiation of stem cell potency is critical for successful tissue engineering, especially for bone regeneration. Three-dimensional cell culture and bioactive molecule co-delivery with cells have been proposed to achieve this effect. Here, we provide a uniform and scalable fabrication of osteogenic microtissue constructs of mesenchymal stem cell (MSC) spheroids surface-engineered with dexamethasone-releasing polydopamine-coated microparticles (PD-DEXA/MPs) to target bone regeneration. The microparticle conjugation process was rapid and cell-friendly and did not affect the cell viability or key functionalities. The incorporation of DEXA in the conjugated system significantly enhanced the osteogenic differentiation of MSC spheroids, as evidenced by upregulating osteogenic gene expression and intense alkaline phosphatase and alizarin red S staining. In addition, the migration of MSCs from spheroids was tested on a biocompatible macroporous fibrin scaffold (MFS). The result showed that PD-DEXA/MPs were stably anchored on MSCs during cell migration over time. Finally, the implantation of PD-DEXA/MP-conjugated spheroid-loaded MFS into a calvarial defect in a mouse model showed substantial bone regeneration. In conclusion, the uniform fabrication of microtissue constructs containing MSC spheroids with drug depots shows a potential to improve the performance of MSCs in tissue engineering.
Collapse
Affiliation(s)
- Tiep Tien Nguyen
- College of Pharmacy, Keimyung University, Daegu 42601, Republic of Korea
- College of Pharmacy, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Republic of Korea
| | - Mai Thi Phuong
- College of Pharmacy, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Republic of Korea
| | - Manju Shrestha
- Department of Precision Medicine, School of Medicine, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Junhyeung Park
- Department of Precision Medicine, School of Medicine, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Pham Le Minh
- College of Pharmacy, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Republic of Korea
| | - Jong Oh Kim
- College of Pharmacy, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Republic of Korea
| | - Hyukjae Choi
- College of Pharmacy, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Republic of Korea
| | - Joo-Won Nam
- College of Pharmacy, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Republic of Korea
| | - Hu-Lin Jiang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing 210009, China
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University, Nanjing 210009, China
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, China
| | - Hyung-Sik Kim
- Department of Life Science in Dentistry, School of Dentistry, Pusan National University, Yangsan 50612, Republic of Korea
- Dental and Life Science Institute, Pusan National University, Yangsan 50612, Republic of Korea
| | - Jee-Heon Jeong
- Department of Precision Medicine, School of Medicine, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jun-Beom Park
- Department of Periodontics, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Simmyung Yook
- College of Pharmacy, Keimyung University, Daegu 42601, Republic of Korea
| |
Collapse
|
4
|
Athanerey A, Verma NR, Bhargava P, Amle D, Patra PK, Kumar A. Biochemical aspects of effects of mesenchymal stem cell treatment in chronic wounds progressive healing. Cell Tissue Bank 2023; 24:211-220. [PMID: 35849224 DOI: 10.1007/s10561-022-10026-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 06/28/2022] [Indexed: 11/02/2022]
Abstract
Chronic wounds are a persistent burden for medical professionals. Despite developments and advancements in treatment, these wounds do not heal completely. Mesenchymal stem cells (MSCs) are the epicenter of regenerative medicine that have shown promising results in chronic wound regeneration. Autologous peripheral blood-derived MSCs (PB-MSCs) are comparatively new in wound healing treatment, bone-marrow-derived MSCs (BM-MSCs), and adipose-derived stem cells (ADSCs) are commonly being practiced. In the present study, PB-MSCs treatment was given to chronic wound patients. Various biochemical parameters like random blood glucose, serum urea, serum creatinine, bilirubin (total and direct), Aspartate Aminotransferase (AST), Alanine Aminotransferase (ALT), total protein, albumin levels, and association of other factors/conditions such as age, sex, addiction of drug/alcohol were also evaluated/compared with complete and without complete healing. The wound area of the ulcer was found to be significantly reduced and the wound was healthier after the treatment. These biochemical parameters could be certainly utilized as biomarkers to anticipate the risk of chronic wounds. These findings may contribute to the development of better wound care treatment strategies and drug discovery in the field of regenerative medicine.
Collapse
Affiliation(s)
- Anjali Athanerey
- Department of Biotechnology, National Institute of Technology Raipur, Raipur, Chhattisgarh, India
| | - Neha Rani Verma
- Department of Biochemistry, Pt JNM Medical College Raipur, Raipur, Chhattisgarh, India
| | - Piyush Bhargava
- Department of Biochemistry, Pt JNM Medical College Raipur, Raipur, Chhattisgarh, India
| | - Dnyanesh Amle
- Department of Biochemistry, AIIMS Nagpur, Sumthana, Maharastra, India
| | - P K Patra
- Department of Biochemistry, Pt JNM Medical College Raipur, Raipur, Chhattisgarh, India.
| | - Awanish Kumar
- Department of Biotechnology, National Institute of Technology Raipur, Raipur, Chhattisgarh, India.
| |
Collapse
|
5
|
Lee JW, Chae S, Oh S, Kim DH, Kim SH, Kim SJ, Choi JY, Lee JH, Song SY. Bioessential Inorganic Molecular Wire-Reinforced 3D-Printed Hydrogel Scaffold for Enhanced Bone Regeneration. Adv Healthc Mater 2023; 12:e2201665. [PMID: 36213983 DOI: 10.1002/adhm.202201665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/24/2022] [Indexed: 01/18/2023]
Abstract
Materials with physicochemical properties and biological activities similar to those of the natural extracellular matrix are in high demand in tissue engineering. In particular, Mo3 Se3 - inorganic molecular wire (IMW) is a promising material composed of bioessential minerals and possess nanometer-scale diameters, negatively charged surfaces, physical flexibility, and nanotopography characteristics, which are essential for interactions with cell membrane proteins. Here, an implantable 3D Mo3 Se3 - IMW enhanced gelatin-GMA/silk-GMA hydrogel (IMW-GS hydrogel) is developed for osteogenesis and bone formation, followed by biological evaluations. The mechanical properties of the 3D printed IMW-GS hydrogel are improved by noncovalent interactions between the Mo3 Se3 - IMWs and the positively charged residues of the gelatin molecules. Long-term biocompatibility with primary human osteoblast cells (HOBs) is confirmed using the IMW-GS hydrogel. The proliferation, osteogenic gene expression, collagen accumulation, and mineralization of HOBs improve remarkably with the IMW-GS hydrogel. In in vivo evaluations, the IMW-GS hydrogel implantation exhibits a significantly improved new bone regeneration of 87.8 ± 5.9% (p < 0.05) for 8 weeks, which is higher than that from the gelatin-GMA/silk-GMA hydrogel without Mo3 Se3 - IMW. These results support a new improved strategy with in vitro and in vivo performance of 3D IMW enhanced scaffolds in tissue engineering.
Collapse
Affiliation(s)
- Jin Woong Lee
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea.,Research Center for Advanced Materials Technology, Core Research Institute, 16419, Suwon, Republic of Korea
| | - Sudong Chae
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Seungbae Oh
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Dai-Hwan Kim
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Si Hyun Kim
- SKKU Advanced Institute of Nanotechnology, SKKU, Suwon, 16419, Republic of Korea
| | - Seung Jae Kim
- Department of Orthopaedic Surgery, Hallym University Dongtan Sacred Heart Hospital, Hwaseong, 18450, Republic of Korea
| | - Jae-Young Choi
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea.,SKKU Advanced Institute of Nanotechnology, SKKU, Suwon, 16419, Republic of Korea
| | - Jung Heon Lee
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea.,Research Center for Advanced Materials Technology, Core Research Institute, 16419, Suwon, Republic of Korea.,SKKU Advanced Institute of Nanotechnology, SKKU, Suwon, 16419, Republic of Korea.,Biomedical Institute for Convergence at SKKU (BICS), SKKU, Suwon, 16419, Republic of Korea
| | - Si Young Song
- Department of Orthopaedic Surgery, Hallym University Dongtan Sacred Heart Hospital, Hwaseong, 18450, Republic of Korea
| |
Collapse
|
6
|
Suvarnapathaki S, Wu X, Zhang T, Nguyen MA, Goulopoulos AA, Wu B, Camci-Unal G. Oxygen generating scaffolds regenerate critical size bone defects. Bioact Mater 2022; 13:64-81. [PMID: 35224292 PMCID: PMC8843972 DOI: 10.1016/j.bioactmat.2021.11.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/30/2021] [Accepted: 11/01/2021] [Indexed: 12/12/2022] Open
Abstract
Recent innovations in bone tissue engineering have introduced biomaterials that generate oxygen to substitute vasculature. This strategy provides the immediate oxygen required for tissue viability and graft maturation. Here we demonstrate a novel oxygen-generating tissue scaffold with predictable oxygen release kinetics and modular material properties. These hydrogel scaffolds were reinforced with microparticles comprised of emulsified calcium peroxide (CaO2) within polycaprolactone (PCL). The alterations of the assembled materials produced constructs within 5 ± 0.81 kPa to 34 ± 0.9 kPa in mechanical strength. The mass swelling ratios varied between 11% and 25%. Our in vitro and in vivo results revealed consistent tissue viability, metabolic activity, and osteogenic differentiation over two weeks. The optimized in vitro cell culture system remained stable at pH 8-9. The in vivo rodent models demonstrated that these scaffolds support a 70 mm3 bone volume that was comparable to the native bone and yielded over 90% regeneration in critical size cranial defects. Furthermore, the in vivo bone remodeling and vascularization results were validated by tartrate-resistant acid phosphatase (TRAP) and vascular endothelial growth factor (VEGF) staining. The promising results of this work are translatable to a repertoire of regenerative medicine applications including advancement and expansion of bone substitutes and disease models.
Collapse
Affiliation(s)
- Sanika Suvarnapathaki
- Biomedical Engineering and Biotechnology Program, University of Massachusetts Lowell, One University Avenue, Lowell, MA, 01854, USA
- Department of Chemical Engineering, University of Massachusetts Lowell, One University Avenue, Lowell, MA, 01854, USA
| | - Xinchen Wu
- Biomedical Engineering and Biotechnology Program, University of Massachusetts Lowell, One University Avenue, Lowell, MA, 01854, USA
- Department of Chemical Engineering, University of Massachusetts Lowell, One University Avenue, Lowell, MA, 01854, USA
| | - Tengfei Zhang
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medicine University, Beijing, 100069, China
| | - Michelle A. Nguyen
- Department of Chemical Engineering, University of Massachusetts Lowell, One University Avenue, Lowell, MA, 01854, USA
| | - Anastasia A. Goulopoulos
- Department of Chemical Engineering, University of Massachusetts Lowell, One University Avenue, Lowell, MA, 01854, USA
| | - Bin Wu
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medicine University, Beijing, 100069, China
| | - Gulden Camci-Unal
- Department of Chemical Engineering, University of Massachusetts Lowell, One University Avenue, Lowell, MA, 01854, USA
- Department of Surgery, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA, 01605, USA
| |
Collapse
|
7
|
Prajwal GS, Jeyaraman N, Kanth V K, Jeyaraman M, Muthu S, Rajendran SNS, Rajendran RL, Khanna M, Oh EJ, Choi KY, Chung HY, Ahn BC, Gangadaran P. Lineage Differentiation Potential of Different Sources of Mesenchymal Stem Cells for Osteoarthritis Knee. Pharmaceuticals (Basel) 2022; 15:386. [PMID: 35455383 PMCID: PMC9028477 DOI: 10.3390/ph15040386] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/11/2022] [Accepted: 03/17/2022] [Indexed: 02/05/2023] Open
Abstract
Tissue engineering and regenerative medicine (TERM) have paved a way for treating musculoskeletal diseases in a minimally invasive manner. The regenerative medicine cocktail involves the usage of mesenchymal stem/stromal cells (MSCs), either uncultured or culture-expanded cells along with growth factors, cytokines, exosomes, and secretomes to provide a better regenerative milieu in degenerative diseases. The successful regeneration of cartilage depends on the selection of the appropriate source of MSCs, the quality, quantity, and frequency of MSCs to be injected, and the selection of the patient at an appropriate stage of the disease. However, confirmation on the most favorable source of MSCs remains uncertain to clinicians. The lack of knowledge in the current cellular treatment is uncertain in terms of how beneficial MSCs are in the long-term or short-term (resolution of pain) and improved quality of life. Whether MSCs treatments have any superiority, exists due to sources of MSCs utilized in their potential to objectively regenerate the cartilage at the target area. Many questions on source and condition remain unanswered. Hence, in this review, we discuss the lineage differentiation potentials of various sources of MSCs used in the management of knee osteoarthritis and emphasize the role of tissue engineering in cartilage regeneration.
Collapse
Affiliation(s)
- Gollahalli Shivashankar Prajwal
- Research Fellow, Fellowship in Orthopaedic Rheumatology (FEIORA), Dr. Ram Manohar Lohiya National Law University, Lucknow 226010, Uttar Pradesh, India; (G.S.P.); (N.J.)
- Indian Stem Cell Study Group (ISCSG) Association, Lucknow 110048, Uttar Pradesh, India; (S.M.); (M.K.)
- Department of Orthopaedics, Mallika Spine Centre, Guntur 522001, Andhra Pradesh, India
| | - Naveen Jeyaraman
- Research Fellow, Fellowship in Orthopaedic Rheumatology (FEIORA), Dr. Ram Manohar Lohiya National Law University, Lucknow 226010, Uttar Pradesh, India; (G.S.P.); (N.J.)
- Indian Stem Cell Study Group (ISCSG) Association, Lucknow 110048, Uttar Pradesh, India; (S.M.); (M.K.)
- Department of Orthopaedics, Atlas Hospitals, Tiruchirappalli 620002, Tamil Nadu, India
| | - Krishna Kanth V
- Department of Orthopaedics, Government Medical College, Mahabubabad 506104, Telangana, India;
| | - Madhan Jeyaraman
- Indian Stem Cell Study Group (ISCSG) Association, Lucknow 110048, Uttar Pradesh, India; (S.M.); (M.K.)
- Department of Orthopaedics, Faculty of Medicine—Sri Lalithambigai Medical College and Hospital, Dr MGR Educational and Research Institute, Chennai 600095, Tamil Nadu, India
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida 201306, Uttar Pradesh, India
- Orthopaedic Research Group, Coimbatore 641001, Tamil Nadu, India
| | - Sathish Muthu
- Indian Stem Cell Study Group (ISCSG) Association, Lucknow 110048, Uttar Pradesh, India; (S.M.); (M.K.)
- Department of Orthopaedics, Government Medical College, Mahabubabad 506104, Telangana, India;
- Department of Orthopaedics, Faculty of Medicine—Sri Lalithambigai Medical College and Hospital, Dr MGR Educational and Research Institute, Chennai 600095, Tamil Nadu, India
- Orthopaedic Research Group, Coimbatore 641001, Tamil Nadu, India
| | - Sree Naga Sowndary Rajendran
- Department of Medicine, Sri Venkateshwaraa Medical College Hospital and Research Centre, Puducherry 605102, Puducherry, India;
| | - Ramya Lakshmi Rajendran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41944, Korea;
| | - Manish Khanna
- Indian Stem Cell Study Group (ISCSG) Association, Lucknow 110048, Uttar Pradesh, India; (S.M.); (M.K.)
- Department of Orthopaedics, Government Medical College and Hospital, Dindigul 624001, Tamil Nadu, India
- Department of Orthopaedics, Prasad Institute of Medical Sciences, Lucknow 226010, Uttar Pradesh, India
| | - Eun Jung Oh
- Department of Plastic and Reconstructive Surgery, CMRI, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41944, Korea; (E.J.O.); (K.Y.C.); (H.Y.C.)
| | - Kang Young Choi
- Department of Plastic and Reconstructive Surgery, CMRI, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41944, Korea; (E.J.O.); (K.Y.C.); (H.Y.C.)
| | - Ho Yun Chung
- Department of Plastic and Reconstructive Surgery, CMRI, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41944, Korea; (E.J.O.); (K.Y.C.); (H.Y.C.)
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu 41944, Korea
| | - Byeong-Cheol Ahn
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41944, Korea;
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu 41944, Korea
| | - Prakash Gangadaran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41944, Korea;
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu 41944, Korea
| |
Collapse
|
8
|
Sun X, Liu Y, Wei Y, Wang Y. Chirality-induced bionic scaffolds in bone defects repair-a review. Macromol Biosci 2022; 22:e2100502. [PMID: 35246939 DOI: 10.1002/mabi.202100502] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/27/2022] [Indexed: 11/12/2022]
Abstract
Due to lack of amino sugar with aging, people will suffer from various epidemic bone diseases called "undead cancer" by the World Health Organization. The key problem in bone tissue engineering that has not been completely resolved is the repair of critical large-scale bone and cartilage defects. The chirality of the extracellular matrix plays a decisive role in the physiological activity of bone cells and the occurrence of bone tissue, but the mechanism of chirality in regulating cell adhesion and growth is still in the early stage of exploration. This paper reviews the application progress of chirality-induced bionic scaffolds in bone defects repair based on "soft" and "hard" scaffolds. The aim is to summarize the effects of different chiral structures (L-shaped and D-shaped) in the process of inducing bionic scaffolds in bone defects repair. In addition, many technologies and methods as well as issues worthy of special consideration for preparing chirality-induced bionic scaffolds are also introduced. We expect that this work can provide inspiring ideas for designing new chirality-induced bionic scaffolds and promote the development of chirality in bone tissue engineering. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Xinyue Sun
- Department of Chemistry, School of Science, Tianjin University, Tianjin, 300354, P. R. China
| | - Yue Liu
- Department of Spinal Surgery, Tianjin Hospital, Tianjin, 300211, P. R. China
| | - Yuping Wei
- Department of Chemistry, School of Science, Tianjin University, Tianjin, 300354, P. R. China
| | - Yong Wang
- Department of Chemistry, School of Science, Tianjin University, Tianjin, 300354, P. R. China
| |
Collapse
|
9
|
Yi J, Liu Q, Zhang Q, Chew TG, Ouyang H. Modular protein engineering-based biomaterials for skeletal tissue engineering. Biomaterials 2022; 282:121414. [DOI: 10.1016/j.biomaterials.2022.121414] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 04/27/2021] [Accepted: 05/19/2021] [Indexed: 12/24/2022]
|
10
|
Kato H, Watanabe K, Saito A, Onodera S, Azuma T, Takano M. Bone regeneration of induced pluripotent stem cells derived from peripheral blood cells in collagen sponge scaffolds. J Appl Oral Sci 2022; 30:e20210491. [PMID: 35195151 PMCID: PMC8860406 DOI: 10.1590/1678-7757-2021-0491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 11/29/2021] [Indexed: 11/23/2022] Open
Abstract
Stem cell-based regeneration therapy offers new therapeutic options for patients with bone defects because of significant advances in stem cell research. Although bone marrow mesenchymal stem cells are the ideal material for bone regeneration therapy using stem cell, they are difficult to obtain. Induced pluripotent stem cells (iPSCs) are now considered an attractive tool in bone tissue engineering. Recently, the efficiency of establishing iPSCs has been improved by the use of the Sendai virus vector, and it has become easier to establish iPSCs from several type of somatic cells. In our previous study, we reported a method to purify osteogenic cells from iPSCs.
Collapse
|
11
|
Availability of mRNA Obtained from Peripheral Blood Mononuclear Cells for Testing Mutation Consequences in Dystrophic Epidermolysis Bullosa. Int J Mol Sci 2021; 22:ijms222413369. [PMID: 34948168 PMCID: PMC8709150 DOI: 10.3390/ijms222413369] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 11/16/2022] Open
Abstract
Dystrophic epidermolysis bullosa (DEB) is an inheritable blistering disease caused by mutations in COL7A1, which encodes type VII collagen. To address the issue of genotype-phenotype correlations in DEB, analyzing the consequences of COL7A1 mutations using mRNA is indispensable. Herein we established a novel method for testing the effect of mutations in DEB using COL7A1 mRNA extracted from peripheral blood mononuclear cells (PBMCs). We investigated the consequences of four COL7A1 mutations (c.6573 + 1G > C, c.6216 + 5G > T, c.7270C > T and c.2527C > T) in three Japanese individuals with recessive DEB. The novel method detected the consequences of two recurrent COL7A1 mutations (c.6573 + 1G > C, c.6216 + 5G > T) and a novel COL7A1 mutation (c.7270C > T) accurately. In addition, it detected aberrant splicing resulting from a COL7A1 mutation (c.2527C > T) which was previously reported as a nonsense mutation. Furthermore, we revealed that type VII collagen-expressing cells in PBMCs have similar cell surface markers as mesenchymal stem cells; they were CD105+, CD29+, CD45-, and CD34-, suggesting that a small number of mesenchymal stem cells or mesenchymal stromal cells are circulating in the peripheral blood, which enables us to detect COL7A1 mRNA in PBMCs. Taken together, our novel method for analyzing mutation consequences using mRNA obtained from PBMCs in DEB will significantly contribute to genetic diagnoses and novel therapies for DEB.
Collapse
|
12
|
Najafi H, Jafari M, Farahavar G, Abolmaali SS, Azarpira N, Borandeh S, Ravanfar R. Recent advances in design and applications of biomimetic self-assembled peptide hydrogels for hard tissue regeneration. Biodes Manuf 2021; 4:735-756. [PMID: 34306798 PMCID: PMC8294290 DOI: 10.1007/s42242-021-00149-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 06/12/2021] [Indexed: 12/22/2022]
Abstract
Abstract The development of natural biomaterials applied for hard tissue repair and regeneration is of great importance, especially in societies with a large elderly population. Self-assembled peptide hydrogels are a new generation of biomaterials that provide excellent biocompatibility, tunable mechanical stability, injectability, trigger capability, lack of immunogenic reactions, and the ability to load cells and active pharmaceutical agents for tissue regeneration. Peptide-based hydrogels are ideal templates for the deposition of hydroxyapatite crystals, which can mimic the extracellular matrix. Thus, peptide-based hydrogels enhance hard tissue repair and regeneration compared to conventional methods. This review presents three major self-assembled peptide hydrogels with potential application for bone and dental tissue regeneration, including ionic self-complementary peptides, amphiphilic (surfactant-like) peptides, and triple-helix (collagen-like) peptides. Special attention is given to the main bioactive peptides, the role and importance of self-assembled peptide hydrogels, and a brief overview on molecular simulation of self-assembled peptide hydrogels applied for bone and dental tissue engineering and regeneration. Graphic abstract
Collapse
Affiliation(s)
- Haniyeh Najafi
- Pharmaceutical Nanotechnology Department, Shiraz University of Medical Sciences, 71345-1583 Shiraz, Iran
| | - Mahboobeh Jafari
- Pharmaceutical Nanotechnology Department, Shiraz University of Medical Sciences, 71345-1583 Shiraz, Iran
| | - Ghazal Farahavar
- Pharmaceutical Nanotechnology Department, Shiraz University of Medical Sciences, 71345-1583 Shiraz, Iran
| | - Samira Sadat Abolmaali
- Pharmaceutical Nanotechnology Department, Shiraz University of Medical Sciences, 71345-1583 Shiraz, Iran
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, 71345-1583 Shiraz, Iran
| | - Negar Azarpira
- Transplant Research Center, Shiraz University of Medical Sciences, Mohammad Rasoul-Allah Research Tower, 7193711351 Shiraz, Iran
| | - Sedigheh Borandeh
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, 71345-1583 Shiraz, Iran
- Polymer Technology Research Group, Department of Chemical and Metallurgical Engineering, Aalto University, 02152 Espoo, Finland
| | - Raheleh Ravanfar
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125 USA
| |
Collapse
|
13
|
Liu L, Peng Z, Wang C, Wang C, Liu C, Zhu L, Tang C. Effect of synthetic oxygen-generating system on cell survival under hypoxic condition in vitro. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2021; 32:967-979. [PMID: 33482710 DOI: 10.1080/09205063.2021.1878806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 01/13/2021] [Indexed: 10/22/2022]
Abstract
A significant challenge in the tissue engineering of injured sites is the lack of vascularization in the engineered sites due to insufficient oxygen supply. A scaffolding system is required to support seeded cells as vascularization develops. In this study, we examined the effects of hypoxic conditions and oxygen release on cell survival in a synthetic system. We developed a three-dimensional system using CaO2/poly(lactic-co-glycolic acid) microspheres suspended in a hydrogel. The system material was evaluated using stem cells under hypoxic conditions alongside controls to evaluate its oxygen-generating potential over a period of 21 days. The hydrogel acted as a flexible carrier supporting cell attachment and growth, protecting microspheres, and prolonging oxygen release. The system generated oxygen and supported cell growth, which are together expected to promote stem cell survival and growth in the weeks following implantation.
Collapse
Affiliation(s)
- Liangle Liu
- Department of Spinal Surgery, Rui'an People's Hospital & the third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Department of Spinal Surgery, Orthopaedic Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Ziyue Peng
- Department of Spinal Surgery, Orthopaedic Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Chenjian Wang
- Department of Spinal Surgery, Rui'an People's Hospital & the third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Chengqiang Wang
- Department of Spinal Surgery, Orthopaedic Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Chun Liu
- Department of Spinal Surgery, Orthopaedic Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Lixin Zhu
- Department of Spinal Surgery, Orthopaedic Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Chengxuan Tang
- Department of Spinal Surgery, Rui'an People's Hospital & the third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
14
|
Belludi SA, Singhal L, Gubbala M. Peripheral Blood Mesenchymal Stem Cells and Platelet Rich Fibrin Matrix in the Management of Class II Gingival Recession: A Case Report. JOURNAL OF DENTISTRY (SHIRAZ, IRAN) 2021; 22:67-70. [PMID: 33681425 PMCID: PMC7921769 DOI: 10.30476/dentjods.2020.81784.0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The treatment of gingival recession is a frequent demand due to aesthetic concern, root caries, and /or root hypersensitivity. The purpose of this case study was to evaluate the success and predictability of coronally advanced flap (CAF) in combination with peripheral blood mesenchymal stem cells (PBMSCs) and platelet rich fibrin matrix(PRFM) for the management of Miller's Class II gingival recession. CAF followed by placement of PBMSCs and PRFM was performed on a male patient, aged 25 years having Miller’s Class II gingival recession of 5-6 mm on the upper left canine, premolars and molars. The patient was followed up for 3 months. Root coverage of 60.0% and clinical attachment gain of 3 mm were evident following 3 months of follow-up. This novel technique showed an effective way to increase the width of attached gingiva and treat gingival recession.
Collapse
Affiliation(s)
- Sphoorthi Anup Belludi
- Dept. of Periodontics, K.L.E Society's Institute of Dental Sciences, Bengaluru, Karnataka, India
| | - Laveena Singhal
- Dept. of Periodontics, K.L.E Society's Institute of Dental Sciences, Bengaluru, Karnataka, India
| | - Madhuri Gubbala
- Dept. of Periodontics, K.L.E Society's Institute of Dental Sciences, Bengaluru, Karnataka, India
| |
Collapse
|
15
|
Wu X, Zhang T, Hoff B, Suvarnapathaki S, Lantigua D, McCarthy C, Wu B, Camci‐Unal G. Mineralized Hydrogels Induce Bone Regeneration in Critical Size Cranial Defects. Adv Healthc Mater 2021; 10:e2001101. [PMID: 32940013 DOI: 10.1002/adhm.202001101] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 09/07/2020] [Indexed: 01/28/2023]
Abstract
Sequential mineralization enables the integration of minerals within the 3D structure of hydrogels. Hydrolyzed collagen-based hydrogels are sequentially mineralized over 10 cycles. One cycle is defined as an incubation period in calcium chloride dihydrate followed by incubation in sodium phosphate dibasic dihydrate. Separate cycles are completed at 30-minute and 24-hour intervals. For the gels mineralized for 30 min and 24 h, the compressive moduli increases from 4.25 to 87.57 kPa and from 4.25 to 125.47 kPa, respectively, as the cycle number increases from 0 to 10. As indicated by X-ray diffraction (XRD) and Fourier transform infrared analysis (FTIR) analyses, the minerals in the scaffolds are mainly hydroxyapatite. In vitro experiments, which measure mechanical properties, porous structure, mineral content, and gene expression are performed to evaluate the physical properties and osteoinductivity of the scaffolds. Real time-quantitative polymerase chain reaction (RT-qPCR) demonstrates 4-10 fold increase in the expression of BMP-7 and osteocalcin. The in vivo subcutaneous implantation demonstrates that the scaffolds are biocompatible and 90% biodegradable. The critical size cranial defects in vivo exhibit nearly complete bone regeneration. Cycle 10 hydrogels mineralized for 24 h have a volume of 59.86 mm3 and a density of 1946.45 HU. These results demonstrate the suitability of sequentially mineralized hydrogel scaffolds for bone repair and regeneration.
Collapse
Affiliation(s)
- Xinchen Wu
- Department of Chemical Engineering University of Massachusetts Lowell Lowell MA 01854 USA
- Biomedical Engineering and Biotechnology Program University of Massachusetts Lowell Lowell MA 01854 USA
| | - Tengfei Zhang
- Department of Neurosurgery Sanbo Brain Hospital Capital Medicine University Beijing 100069 China
| | - Brianna Hoff
- Department of Chemical Engineering University of Massachusetts Lowell Lowell MA 01854 USA
| | - Sanika Suvarnapathaki
- Department of Chemical Engineering University of Massachusetts Lowell Lowell MA 01854 USA
- Biomedical Engineering and Biotechnology Program University of Massachusetts Lowell Lowell MA 01854 USA
| | - Darlin Lantigua
- Department of Chemical Engineering University of Massachusetts Lowell Lowell MA 01854 USA
- Biomedical Engineering and Biotechnology Program University of Massachusetts Lowell Lowell MA 01854 USA
| | - Colleen McCarthy
- Department of Chemical Engineering University of Massachusetts Lowell Lowell MA 01854 USA
| | - Bin Wu
- Department of Neurosurgery Sanbo Brain Hospital Capital Medicine University Beijing 100069 China
| | - Gulden Camci‐Unal
- Department of Chemical Engineering University of Massachusetts Lowell Lowell MA 01854 USA
- Department of Surgery University of Massachusetts Medical School Worcester MA 01605 USA
| |
Collapse
|
16
|
Abstract
PURPOSE OF REVIEW One aim in bone tissue engineering is to develop human cell-based, 3D in vitro bone models to study bone physiology and pathology. Due to the heterogeneity of cells among patients, patient's own cells are needed to be obtained, ideally, from one single cell source. This review attempts to identify the appropriate cell sources for development of such models. RECENT FINDINGS Bone marrow and peripheral blood are considered as suitable sources for extraction of osteoblast/osteocyte and osteoclast progenitor cells. Recent studies on these cell sources have shown no significant differences between isolated progenitor cells. However, various parameters such as medium composition affect the cell's proliferation and differentiation potential which could make the peripheral blood-derived stem cells superior to the ones from bone marrow. Peripheral blood can be considered a suitable source for osteoblast/osteocyte and osteoclast progenitor cells, being less invasive for the patient. However, more investigations are needed focusing on extraction and differentiation of both cell types from the same donor sample of peripheral blood.
Collapse
Affiliation(s)
- Sana Ansari
- Orthopaedic Biomechanics, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, the Netherlands
| | - Keita Ito
- Orthopaedic Biomechanics, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, the Netherlands
| | - Sandra Hofmann
- Orthopaedic Biomechanics, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, the Netherlands.
| |
Collapse
|
17
|
Wang P, Wang W, Geng T, Liu Y, Zhu S, Liu Z, Yuan C. EphrinB2 regulates osteogenic differentiation of periodontal ligament stem cells and alveolar bone defect regeneration in beagles. J Tissue Eng 2019; 10:2041731419894361. [PMID: 31897285 PMCID: PMC6918499 DOI: 10.1177/2041731419894361] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 11/18/2019] [Indexed: 01/11/2023] Open
Abstract
EphrinB2, a membrane protein regulating bone homeostasis, has been demonstrated to induce osteogenic gene expression in periodontal ligament fibroblasts. The aim of this study was to explore the effects of ephrinB2 on osteogenic differentiation of periodontal ligament stem cells and on alveolar bone regeneration in vivo. We assessed the osteogenic gene expression and osteogenic differentiation potential of ephrinB2-modified human and canine periodontal ligament stem cells, in which ephrinB2 expression was upregulated via lentiviral vector transduction. EphrinB2-modified canine periodontal ligament stem cells combined with PuraMatrix were delivered to critical-sized alveolar bone defects in beagles to evaluate bone regeneration. Results showed that ephrinB2 overexpression enhanced osteogenic gene transcription and mineral deposition in both human and canine periodontal ligament stem cells. Animal experiments confirmed that ephrinB2-modified canine periodontal ligament stem cells + PuraMatrix resulted in greater trabecular bone volume per tissue volume and trabecular thickness compared with other groups. Our study demonstrated that ephrinB2 promoted osteogenic differentiation of periodontal ligament stem cells and alveolar bone repair in beagles, highlighting its therapeutic potential for the treatment of alveolar bone damage.
Collapse
Affiliation(s)
- Penglai Wang
- Affiliated Stomatological Hospital of Xuzhou Medical University, Xuzhou, China
| | - Wen Wang
- Affiliated Stomatological Hospital of Xuzhou Medical University, Xuzhou, China
| | - Tengyu Geng
- Affiliated Stomatological Hospital of Xuzhou Medical University, Xuzhou, China
| | - Yi Liu
- Affiliated Stomatological Hospital of Xuzhou Medical University, Xuzhou, China
| | - Shaoyue Zhu
- Faculty of Dentistry, The University of Hong Kong, Pokfulam, Hong Kong
| | - Zongxiang Liu
- Affiliated Stomatological Hospital of Xuzhou Medical University, Xuzhou, China
| | - Changyong Yuan
- Affiliated Stomatological Hospital of Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
18
|
Abazari MF, Nejati F, Nasiri N, Khazeni ZAS, Nazari B, Enderami SE, Mohajerani H. Platelet-rich plasma incorporated electrospun PVA-chitosan-HA nanofibers accelerates osteogenic differentiation and bone reconstruction. Gene 2019; 720:144096. [DOI: 10.1016/j.gene.2019.144096] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 08/28/2019] [Accepted: 08/29/2019] [Indexed: 02/07/2023]
|
19
|
Yang M, Liu H, Wang Y, Wu G, Qiu S, Liu C, Tan Z, Guo J, Zhu L. Hypoxia reduces the osteogenic differentiation of peripheral blood mesenchymal stem cells by upregulating Notch-1 expression. Connect Tissue Res 2019; 60:583-596. [PMID: 31035811 DOI: 10.1080/03008207.2019.1611792] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Purpose: Mesenchymal stem cells (MSCs) seeded on biocompatible scaffolds have therapeutic potential for bone defect repair. However, MSCs can be affected by hypoxia and nutritional deficiency due to a lack of blood vessels in the scaffolds. Here, we explored the effects of hypoxia on MSC differentiation to clarify these mechanisms. Methods: Peripheral blood mesenchymal stem cells (PBMSCs) were cultured in small individual chambers with oxygen concentrations of 1%, 9%, and 21%. Cell proliferation was evaluated by Cell Counting Kit 8 assays, and cell survival was determined using live/dead assays. Scratch assays were performed to evaluate cell migration. Ca2+ deposition/mineralization experiments, reverse transcription quantitative real-time polymerase chain reaction, and Western blotting were performed to assess the osteogenic differentiation of cells. Notch1 expression was downregulated by lentivirus-transfected PBMSCs to observe the effects of Notch1 knockdown on osteogenic gene and protein expression. Results: PBMSCs exposed to hypoxia (1% O2) demonstrated accelerated proliferation, increased migration, and reduced survival in the absence of serum. Although 9% oxygen promoted osteogenic differentiation, the osteogenic differentiation of PBMSCs was significantly reduced by 1% O2, and this effect was associated with increased Notch1 expression. Reducing Notch1 expression using small interfering RNA significantly restored the osteogenic differentiation of PBMSCs. Conclusions: Hypoxia accelerated proliferation, increased migration, and reduced PBMSC differentiation into osteoblasts by increasing Notch1 expression. These findings may contribute to the development of appropriate cell culture or in vivo transplantation conditions to maintain the full osteogenic potential of PBMSCs.
Collapse
Affiliation(s)
- Minsheng Yang
- Department of Spine Orthopedics, Zhujiang Hospital, Southern Medical University , Guangzhou , China
| | - Haixin Liu
- People's Hospital of Deyang City , Sichuan , China
| | - Yihan Wang
- Department of Spine Orthopedics, Zhujiang Hospital, Southern Medical University , Guangzhou , China
| | - Guofeng Wu
- Department of Orthopedics, Jingzhou No. 1 People's Hospital and First Affiliated Hospital of Yangtze University , Jingzhou , China
| | - Sujun Qiu
- Department of Spine Orthopedics, Zhujiang Hospital, Southern Medical University , Guangzhou , China
| | - Chun Liu
- Department of Spine Orthopedics, Zhujiang Hospital, Southern Medical University , Guangzhou , China
| | - Zhiwen Tan
- Department of Spine Orthopedics, Zhujiang Hospital, Southern Medical University , Guangzhou , China
| | - Jiasong Guo
- Department of Histology and Embryology, Southern Medical University , Guangzhou , China.,Key Laboratory of Tissue Construction and Detection of Guangdong Province , Guangzhou , China.,Institute of Bone Biology, Academy of Orthopaedics , Guangdong Province , Guangzhou , China
| | - Lixin Zhu
- Department of Spine Orthopedics, Zhujiang Hospital, Southern Medical University , Guangzhou , China
| |
Collapse
|
20
|
Kang SH, Park JB, Kim I, Lee W, Kim H. Assessment of stem cell viability in the initial healing period in rabbits with a cranial bone defect according to the type and form of scaffold. J Periodontal Implant Sci 2019; 49:258-267. [PMID: 31485376 PMCID: PMC6713805 DOI: 10.5051/jpis.2019.49.4.258] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 07/30/2019] [Indexed: 12/22/2022] Open
Abstract
PURPOSE Increased bone regeneration has been achieved through the use of stem cells in combination with graft material. However, the survival of transplanted stem cells remains a major concern. The purpose of this study was to evaluate the viability of transplanted mesenchymal stem cells (MSCs) at an early time point (24 hours) based on the type and form of the scaffold used, including type I collagen membrane and synthetic bone. METHODS The stem cells were obtained from the periosteum of the otherwise healthy dental patients. Four symmetrical circular defects measuring 6 mm in diameter were made in New Zealand white rabbits using a trephine drill. The defects were grafted with 1) synthetic bone (β-tricalcium phosphate/hydroxyapatite [β-TCP/HA]) and 1×105 MSCs, 2) collagen membrane and 1×105 MSCs, 3) β-TCP/HA+collagen membrane and 1×105 MSCs, or 4) β-TCP/HA, a chipped collagen membrane and 1×105 MSCs. Cellular viability and the cell migration rate were analyzed. RESULTS Cells were easily separated from the collagen membrane, but not from synthetic bone. The number of stem cells attached to synthetic bone in groups 1, 3, and 4 seemed to be similar. Cellular viability in group 2 was significantly higher than in the other groups (P<0.05). The cell migration rate was highest in group 2, but this difference was not statistically significant (P>0.05). CONCLUSIONS This study showed that stem cells can be applied when a membrane is used as a scaffold under no or minimal pressure. When space maintenance is needed, stem cells can be loaded onto synthetic bone with a chipped membrane to enhance the survival rate.
Collapse
Affiliation(s)
- Seung-Hwan Kang
- Department of Dental Implantology, The Catholic University of Korea Graduate School of Clinical Dental Science, Seoul, Korea
| | - Jun-Beom Park
- Department of Dental Implantology, The Catholic University of Korea Graduate School of Clinical Dental Science, Seoul, Korea
- Department of Periodontics, The Catholic University of Korea College of Medicine, Seoul, Korea
| | - InSoo Kim
- Department of Dental Implantology, The Catholic University of Korea Graduate School of Clinical Dental Science, Seoul, Korea
- Department of Oral and Maxillofacial Surgery, The Catholic University of Korea College of Medicine, Seoul, Korea
| | - Won Lee
- Department of Oral and Maxillofacial Surgery, The Catholic University of Korea College of Medicine, Seoul, Korea
| | - Heesung Kim
- Department of Oral and Maxillofacial Surgery, The Catholic University of Korea College of Medicine, Seoul, Korea
- Institute of Foreign Language Studies, Korea University, Seoul, Korea
- The Faculty of Liberal Arts, Eulji University, Seongnam, Korea
| |
Collapse
|
21
|
Park YK, Heo SJ, Koak JY, Park GS, Cho TJ, Kim SK, Cho J. Characterization and Differentiation of Circulating Blood Mesenchymal Stem Cells and the Role of Phosphatidylinositol 3-Kinase in Modulating the Adhesion. Int J Stem Cells 2019; 12:265-278. [PMID: 31023002 PMCID: PMC6657952 DOI: 10.15283/ijsc18136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 01/23/2019] [Accepted: 02/26/2019] [Indexed: 01/22/2023] Open
Abstract
Bone marrow mesenchymal stem cells (BM MSCs) can differentiate into multi-lineage tissues. However, obtaining BM MSCs by aspiration is difficult and can be painful; therefore peripheral blood (PB) MSCs might provide an easier alternative for clinical applications. Here, we show that circulating PB MSCs proliferate as efficiently as BM MSCs in the presence of extracellular matrix (ECM) and that differentiation potential into osteoblast in vitro and in vivo. Both BM MSCs and PB MSCs developed into new bone when subcutaneously transplanted into immune-compromised mice using hydroxyapatite/tricalcium phosphate as a carrier. Furthermore, LY294002 and Wortmannin blocked mesenchymal stem cell attachment in a dose-dependent manner, suggesting a role of phosphatidylinositol 3-kinase in MSC attachment. Our data showed that the growth of PB MSCs could be regulated by interaction with the ECM and that these cells could differentiate into osteoblasts, suggesting their potential for clinical applications.
Collapse
Affiliation(s)
- Yoon-Kyung Park
- Dental Research Institute, Seoul National University, Brain Korea 21, Seoul, Korea
| | - Seong-Joo Heo
- Dental Research Institute and Prosthodontics, Seoul National University Dental Hospital, School of Dentistry, Seoul National University, Seoul, Korea
| | - Jai-Young Koak
- Dental Research Institute and Prosthodontics, Seoul National University Dental Hospital, School of Dentistry, Seoul National University, Seoul, Korea
| | - Gang-Seok Park
- Dental Research Institute and Prosthodontics, Seoul National University Dental Hospital, School of Dentistry, Seoul National University, Seoul, Korea
| | - Tae-Jun Cho
- Department of Dental Regenerative Biotechnology, School of Dentistry, Seoul National University, Seoul, Korea
| | - Seong-Kyun Kim
- Dental Research Institute and Prosthodontics, Seoul National University Dental Hospital, School of Dentistry, Seoul National University, Seoul, Korea
| | - Jaejin Cho
- Department of Dental Regenerative Biotechnology, School of Dentistry, Seoul National University, Seoul, Korea
| |
Collapse
|
22
|
Millar-Haskell CS, Dang AM, Gleghorn JP. Coupling synthetic biology and programmable materials to construct complex tissue ecosystems. MRS COMMUNICATIONS 2019; 9:421-432. [PMID: 31485382 PMCID: PMC6724541 DOI: 10.1557/mrc.2019.69] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 05/15/2019] [Indexed: 05/17/2023]
Abstract
Synthetic biology combines engineering and biology to produce artificial systems with programmable features. Specifically, engineered microenvironments have advanced immensely over the past few decades, owing in part to the merging of materials with biological mimetic structures. In this review, we adapt a traditional definition of community ecology to describe "cellular ecology", or the study of the distribution of cell populations and interactions within their microenvironment. We discuss two exemplar hydrogel platforms: (1) self-assembling peptide (SAP) hydrogels and (2) Poly(ethylene) glycol (PEG) hydrogels and describe future opportunities for merging smart material design and synthetic biology within the scope of multicellular platforms.
Collapse
Affiliation(s)
| | - Allyson M. Dang
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716
| | - Jason P. Gleghorn
- Department of Biomedical Engineering, University of Delaware, Newark, DE 19716
| |
Collapse
|
23
|
Willerth SM, Sakiyama-Elbert SE. Combining Stem Cells and Biomaterial Scaffolds for Constructing Tissues and Cell Delivery. ACTA ACUST UNITED AC 2019. [DOI: 10.3233/stj-180001] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Combining stem cells with biomaterial scaffolds serves as a promising strategy for engineering tissues for both in vitro and in vivo applications. This updated review details commonly used biomaterial scaffolds for engineering tissues from stem cells. We first define the different types of stem cells and their relevant properties and commonly used scaffold formulations. Next, we discuss natural and synthetic scaffold materials typically used when engineering tissues, along with their associated advantages and drawbacks and gives examples of target applications. New approaches to engineering tissues, such as 3D bioprinting, are described as they provide exciting opportunities for future work along with current challenges that must be addressed. Thus, this review provides an overview of the available biomaterials for directing stem cell differentiation as a means of producing replacements for diseased or damaged tissues.
Collapse
Affiliation(s)
- Stephanie M. Willerth
- Department of Mechanical Engineering, University of Victoria, VIC, Canada
- Division of Medical Sciences, University of Victoria, VIC, Canada
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, Canada
| | | |
Collapse
|
24
|
Rivas M, Del Valle LJ, Alemán C, Puiggalí J. Peptide Self-Assembly into Hydrogels for Biomedical Applications Related to Hydroxyapatite. Gels 2019; 5:E14. [PMID: 30845674 PMCID: PMC6473879 DOI: 10.3390/gels5010014] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 02/19/2019] [Accepted: 02/25/2019] [Indexed: 01/02/2023] Open
Abstract
Amphiphilic peptides can be self-assembled by establishing physical cross-links involving hydrogen bonds and electrostatic interactions with divalent ions. The derived hydrogels have promising properties due to their biocompatibility, reversibility, trigger capability, and tunability. Peptide hydrogels can mimic the extracellular matrix and favor the growth of hydroxyapatite (HAp) as well as its encapsulation. Newly designed materials offer great perspectives for applications in the regeneration of hard tissues such as bones, teeth, and cartilage. Furthermore, development of drug delivery systems based on HAp and peptide self-assembly is attracting attention.
Collapse
Affiliation(s)
- Manuel Rivas
- Chemical Engineering Department, Escola d'Enginyeria de Barcelona Est-EEBE, c/Eduard Maristany 10-14, 08019 Barcelona, Spain.
- Barcelona Research Center for Multiscale Science and Engineering, Universitat Politècnica de Catalunya, Escola d'Enginyeria de Barcelona Est-EEBE, c/Eduard Maristany 10-14, 08019 Barcelona, Spain.
| | - Luís J Del Valle
- Chemical Engineering Department, Escola d'Enginyeria de Barcelona Est-EEBE, c/Eduard Maristany 10-14, 08019 Barcelona, Spain.
- Barcelona Research Center for Multiscale Science and Engineering, Universitat Politècnica de Catalunya, Escola d'Enginyeria de Barcelona Est-EEBE, c/Eduard Maristany 10-14, 08019 Barcelona, Spain.
| | - Carlos Alemán
- Chemical Engineering Department, Escola d'Enginyeria de Barcelona Est-EEBE, c/Eduard Maristany 10-14, 08019 Barcelona, Spain.
- Barcelona Research Center for Multiscale Science and Engineering, Universitat Politècnica de Catalunya, Escola d'Enginyeria de Barcelona Est-EEBE, c/Eduard Maristany 10-14, 08019 Barcelona, Spain.
| | - Jordi Puiggalí
- Chemical Engineering Department, Escola d'Enginyeria de Barcelona Est-EEBE, c/Eduard Maristany 10-14, 08019 Barcelona, Spain.
- Barcelona Research Center for Multiscale Science and Engineering, Universitat Politècnica de Catalunya, Escola d'Enginyeria de Barcelona Est-EEBE, c/Eduard Maristany 10-14, 08019 Barcelona, Spain.
| |
Collapse
|
25
|
Bowers DT, Brown JL. Nanofibers as Bioinstructive Scaffolds Capable of Modulating Differentiation through Mechanosensitive Pathways for Regenerative Engineering. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2018; 5:22-29. [PMID: 31179378 DOI: 10.1007/s40883-018-0076-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Bioinstructive scaffolds encode information in the physical shape and size of materials to direct cell responses. Electrospinning nanofibers is a process that offers control over scaffold architecture and fiber diameter, while providing extended linear length of fibers. This review summarizes tissue engineering literature that has utilized nanofiber scaffolds to direct stem cell differentiation for various tissues including musculoskeletal, vascular, immunological and nervous system tissues. Nanofibers are also considered for their extracellular matrix mimetic characteristics that can preserve stem cell differentiation capacity. These topics are considered in the context of focal adhesion and integrin signaling. Regenerative engineering will be enhanced by construction of scaffolds encoded with shape information to cause an attached cell to create the intended tissue at that region. Nanofibers are likely to be a bioinstructive scaffold in future regenerative engineering development as we pursue the Grand Challenges of engineering tissues.
Collapse
|
26
|
Novel Lipid Signaling Mediators for Mesenchymal Stem Cell Mobilization during Bone Repair. Cell Mol Bioeng 2018; 11:241-253. [PMID: 29983824 DOI: 10.1007/s12195-018-0532-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Introduction Mesenchymal stem and progenitor cells (MSCs), which normally reside in the bone marrow, are critical to bone health and can be recruited to sites of traumatic bone injury, contributing to new bone formation. The ability to control the trafficking of MSCs provides therapeutic potential for improving traumatic bone healing and therapy for genetic bone diseases such as hypophosphatasia. Methods In this study, we explored the sphingosine-1-phosphate (S1P) signaling axis as a means to control the mobilization of MSCs into blood and possibly to recruit MSCs enhancing bone growth. Results Loss of S1P receptor 3 (S1PR3) leads to an increase in circulating CD45-/CD29+/CD90+/Sca1 putative mesenchymal progenitor cells, suggesting that blocking S1PR3 may stimulate MSCs to leave the bone marrow. Antagonism of S1PR3 with the small molecule VPC01091 stimulated acute migration of CD45-/CD29+/CD90+/Sca1+ MSCs into the blood as early as 1.5 hours after treatment. VPC01091 administration also increased ectopic bone formation induced by BMP-2 and significantly increased new bone formation in critically sized rat cranial defects, suggesting that mobilized MSCs may home to injuries to contribute to healing. We also explored the possibility of combining S1P manipulation of endogenous host cell occupancy with exogenous MSC transplantation for potential use in combination therapies. Importantly, reducing niche occupancy of host MSCs with VPC01091 does not impede engraftment of exogenous MSCs. Conclusions Our studies suggest that MSC mobilization through S1PR3 antagonism is a promising strategy for endogenous tissue engineering and improving MSC delivery to treat bone diseases.
Collapse
|
27
|
Attia AC, Yu T, Gleeson SE, Petrovic M, Li CY, Marcolongo M. A Review of Nanofiber Shish Kebabs and Their Potential in Creating Effective Biomimetic Bone Scaffolds. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2018. [DOI: 10.1007/s40883-018-0053-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
28
|
Zhang Y, Husch JFA, van den Beucken JJJP. Intraoperative Construct Preparation: A Practical Route for Cell-Based Bone Regeneration. TISSUE ENGINEERING PART B-REVIEWS 2018; 24:403-417. [PMID: 29631489 DOI: 10.1089/ten.teb.2018.0010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Stem cell-based bone tissue engineering based on the combination of a scaffold and expanded autologous mesenchymal stem cells (MSCs) represents the current state-of-the-art treatment for bone defects and fractures. However, the procedure of such construct preparation requires extensive ex vivo manipulation of patient's cells to achieve enough stem cells. Therefore, it is impractical and not cost-effective compared to other therapeutic interventions. For these reasons, a more practical strategy circumventing any ex vivo manipulation and an additional surgery for the patient would be advantageous. Intraoperative concept-based bone tissue engineering, where constructs are prepared with easily accessible autologous cells within the same surgical procedure, allows for such a simplification. In this study, we discuss the concept of intraoperative construct preparation for bone tissue engineering and summarize the available cellular options for intraoperative preparation. Furthermore, we propose methods to prepare intraoperative constructs, and review data of currently available preclinical and clinical studies using intraoperatively prepared constructs for bone regenerative applications. We identify several obstacles hampering the application of this emerging approach and highlight perspectives of technological innovations to advance the future developments of intraoperative construct preparation.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Biomaterials, Radboudumc, Nijmegen, The Netherlands
| | | | | |
Collapse
|
29
|
He B, Zhao J, Ou Y, Jiang D. Biofunctionalized peptide nanofiber-based composite scaffolds for bone regeneration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 90:728-738. [PMID: 29853144 DOI: 10.1016/j.msec.2018.04.063] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 04/15/2018] [Accepted: 04/19/2018] [Indexed: 12/21/2022]
Abstract
Bone tissue had moderate self-healing capabilities, but biomaterial scaffolds were required for the repair of some defects such as large bone defects. Peptide nanofiber scaffolds demonstrated important potential in regenerative medicine. Functional modification and controlled release of signal molecules were two significant approaches to increase the bioactivity of biofunctionalized peptide nanofiber scaffolds, but peptide scaffolds were limited by insufficient mechanical strength. Thus, it was necessary to combine peptide scaffolds with other materials including polymers, hydroxyapatite, demineralized bone matrix (DBM) and metal materials based on the requirement of different bone defects. As the development of peptide-based composite scaffolds continued to evolve, ultimate translation to the clinical environment may allow for improved therapeutic outcomes for bone repair.
Collapse
Affiliation(s)
- Bin He
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Jinqiu Zhao
- Department of Infectious Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yunsheng Ou
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| | - Dianming Jiang
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
30
|
Yin J, Qiu S, Shi B, Xu X, Zhao Y, Gao J, Zhao S, Min S. Controlled release of FGF-2 and BMP-2 in tissue engineered periosteum promotes bone repair in rats. ACTA ACUST UNITED AC 2018; 13:025001. [PMID: 29313523 DOI: 10.1088/1748-605x/aa93c0] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The aim of this study was to prepare chitosan-collagen (CS/COL) scaffolds that could release fibroblast growth factor-2 (FGF-2) and bone morphogenetic protein 2 (BMP-2), and to study the effect of this scaffold on bone repair. By improving the double emulsion/solvent evaporation technique, BMP-2 was encapsulated in poly(lactic acid)-poly(ethylene glycol)-poly(lactic acid) (PELA) microcapsules, to the surface of which FGF-2 was attached. The CS/COL scaffold carrying the microcapsules was prepared by freeze-drying. Periosteum derived cells (PDCs) were extracted and cultured on the scaffolds to study their proliferation and differentiation on the scaffolds. In addition, the effects of the scaffolds were investigated on rats with skull defects by micro-computed tomography and histology. We successfully prepared PELA microcapsules with external adherence to FGF-2 and encapsulated with BMP-2. The CS/COL scaffolds were porous and PDCs adhered, proliferated and underwent osteogenic differentiation on the scaffolds. The sequential release of FGF-2/BMP-2 had better osteogenic efficacy than other groups. Our results suggest that CS/COL scaffolds that bind FGF-2 and BMP-2 in combination with PDCs could be a promising new strategy for tissue engineering periosteum.
Collapse
Affiliation(s)
- Jie Yin
- Department of Orthopaedics, Zhujiang Hospital of Southern Medical University, Guangzhou 510282, People's Republic of China. Department of Hand Surgery, Ningbo City Sixth Hospital, Ningbo 315040, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Biomimetic Self-Assembling Peptide Hydrogels for Tissue Engineering Applications. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1064:297-312. [DOI: 10.1007/978-981-13-0445-3_18] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
32
|
Li J, Huang Z, Chen L, Tang X, Fang Y, Liu L. Restoration of bone defects using modified heterogeneous deproteinized bone seeded with bone marrow mesenchymal stem cells. Am J Transl Res 2017; 9:3200-3211. [PMID: 28804540 PMCID: PMC5553872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 06/20/2017] [Indexed: 06/07/2023]
Abstract
The aim of the present study was to investigate the effect of modified heterogeneous deproteinized bone combined with bone marrow mesenchymal stem cells (BMSCs) in the restoration of a validated bone defect model. BMSCs were identified by flow cytometry and multilineage differentiation assay. The structural features of the modified heterogeneous deproteinized bone scaffold and biocompatibility between BMSCs and the scaffold were confirmed by scanning electron microscope (SEM) detection. The cytotoxicity of the modified heterogeneous deproteinized bone scaffolds were detected by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenytetrazolium bromide (MTT) assay. SEM detection proved that modified heterogeneous deproteinized bone scaffold had no negative impact on the proliferation of BMSCs. MTT assay results demonstrated that the scaffold had no apparent cytotoxicity. Biomechanical detection showed that the stiffness and ultimate loading of tibias in the scaffold + BMSCs group were significantly higher than those of the scaffold alone group (P < 0.05) and the control group (P < 0.01). Histological analyses confirmed that the greatest quantity of new bone was generated in the scaffold + BMSCs group, when compared with all other groups, at 8 weeks' post-operation. The bone mineral density (BMD) in the scaffold + BMSC group was significantly higher than that of the scaffold alone group (P < 0.05) and the control group (P < 0.01). Fluorometric analyses confirmed the presence of BMSCs at high concentration within the bone defect areas in the scaffold + BMSCs group at 4 weeks after transplantation. These findings suggest that the modified heterogeneous deproteinized bone scaffold seeded with BMSCs can effectively enhance the restoration of bone defects.
Collapse
Affiliation(s)
- Jun Li
- Department of Orthopaedics, West China Hospital, Sichuan University37# Wainan Guoxue Road, Chengdu 610041, People's Republic of China
| | - Zeyu Huang
- Department of Orthopaedics, West China Hospital, Sichuan University37# Wainan Guoxue Road, Chengdu 610041, People's Republic of China
| | - Liyan Chen
- Department of Orthopaedics, West China Hospital, Sichuan University37# Wainan Guoxue Road, Chengdu 610041, People's Republic of China
| | - Xin Tang
- Department of Orthopaedics, West China Hospital, Sichuan University37# Wainan Guoxue Road, Chengdu 610041, People's Republic of China
| | - Yue Fang
- Department of Orthopaedics, West China Hospital, Sichuan University37# Wainan Guoxue Road, Chengdu 610041, People's Republic of China
| | - Lei Liu
- Department of Orthopaedics, West China Hospital, Sichuan University37# Wainan Guoxue Road, Chengdu 610041, People's Republic of China
| |
Collapse
|
33
|
Pan M, Wang X, Chen Y, Cao S, Wen J, Wu G, Li Y, Li L, Qian C, Qin Z, Li Z, Tan D, Fan Z, Wu W, Guo J. Tissue engineering with peripheral blood-derived mesenchymal stem cells promotes the regeneration of injured peripheral nerves. Exp Neurol 2017; 292:92-101. [DOI: 10.1016/j.expneurol.2017.03.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 02/08/2017] [Accepted: 03/06/2017] [Indexed: 12/11/2022]
|
34
|
Wongsupa N, Nuntanaranont T, Kamolmattayakul S, Thuaksuban N. Assessment of bone regeneration of a tissue-engineered bone complex using human dental pulp stem cells/poly(ε-caprolactone)-biphasic calcium phosphate scaffold constructs in rabbit calvarial defects. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2017; 28:77. [PMID: 28386853 DOI: 10.1007/s10856-017-5883-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 03/12/2017] [Indexed: 05/20/2023]
Abstract
The objective of the present study was to investigate the effect of a fabricated combination of poly-ɛ-caprolactone (PCL)-biphasic calcium phosphate (BCP) with the modified melt stretching and multilayer deposition (mMSMD) technique on human dental pulp stem cell (hDPSC) differentiation to be osteogenic like cells for bone regeneration of calvarial defects in rabbit models. hDPSCs extracted from human third molars were seeded onto mMSMD PCL-BCP scaffolds and the osteogenic gene expression was tested prior to implantation in vivo. Two standardized 11 mm in diameter circular calvarial defects were created in 18 adult male New Zealand white rabbits. The rabbits were divided into 4 groups: (1) hDPSCs seeded in mMSMD PCL-BCP scaffolds; (2) mMSMD PCL-BCP scaffolds alone, (3) empty defects and (4) autogenous bone (n = 3 site/time point/groups). After two, four and eight weeks after the operation, the specimens were harvested for micro-CT including histological and histomorphometric analysis. The explicit results presented an interesting view of the bioengineered constructs of hDPSCs in PCL-BCP scaffolds that increased the newly formed bone compared to the empty defect and scaffold alone groups. The results demonstrated that hDPSCs combined with mMSMD PCL-BCP scaffolds may be an augmentation material for bony defect.
Collapse
Affiliation(s)
- Natkrita Wongsupa
- Department of Preventive Dentistry, Faculty of Dentistry, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand
| | - Thongchai Nuntanaranont
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand.
| | - Suttatip Kamolmattayakul
- Department of Preventive Dentistry, Faculty of Dentistry, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand
| | - Nuttawut Thuaksuban
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand
| |
Collapse
|
35
|
Mi L, Liu H, Gao Y, Miao H, Ruan J. Injectable nanoparticles/hydrogels composite as sustained release system with stromal cell-derived factor-1α for calvarial bone regeneration. Int J Biol Macromol 2017; 101:341-347. [PMID: 28330754 DOI: 10.1016/j.ijbiomac.2017.03.098] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 03/16/2017] [Accepted: 03/17/2017] [Indexed: 01/16/2023]
Abstract
Repair of craniofacial bony defects remains a challenge for surgeons due to the delicate and complex anatomy of the craniofacial skeleton. Stromal cell-derived factor-1α (SDF-1α) is an important chemokine which plays a critical role in the homing of mesenchymal stem cells (MSC), while, the shortcomings including short half-life and easy degradation by enzymes made it in relatively low efficacy. In this work, SDF-1α/chitosan/carboxymeymethy-chitosan nanoparticles (SDF-1α/CS/CMCS NPs) were prepared and characterized for various parameters including morphology, particle size, zeta potential, loading efficiency and the release characteristics from thermosensitive chitosan/β-glycerol phosphate disodium salt (CS/GP) hydrogels. The SDF-1α encapsulated in CS/CMCS NPs within CS/GP hydrogels showed significantly sustained release effect. The cumulative release of SDF-1α was only 40% during 28d. The data from rat calvarial defects model revealed that the SDF-1α/CS/CMCS NPs embedded hydrogels group could significantly promote the new bone formation (38.5±4.5%), compared to that of the SDF-1α embedded hydrogels group (26.3±7.25%, p<0.05) and the control group (8.64±4.8%, p<0.01). Histological data also confirmed this difference. This study demonstrated the potential applications of nanoparticulate injectable hydrogels for sustained release SDF-1α on bone tissue regeneration.
Collapse
Affiliation(s)
- Lei Mi
- Department of Preventive Dentisty, The Research Center of Stomatology, Stomatology Hospital, Xi'an Jiaotong University, No. 98 West-Five Road, Xi'an 710004, China; Department of Stomatology, Yulin First Hospital, No. 93 Yuxi Avenue, Yulin, 719000 Shaanxi Province, China
| | - Huaiqin Liu
- Department of Stomatology, Yulin First Hospital, No. 93 Yuxi Avenue, Yulin, 719000 Shaanxi Province, China
| | - Yu Gao
- Department of Stomatology, Yulin First Hospital, No. 93 Yuxi Avenue, Yulin, 719000 Shaanxi Province, China
| | - Hui Miao
- Department of Periodontology, School of Stomatology, Fourth Military Medical University, No. 145 West Changle Road, Xi'an 710032, China
| | - Jianping Ruan
- Department of Preventive Dentisty, The Research Center of Stomatology, Stomatology Hospital, Xi'an Jiaotong University, No. 98 West-Five Road, Xi'an 710004, China.
| |
Collapse
|
36
|
Liu Z, Zhu Y, Liu X, Yeung K, Wu S. Construction of poly (vinyl alcohol)/poly (lactide-glycolide acid)/vancomycin nanoparticles on titanium for enhancing the surface self-antibacterial activity and cytocompatibility. Colloids Surf B Biointerfaces 2017; 151:165-177. [DOI: 10.1016/j.colsurfb.2016.12.016] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 12/12/2016] [Accepted: 12/14/2016] [Indexed: 01/11/2023]
|
37
|
Khanna K, Jaiswal A, Dhumal R, Selkar N, Chaudhari P, Soni VP, Vanage GR, Bellare J. Comparative bone regeneration study of hardystonite and hydroxyapatite as filler in critical-sized defect of rat calvaria. RSC Adv 2017. [DOI: 10.1039/c7ra05039a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Bone grafts made from nanofibrous polycaprolactone loaded with bone-mimicking ceramic hydroxyapatite or hardystonite showed efficient bone healing in an in vivo rat skull defect model.
Collapse
Affiliation(s)
- Kunal Khanna
- Center for Research in Nanotechnology and Science
- Indian Institute of Technology Bombay
- Mumbai
- India
| | - Amit Jaiswal
- Centre for Biomaterials, Cellular and Molecular Theranostics
- VIT University Vellore
- India
| | - Rohit V. Dhumal
- National Centre for Preclinical Reproductive and Genetic Toxicology
- National Institute for Research in Reproductive Health
- Mumbai 400012
- India
| | - Nilakash Selkar
- National Centre for Preclinical Reproductive and Genetic Toxicology
- National Institute for Research in Reproductive Health
- Mumbai 400012
- India
| | - Pradip Chaudhari
- Division of Animal Oncology
- Advanced Centre for Treatment, Research & Education in Cancer
- Navi Mumbai
- India
| | | | - Geeta R. Vanage
- National Centre for Preclinical Reproductive and Genetic Toxicology
- National Institute for Research in Reproductive Health
- Mumbai 400012
- India
| | - Jayesh Bellare
- Center for Research in Nanotechnology and Science
- Indian Institute of Technology Bombay
- Mumbai
- India
- Department of Chemical Engineering
| |
Collapse
|
38
|
Fu Q, Zhang Q, Jia LY, Fang N, Chen L, Yu LM, Liu JW, Zhang T. Isolation and Characterization of Rat Mesenchymal Stem Cells Derived from Granulocyte Colony-Stimulating Factor-Mobilized Peripheral Blood. Cells Tissues Organs 2016; 201:412-422. [PMID: 27246344 DOI: 10.1159/000445855] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/29/2016] [Indexed: 11/19/2022] Open
Abstract
Mesenchymal stem cells (MSCs) have been isolated from many tissues and organs. However, there is much dispute as to whether MSCs exist in peripheral blood. This may be due to the limited identification methods of MSCs, especially the lack of detection markers for phenotypic characteristics. In this study, as many as 10 surface markers of MSCs derived from rat peripheral blood (rPBMSCs) were analyzed after granulocyte colony-stimulating factor mobilization. Our results suggest that mobilized rPBMSCs overexpress mesenchymal markers, including CD90, CD44, CD29, CD73 and CD105, but do not express CD45, CD11b, CD79a, CD34 or HLA-DR. This is in conformity with the standard definition of MSCs by the International Society for Cellular Therapy. In addition, the colony-forming efficiency of the mobilized rat peripheral blood was 15.83 ± 1.61/106, significantly outnumbering that of the nonmobilized group, which was 0.28 ± 0.1/106 (p < 0.01). Combining the growth characteristics with the differential capacities of mobilized rPBMSCs towards forming osteocytes, chondrocytes and adipocytes, we further confirmed the existence of rPBMSCs. Additionally, this treatment could improve locomotive function after spinal cord injury (SCI) in rats. Due to their convenient collection, fewer complications, cost effectiveness and suitability for autograft, PBMSCs might be a substitute for MSCs derived from bone marrow and provide promising prospects for the cell-based therapy of SCI.
Collapse
Affiliation(s)
- Qiang Fu
- Key Laboratory of Cell Engineering of Guizhou Province, The Affiliated Hospital of Zunyi Medical College, Zunyi, China
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Beta-tricalcium phosphate granules improve osteogenesis in vitro and establish innovative osteo-regenerators for bone tissue engineering in vivo. Sci Rep 2016; 6:23367. [PMID: 27000963 PMCID: PMC4802206 DOI: 10.1038/srep23367] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 03/03/2016] [Indexed: 01/04/2023] Open
Abstract
The drawbacks of traditional bone-defect treatments have prompted the exploration of bone tissue engineering. This study aimed to explore suitable β-tricalcium phosphate (β-TCP) granules for bone regeneration and identify an efficient method to establish β-TCP-based osteo-regenerators. β-TCP granules with diameters of 1 mm and 1–2.5 mm were evaluated in vitro. The β-TCP granules with superior osteogenic properties were used to establish in vivo bioreactors, referred to as osteo-regenerators, which were fabricated using two different methods. Improved proliferation of bone mesenchymal stem cells (BMSCs), glucose consumption and ALP activity were observed for 1–2.5 mm β-TCP compared with 1-mm granules (P < 0.05). In addition, BMSCs incubated with 1–2.5 mm β-TCP expressed significantly higher levels of the genes for runt-related transcription factor-2, alkaline phosphatase, osteocalcin, osteopontin, and collagen type-1 and the osteogenesis-related proteins alkaline phosphatase, collagen type-1 and runt-related transcription factor-2 compared with BMSCs incubated with 1 mm β-TCP (P < 0.05). Fluorochrome labelling, micro-computed tomography and histological staining analyses indicated that the osteo-regenerator with two holes perforating the femur promoted significantly greater bone regeneration compared with the osteo-regenerator with a periosteum incision (P < 0.05). This study provides an alternative to biofunctionalized bioreactors that exhibits improved osteogenesis.
Collapse
|
40
|
Jin L, Wu D, Kuddannaya S, Zhang Y, Wang Z. Fabrication, Characterization, and Biocompatibility of Polymer Cored Reduced Graphene Oxide Nanofibers. ACS APPLIED MATERIALS & INTERFACES 2016; 8:5170-5177. [PMID: 26836319 DOI: 10.1021/acsami.6b00243] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Graphene nanofibers have shown a promising potential across a wide spectrum of areas, including biology, energy, and the environment. However, fabrication of graphene nanofibers remains a challenging issue due to the broad size distribution and extremely poor solubility of graphene. Herein, we report a facile yet efficient approach for fabricating a novel class of polymer core-reduced graphene oxide shell nanofiber mat (RGO-CSNFM) by direct heat-driven self-assembly of graphene oxide sheets onto the surface of electrospun polymeric nanofibers without any requirement of surface treatment. Thus-prepared RGO-CSNFM demonstrated excellent mechanical, electrical, and biocompatible properties. RGO-CSNFM also promoted a higher cell anchorage and proliferation of human bone marrow mesenchymal stem cells (hMSCs) compared to the free-standing RGO film without the nanoscale fibrous structure. Further, cell viability of hMSCs was comparable to that on the tissue culture plates (TCPs) with a distinctive healthy morphology, indicating that the nanoscale fibrous architecture plays a critically constructive role in supporting cellular activities. In addition, the RGO-CSNFM exhibited excellent electrical conductivity, making them an ideal candidate for conductive cell culture, biosensing, and tissue engineering applications. These findings could provide a new benchmark for preparing well-defined graphene-based nanomaterial configurations and interfaces for biomedical applications.
Collapse
Affiliation(s)
- Lin Jin
- The Key Laboratory of Rare Earth Functional Materials and Applications, Zhoukou Normal University , Zhoukou 466001, P. R. China
- School of Mechanical & Aerospace Engineering, Nanyang Technological University , 50 Nanyang Avenue, 639798, Singapore
| | - Dingcai Wu
- Materials Science Institute, PCFM Lab and DSAPM Lab, School of Chemistry and Chemical Engineering, Sun Yat-sen University , Guangzhou 510275, P. R. China
| | - Shreyas Kuddannaya
- School of Mechanical & Aerospace Engineering, Nanyang Technological University , 50 Nanyang Avenue, 639798, Singapore
| | - Yilei Zhang
- School of Mechanical & Aerospace Engineering, Nanyang Technological University , 50 Nanyang Avenue, 639798, Singapore
| | - Zhenling Wang
- The Key Laboratory of Rare Earth Functional Materials and Applications, Zhoukou Normal University , Zhoukou 466001, P. R. China
| |
Collapse
|
41
|
Chen SL, Chen ZG, Dai HL, Ding JX, Guo JS, Han N, Jiang BG, # HJ, Li J, Li SP, Li WJ, Liu J, Liu Y, Ma JX, Peng J, Shen YD, Sun GW, Tang PF, Wang GH, Wang XH, Xiang LB, Xie RG, Xu JG, Yu B, Zhang LC, Zhang PX, Zhou SL. Repair, protection and regeneration of peripheral nerve injury. Neural Regen Res 2015; 10:1777-98. [PMID: 26807113 PMCID: PMC4705790 DOI: 10.4103/1673-5374.170301] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|