1
|
Kjærsgaard NL, Nielsen TB, Gothelf KV. Chemical Conjugation to Less Targeted Proteinogenic Amino Acids. Chembiochem 2022; 23:e202200245. [PMID: 35781760 PMCID: PMC9796363 DOI: 10.1002/cbic.202200245] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/01/2022] [Indexed: 01/01/2023]
Abstract
Protein bioconjugates are in high demand for applications in biomedicine, diagnostics, chemical biology and bionanotechnology. Proteins are large and sensitive molecules containing multiple different functional groups and in particular nucleophilic groups. In bioconjugation reactions it can therefore be challenging to obtain a homogeneous product in high yield. Numerous strategies for protein conjugation have been developed, of which a vast majority target lysine, cysteine and to a lesser extend tyrosine. Likewise, several methods that involve recombinantly engineered protein tags have been reported. In recent years a number of methods have emerged for chemical bioconjugation to other amino acids and in this review, we present the progress in this area.
Collapse
Affiliation(s)
- Nanna L. Kjærsgaard
- Center for Multifunctional Biomolecular Drug Design Interdisciplinary Nanoscience CenterAarhus UniversityGustav Wieds Vej 148000Aarhus CDenmark
- Department of ChemistryAarhus UniversityLangelandsgade 1408000Aarhus CDenmark
| | | | - Kurt V. Gothelf
- Center for Multifunctional Biomolecular Drug Design Interdisciplinary Nanoscience CenterAarhus UniversityGustav Wieds Vej 148000Aarhus CDenmark
- Department of ChemistryAarhus UniversityLangelandsgade 1408000Aarhus CDenmark
| |
Collapse
|
2
|
Liu J, Yang LZ, Chen LL. Understanding lncRNA-protein assemblies with imaging and single-molecule approaches. Curr Opin Genet Dev 2021; 72:128-137. [PMID: 34933201 DOI: 10.1016/j.gde.2021.11.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/20/2021] [Accepted: 11/23/2021] [Indexed: 11/24/2022]
Abstract
Long non-coding RNAs (lncRNAs) associate with RNA-binding proteins (RBPs) to form lncRNA-protein complexes that act in a wide range of biological processes. Understanding the molecular mechanism of how a lncRNA-protein complex is assembled and regulated is key for their cellular functions. In this mini-review, we outline molecular methods used to identify lncRNA-protein interactions from large-scale to individual levels using bulk cells as well as those recently developed imaging and single-molecule approaches that are capable of visualizing RNA-protein assemblies in single cells and in real-time. Focusing on the latter group of approaches, we discuss their applications and limitations, which nevertheless have enabled quantification and comprehensive dissection of RNA-protein interactions possible.
Collapse
Affiliation(s)
- Jiaquan Liu
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China.
| | - Liang-Zhong Yang
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China
| | - Ling-Ling Chen
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China; School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China; School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China.
| |
Collapse
|
3
|
Yang XW, Liu J. Observing Protein One-Dimensional Sliding: Methodology and Biological Significance. Biomolecules 2021; 11:1618. [PMID: 34827616 PMCID: PMC8615959 DOI: 10.3390/biom11111618] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/15/2021] [Accepted: 10/16/2021] [Indexed: 11/28/2022] Open
Abstract
One-dimensional (1D) sliding of DNA-binding proteins has been observed by numerous kinetic studies. It appears that many of these sliding events play important roles in a wide range of biological processes. However, one challenge is to determine the physiological relevance of these motions in the context of the protein's biological function. Here, we discuss methods of measuring protein 1D sliding by highlighting the single-molecule approaches that are capable of visualizing particle movement in real time. We also present recent findings that show how protein sliding contributes to function.
Collapse
Affiliation(s)
| | - Jiaquan Liu
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China;
| |
Collapse
|
4
|
A versatile soluble siglec scaffold for sensitive and quantitative detection of glycan ligands. Nat Commun 2020; 11:5091. [PMID: 33037195 PMCID: PMC7547722 DOI: 10.1038/s41467-020-18907-6] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 09/21/2020] [Indexed: 12/15/2022] Open
Abstract
Sialic acid-binding immunoglobulin-type lectins (Siglecs) are immunomodulatory receptors that are regulated by their glycan ligands. The connections between Siglecs and human disease motivate improved methods to detect Siglec ligands. Here, we describe a new versatile set of Siglec-Fc proteins for glycan ligand detection. Enhanced sensitivity and selectivity are enabled through multimerization and avoiding Fc receptors, respectively. Using these Siglec-Fc proteins, Siglec ligands are systematically profiled on healthy and cancerous cells and tissues, revealing many unique patterns. Additional features enable the production of small, homogenous Siglec fragments and development of a quantitative ligand-binding mass spectrometry assay. Using this assay, the ligand specificities of several Siglecs are clarified. For CD33 (Siglec-3), we demonstrate that it recognizes both α2-3 and α2-6 sialosides in solution and on cells, which has implications for its link to Alzheimer’s disease susceptibility. These soluble Siglecs reveal the abundance of their glycan ligands on host cells as self-associated molecular patterns. Sialic acid-binding immunoglobulin-type lectins (Siglecs) are a family of immunomodulatory receptors expressed on cells of the hematopoietic lineage. Here the authors demonstrate an approach for the identification of the glycan ligands of Siglecs, which is also applicable to other families of glycan-binding proteins.
Collapse
|
5
|
Calcaterra A, Mangiardi L, Delle Monache G, Quaglio D, Balducci S, Berardozzi S, Iazzetti A, Franzini R, Botta B, Ghirga F. The Pictet-Spengler Reaction Updates Its Habits. Molecules 2020; 25:E414. [PMID: 31963860 PMCID: PMC7024544 DOI: 10.3390/molecules25020414] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/05/2020] [Accepted: 01/09/2020] [Indexed: 12/31/2022] Open
Abstract
The Pictet-Spengler reaction (P-S) is one of the most direct, efficient, and variable synthetic method for the construction of privileged pharmacophores such as tetrahydro-isoquinolines (THIQs), tetrahydro-β-carbolines (THBCs), and polyheterocyclic frameworks. In the lustro (five-year period) following its centenary birthday, the P-S reaction did not exit the stage but it came up again on limelight with new features. This review focuses on the interesting results achieved in this period (2011-2015), analyzing the versatility of this reaction. Classic P-S was reported in the total synthesis of complex alkaloids, in combination with chiral catalysts as well as for the generation of libraries of compounds in medicinal chemistry. The P-S has been used also in tandem reactions, with the sequences including ring closing metathesis, isomerization, Michael addition, and Gold- or Brønsted acid-catalyzed N-acyliminium cyclization. Moreover, the combination of P-S reaction with Ugi multicomponent reaction has been exploited for the construction of highly complex polycyclic architectures in few steps and high yields. The P-S reaction has also been successfully employed in solid-phase synthesis, affording products with different structures, including peptidomimetics, synthetic heterocycles, and natural compounds. Finally, the enzymatic version of P-S has been reported for biosynthesis, biotransformations, and bioconjugations.
Collapse
Affiliation(s)
- Andrea Calcaterra
- Department of Chemistry and Technology of Drugs, “Department of Excellence 2018−2022”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (L.M.); (G.D.M.); (D.Q.); (S.B.); (A.I.); (R.F.); (B.B.)
| | - Laura Mangiardi
- Department of Chemistry and Technology of Drugs, “Department of Excellence 2018−2022”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (L.M.); (G.D.M.); (D.Q.); (S.B.); (A.I.); (R.F.); (B.B.)
- Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy;
| | - Giuliano Delle Monache
- Department of Chemistry and Technology of Drugs, “Department of Excellence 2018−2022”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (L.M.); (G.D.M.); (D.Q.); (S.B.); (A.I.); (R.F.); (B.B.)
| | - Deborah Quaglio
- Department of Chemistry and Technology of Drugs, “Department of Excellence 2018−2022”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (L.M.); (G.D.M.); (D.Q.); (S.B.); (A.I.); (R.F.); (B.B.)
| | - Silvia Balducci
- Department of Chemistry and Technology of Drugs, “Department of Excellence 2018−2022”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (L.M.); (G.D.M.); (D.Q.); (S.B.); (A.I.); (R.F.); (B.B.)
| | - Simone Berardozzi
- Department of Chemistry and Applied Biosciences, ETH-Zürich, Vladimir-Prelog Weg 4, 8093 Zürich, Switzerland
| | - Antonia Iazzetti
- Department of Chemistry and Technology of Drugs, “Department of Excellence 2018−2022”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (L.M.); (G.D.M.); (D.Q.); (S.B.); (A.I.); (R.F.); (B.B.)
| | - Roberta Franzini
- Department of Chemistry and Technology of Drugs, “Department of Excellence 2018−2022”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (L.M.); (G.D.M.); (D.Q.); (S.B.); (A.I.); (R.F.); (B.B.)
| | - Bruno Botta
- Department of Chemistry and Technology of Drugs, “Department of Excellence 2018−2022”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (L.M.); (G.D.M.); (D.Q.); (S.B.); (A.I.); (R.F.); (B.B.)
| | - Francesca Ghirga
- Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy;
| |
Collapse
|
6
|
Liu J, Lee R, Britton BM, London JA, Yang K, Hanne J, Lee JB, Fishel R. MutL sliding clamps coordinate exonuclease-independent Escherichia coli mismatch repair. Nat Commun 2019; 10:5294. [PMID: 31757945 PMCID: PMC6876574 DOI: 10.1038/s41467-019-13191-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Accepted: 10/22/2019] [Indexed: 01/09/2023] Open
Abstract
A shared paradigm of mismatch repair (MMR) across biology depicts extensive exonuclease-driven strand-specific excision that begins at a distant single-stranded DNA (ssDNA) break and proceeds back past the mismatched nucleotides. Historical reconstitution studies concluded that Escherichia coli (Ec) MMR employed EcMutS, EcMutL, EcMutH, EcUvrD, EcSSB and one of four ssDNA exonucleases to accomplish excision. Recent single-molecule images demonstrated that EcMutS and EcMutL formed cascading sliding clamps on a mismatched DNA that together assisted EcMutH in introducing ssDNA breaks at distant newly replicated GATC sites. Here we visualize the complete strand-specific excision process and find that long-lived EcMutL sliding clamps capture EcUvrD helicase near the ssDNA break, significantly increasing its unwinding processivity. EcSSB modulates the EcMutL–EcUvrD unwinding dynamics, which is rarely accompanied by extensive ssDNA exonuclease digestion. Together these observations are consistent with an exonuclease-independent MMR strand excision mechanism that relies on EcMutL–EcUvrD helicase-driven displacement of ssDNA segments between adjacent EcMutH–GATC incisions. The mechanics of MMR strand specific excision that begins at a distant ssDNA break are not yet clear. Here the authors have used multiple single molecule imaging techniques to visualize the behavior of MMR components on mismatched DNA substrates and reveal an exonuclease-independent mechanism for E.coli MMR.
Collapse
Affiliation(s)
- Jiaquan Liu
- Department of Cancer Biology and Genetics, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Ryanggeun Lee
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 37673, Korea
| | - Brooke M Britton
- Department of Cancer Biology and Genetics, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - James A London
- Department of Cancer Biology and Genetics, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Keunsang Yang
- School of Interdisciplinary Bioscience and Bioengineering, POSTECH, Pohang, Gyeongbuk, 37673, Korea
| | - Jeungphill Hanne
- Department of Cancer Biology and Genetics, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Jong-Bong Lee
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 37673, Korea. .,School of Interdisciplinary Bioscience and Bioengineering, POSTECH, Pohang, Gyeongbuk, 37673, Korea.
| | - Richard Fishel
- Department of Cancer Biology and Genetics, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA.
| |
Collapse
|
7
|
Krüger T, Weiland S, Boschanski M, Sinha PK, Falck G, Müller KM, Dierks T, Sewald N. Conversion of Serine‐Type Aldehyde Tags by the Radical SAM Protein AtsB from
Methanosarcina mazei. Chembiochem 2019; 20:2074-2078. [DOI: 10.1002/cbic.201900322] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Indexed: 01/09/2023]
Affiliation(s)
- Tobias Krüger
- Organische und Bioorganische ChemieFakultät für ChemieUniversität Bielefeld Universitätsstrasse 25 33615 Bielefeld Germany
| | - Stefanie Weiland
- Biochemie IFakultät für ChemieUniversität Bielefeld Universitätsstrasse 25 33615 Bielefeld Germany
| | - Mareile Boschanski
- Biochemie IFakultät für ChemieUniversität Bielefeld Universitätsstrasse 25 33615 Bielefeld Germany
| | - Prem Kumar Sinha
- Biochemie IFakultät für ChemieUniversität Bielefeld Universitätsstrasse 25 33615 Bielefeld Germany
| | - Georg Falck
- Zelluläre und Molekulare BiotechnologieTechnische FakultätUniversität Bielefeld Universitätsstrasse 25 33615 Bielefeld Germany
| | - Kristian M. Müller
- Zelluläre und Molekulare BiotechnologieTechnische FakultätUniversität Bielefeld Universitätsstrasse 25 33615 Bielefeld Germany
| | - Thomas Dierks
- Biochemie IFakultät für ChemieUniversität Bielefeld Universitätsstrasse 25 33615 Bielefeld Germany
| | - Norbert Sewald
- Organische und Bioorganische ChemieFakultät für ChemieUniversität Bielefeld Universitätsstrasse 25 33615 Bielefeld Germany
| |
Collapse
|
8
|
Islam J, Riley BT, Fercher C, Jones ML, Buckle AM, Howard CB, Cox RP, Bell TDM, Mahler S, Corrie SR. Wavelength-Dependent Fluorescent Immunosensors via Incorporation of Polarity Indicators near the Binding Interface of Antibody Fragments. Anal Chem 2019; 91:7631-7638. [DOI: 10.1021/acs.analchem.9b00445] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jiaul Islam
- Department of Chemical Engineering, ARC Centre of Excellence in Convergent BioNano Science and Technology, Monash University, Clayton VIC 3800, Australia
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St Lucia QLD 4072, Australia
| | - Blake T. Riley
- Dept. of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton VIC 3800, Australia
| | - Christian Fercher
- Department of Chemical Engineering, ARC Centre of Excellence in Convergent BioNano Science and Technology, Monash University, Clayton VIC 3800, Australia
- ARC Training Centre for Biopharmaceutical Innovation, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St Lucia QLD 4072, Australia
| | - Martina L. Jones
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St Lucia QLD 4072, Australia
- ARC Training Centre for Biopharmaceutical Innovation, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St Lucia QLD 4072, Australia
| | - Ashley M. Buckle
- Dept. of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton VIC 3800, Australia
| | - Christopher B. Howard
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St Lucia QLD 4072, Australia
- ARC Training Centre for Biopharmaceutical Innovation, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St Lucia QLD 4072, Australia
| | - Rosalind P. Cox
- School of Chemistry, Monash University, Clayton VIC 3800, Australia
| | - Toby D. M. Bell
- School of Chemistry, Monash University, Clayton VIC 3800, Australia
| | - Stephen Mahler
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St Lucia QLD 4072, Australia
- ARC Training Centre for Biopharmaceutical Innovation, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St Lucia QLD 4072, Australia
| | - Simon R. Corrie
- Department of Chemical Engineering, ARC Centre of Excellence in Convergent BioNano Science and Technology, Monash University, Clayton VIC 3800, Australia
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St Lucia QLD 4072, Australia
| |
Collapse
|
9
|
Krüger T, Dierks T, Sewald N. Formylglycine-generating enzymes for site-specific bioconjugation. Biol Chem 2018; 400:289-297. [DOI: 10.1515/hsz-2018-0358] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 09/28/2018] [Indexed: 01/01/2023]
Abstract
Abstract
Site-specific bioconjugation strategies offer many possibilities for directed protein modifications. Among the various enzyme-based conjugation protocols, formylglycine-generating enzymes allow to posttranslationally introduce the amino acid Cα-formylglycine (FGly) into recombinant proteins, starting from cysteine or serine residues within distinct consensus motifs. The aldehyde-bearing FGly-residue displays orthogonal reactivity to all other natural amino acids and can, therefore, be used for site-specific labeling reactions on protein scaffolds. In this review, the state of research on catalytic mechanisms and consensus motifs of different formylglycine-generating enzymes, as well as labeling strategies and applications of FGly-based bioconjugations are presented.
Collapse
Affiliation(s)
- Tobias Krüger
- Organic and Bioorganic Chemistry, Faculty of Chemistry , Bielefeld University , Universitätsstraße 25 , D-33615 Bielefeld , Germany
| | - Thomas Dierks
- Biochemistry I, Faculty of Chemistry , Bielefeld University , Universitätsstraße 25 , D-33615 Bielefeld , Germany
| | - Norbert Sewald
- Organic and Bioorganic Chemistry, Faculty of Chemistry , Bielefeld University , Universitätsstraße 25 , D-33615 Bielefeld , Germany
| |
Collapse
|
10
|
Teunissen AJP, Pérez-Medina C, Meijerink A, Mulder WJM. Investigating supramolecular systems using Förster resonance energy transfer. Chem Soc Rev 2018; 47:7027-7044. [PMID: 30091770 PMCID: PMC6441672 DOI: 10.1039/c8cs00278a] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Supramolecular systems have applications in areas as diverse as materials science, biochemistry, analytical chemistry, and nanomedicine. However, analyzing such systems can be challenging due to the wide range of time scales, binding strengths, distances, and concentrations at which non-covalent phenomena take place. Due to their versatility and sensitivity, Förster resonance energy transfer (FRET)-based techniques are excellently suited to meet such challenges. Here, we detail the ways in which FRET has been used to study non-covalent interactions in both synthetic and biological supramolecular systems. Among other topics, we examine methods to measure molecular forces, determine protein conformations, monitor assembly kinetics, and visualize in vivo drug release from nanoparticles. Furthermore, we highlight multiplex FRET techniques, discuss the field's limitations, and provide a perspective on new developments.
Collapse
Affiliation(s)
- Abraham J. P. Teunissen
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY 10029, USA
| | - Carlos Pérez-Medina
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY 10029, USA
| | - Andries Meijerink
- Department of Chemistry, Utrecht University, Princetonplein 1, 3584 CC Utrecht, The Netherlands
| | - Willem J. M. Mulder
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY 10029, USA
- Department of Medical Biochemistry, Academic Medical Center, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
- Laboratory of Chemical biology, Department of Biomedical Engineering and Institute for Complex Molecular systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB, The Netherlands
| |
Collapse
|
11
|
Senavirathne G, Lopez MA, Messer R, Fishel R, Yoder KE. Expression and purification of nuclease-free protocatechuate 3,4-dioxygenase for prolonged single-molecule fluorescence imaging. Anal Biochem 2018; 556:78-84. [PMID: 29932890 PMCID: PMC6076860 DOI: 10.1016/j.ab.2018.06.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 05/23/2018] [Accepted: 06/16/2018] [Indexed: 10/28/2022]
Abstract
Single-molecule (SM) microscopy is a powerful tool capable of visualizing individual molecules and events in real time. SM imaging may rely on proteins or nucleic acids labelled with a fluorophore. Unfortunately photobleaching of fluorophores leads to irreversible loss of signal, impacting the collection of data from SM experiments. Trace amounts of dissolved oxygen (O2) are the main cause of photobleaching. Oxygen scavenging systems (OSS) have been developed that decrease dissolved O2. Commercial OSS enzyme preparations are frequently contaminated with nucleases that damage nucleic acid substrates. In this protocol, we purify highly active Pseudomonas putida protocatechuate 3,4-dioxygenase (PCD) without nuclease contaminations. Quantitation of Cy3 photostability revealed that PCD with its substrate protocatechuic acid (PCA) increased the fluorophore half-life 100-fold. This low cost purification method of recombinant PCD yields an enzyme superior to commercially available OSS that is effectively free of nuclease activity.
Collapse
Affiliation(s)
- Gayan Senavirathne
- Department of Cancer Biology and Genetics, The Ohio State University Medical Center, Columbus, OH 43210, USA
| | - Miguel A. Lopez
- Department of Cancer Biology and Genetics, The Ohio State University Medical Center, Columbus, OH 43210, USA
| | - Ryan Messer
- Department of Cancer Biology and Genetics, The Ohio State University Medical Center, Columbus, OH 43210, USA
| | - Richard Fishel
- Department of Cancer Biology and Genetics, The Ohio State University Medical Center, Columbus, OH, 43210, USA.
| | - Kristine E. Yoder
- Department of Cancer Biology and Genetics, The Ohio State University Medical Center, Columbus, OH 43210, USA,To whom correspondence should be addressed. Tel: (614) 688-2106; , Correspondence may also be addressed to. Tel: (614) 292-2484;
| |
Collapse
|
12
|
Hanne J, Britton BM, Park J, Liu J, Martín-López J, Jones N, Schoffner M, Klajner P, Bundschuh R, Lee JB, Fishel R. MutS homolog sliding clamps shield the DNA from binding proteins. J Biol Chem 2018; 293:14285-14294. [PMID: 30072380 DOI: 10.1074/jbc.ra118.002264] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Revised: 07/31/2018] [Indexed: 11/06/2022] Open
Abstract
Sliding clamps on DNA consist of evolutionarily conserved enzymes that coordinate DNA replication, repair, and the cellular DNA damage response. MutS homolog (MSH) proteins initiate mismatch repair (MMR) by recognizing mispaired nucleotides and in the presence of ATP form stable sliding clamps that randomly diffuse along the DNA. The MSH sliding clamps subsequently load MutL homolog (MLH/PMS) proteins that form a second extremely stable sliding clamp, which together coordinate downstream MMR components with the excision-initiation site that may be hundreds to thousands of nucleotides distant from the mismatch. Specific or nonspecific binding of other proteins to the DNA between the mismatch and the distant excision-initiation site could conceivably obstruct the free diffusion of these MMR sliding clamps, inhibiting their ability to initiate repair. Here, we employed bulk biochemical analysis, single-molecule fluorescence imaging, and mathematical modeling to determine how sliding clamps might overcome such hindrances along the DNA. Using both bacterial and human MSH proteins, we found that increasing the number of MSH sliding clamps on a DNA decreased the association of the Escherichia coli transcriptional repressor LacI to its cognate promoter LacO. Our results suggest a simple mechanism whereby thermal diffusion of MSH sliding clamps along the DNA alters the association kinetics of other DNA-binding proteins over extended distances. These observations appear generally applicable to any stable sliding clamp that forms on DNA.
Collapse
Affiliation(s)
- Jeungphill Hanne
- From the Department of Cancer Biology and Genetics, The Ohio State University Wexner Medical Center, Columbus, Ohio 43210
| | - Brooke M Britton
- From the Department of Cancer Biology and Genetics, The Ohio State University Wexner Medical Center, Columbus, Ohio 43210
| | - Jonghyun Park
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang 790-784 Korea
| | - Jiaquan Liu
- From the Department of Cancer Biology and Genetics, The Ohio State University Wexner Medical Center, Columbus, Ohio 43210
| | - Juana Martín-López
- From the Department of Cancer Biology and Genetics, The Ohio State University Wexner Medical Center, Columbus, Ohio 43210
| | - Nathan Jones
- From the Department of Cancer Biology and Genetics, The Ohio State University Wexner Medical Center, Columbus, Ohio 43210.,Interdisciplinary Biophysics Graduate Program, The Ohio State University, Columbus, Ohio 43210
| | - Matthew Schoffner
- From the Department of Cancer Biology and Genetics, The Ohio State University Wexner Medical Center, Columbus, Ohio 43210
| | - Piotr Klajner
- From the Department of Cancer Biology and Genetics, The Ohio State University Wexner Medical Center, Columbus, Ohio 43210
| | - Ralf Bundschuh
- Interdisciplinary Biophysics Graduate Program, The Ohio State University, Columbus, Ohio 43210, .,Department of Physics, The Ohio State University, Columbus, Ohio 43210.,Department of Chemistry and Biochemistry, Division of Hematology, Department of Internal Medicine, Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210, and
| | - Jong-Bong Lee
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang 790-784 Korea, .,School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang 790-784 Korea
| | - Richard Fishel
- From the Department of Cancer Biology and Genetics, The Ohio State University Wexner Medical Center, Columbus, Ohio 43210, .,Interdisciplinary Biophysics Graduate Program, The Ohio State University, Columbus, Ohio 43210
| |
Collapse
|
13
|
Barfield RM, Rabuka D. Leveraging Formylglycine-Generating Enzyme for Production of Site-Specifically Modified Bioconjugates. Methods Mol Biol 2018; 1728:3-16. [PMID: 29404988 DOI: 10.1007/978-1-4939-7574-7_1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Enzymatic modification of proteins can generate uniquely reactive chemical functionality, enabling site-specific reactions on the protein surface. Formylglycine-generating enzyme (FGE) is one enzyme that can be exploited in this fashion. FGE binds its consensus sequence (CXPXR, known as the "aldehyde-tag") and converts the cysteine to a formylglycine (fGly). fGly-containing proteins contain a bioorthogonal aldehyde on their surface that can be modified selectively in the presence of the 20 canonical amino acids. Here, we describe protocols for the generation of a site-specifically modified protein, an antibody-drug conjugate (ADC), using aldehyde-tagging protocols and aldehyde-reactive conjugation chemistry.
Collapse
|
14
|
Liu J, Hanne J, Britton BM, Bennett J, Kim D, Lee JB, Fishel R. Cascading MutS and MutL sliding clamps control DNA diffusion to activate mismatch repair. Nature 2016; 539:583-587. [PMID: 27851738 PMCID: PMC5845140 DOI: 10.1038/nature20562] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 10/21/2016] [Indexed: 01/25/2023]
Abstract
Mismatched nucleotides arise from polymerase misincorporation errors, recombination between heteroallelic parents and chemical or physical DNA damage. Highly conserved MutS (MSH) and MutL (MLH/PMS) homologues initiate mismatch repair and, in higher eukaryotes, act as DNA damage sensors that can trigger apoptosis. Defects in human mismatch repair genes cause Lynch syndrome or hereditary non-polyposis colorectal cancer and 10-40% of related sporadic tumours. However, the collaborative mechanics of MSH and MLH/PMS proteins have not been resolved in any organism. We visualized Escherichia coli (Ec) ensemble mismatch repair and confirmed that EcMutS mismatch recognition results in the formation of stable ATP-bound sliding clamps that randomly diffuse along the DNA with intermittent backbone contact. The EcMutS sliding clamps act as a platform to recruit EcMutL onto the mismatched DNA, forming an EcMutS-EcMutL search complex that then closely follows the DNA backbone. ATP binding by EcMutL establishes a second long-lived DNA clamp that oscillates between the principal EcMutS-EcMutL search complex and unrestricted EcMutS and EcMutL sliding clamps. The EcMutH endonuclease that targets mismatch repair excision only binds clamped EcMutL, increasing its DNA association kinetics by more than 1,000-fold. The assembly of an EcMutS-EcMutL-EcMutH search complex illustrates how sequential stable sliding clamps can modulate one-dimensional diffusion mechanics along the DNA to direct mismatch repair.
Collapse
Affiliation(s)
- Jiaquan Liu
- Department of Cancer Biology and Genetics, The Ohio State University Wexner Medical Center, Columbus, Ohio 43210, USA
| | - Jeungphill Hanne
- Department of Cancer Biology and Genetics, The Ohio State University Wexner Medical Center, Columbus, Ohio 43210, USA
| | - Brooke M Britton
- Department of Cancer Biology and Genetics, The Ohio State University Wexner Medical Center, Columbus, Ohio 43210, USA
| | - Jared Bennett
- Department of Cancer Biology and Genetics, The Ohio State University Wexner Medical Center, Columbus, Ohio 43210, USA
| | - Daehyung Kim
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang, Kyungbuk 790-784, Korea
| | - Jong-Bong Lee
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang, Kyungbuk 790-784, Korea
- School of Interdisciplinary Bioscience and Bioengineering, POSTECH, Pohang, Kyungbuk, 790-784, Korea
| | - Richard Fishel
- Department of Cancer Biology and Genetics, The Ohio State University Wexner Medical Center, Columbus, Ohio 43210, USA
- Department of Physics, The Ohio State University, Columbus, Ohio 43210, USA
| |
Collapse
|
15
|
Kudirka RA, Barfield RM, McFarland JM, Drake PM, Carlson A, Bañas S, Zmolek W, Garofalo AW, Rabuka D. Site-Specific Tandem Knoevenagel Condensation-Michael Addition To Generate Antibody-Drug Conjugates. ACS Med Chem Lett 2016; 7:994-998. [PMID: 27882197 DOI: 10.1021/acsmedchemlett.6b00253] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 08/30/2016] [Indexed: 11/30/2022] Open
Abstract
Expanded ligation techniques are sorely needed to generate unique linkages for the growing field of functionally enhanced proteins. To address this need, we present a unique chemical ligation that involves the double addition of a pyrazolone moiety with an aldehyde-labeled protein. This ligation occurs via a tandem Knoevenagel condensation-Michael addition. A pyrazolone reacts with an aldehyde to generate an enone, which undergoes subsequent attack by a second pyrazolone to generate a bis-pyrazolone species. This rapid and facile ligation technique is performed under mild conditions in the absence of catalyst to generate new architectures that were previously inaccessible via conventional ligation reactions. Using this unique ligation, we generated three site-specifically labeled antibody-drug conjugates (ADCs) with an average of four drugs to one antibody. The in vitro and in vivo efficacies along with pharmacokinetic data of the site-specific ADCs are reported.
Collapse
Affiliation(s)
- Romas A. Kudirka
- Catalent Biologics West, 5703
Hollis Street, Emeryville, California 94530, United States
| | - Robyn M. Barfield
- Catalent Biologics West, 5703
Hollis Street, Emeryville, California 94530, United States
| | - Jesse M. McFarland
- Catalent Biologics West, 5703
Hollis Street, Emeryville, California 94530, United States
| | - Penelope M. Drake
- Catalent Biologics West, 5703
Hollis Street, Emeryville, California 94530, United States
| | - Adam Carlson
- Catalent Biologics West, 5703
Hollis Street, Emeryville, California 94530, United States
| | - Stefanie Bañas
- Catalent Biologics West, 5703
Hollis Street, Emeryville, California 94530, United States
| | - Wes Zmolek
- Catalent Biologics West, 5703
Hollis Street, Emeryville, California 94530, United States
| | - Albert W. Garofalo
- Catalent Biologics West, 5703
Hollis Street, Emeryville, California 94530, United States
| | - David Rabuka
- Catalent Biologics West, 5703
Hollis Street, Emeryville, California 94530, United States
| |
Collapse
|
16
|
Quantifying the Assembly of Multicomponent Molecular Machines by Single-Molecule Total Internal Reflection Fluorescence Microscopy. Methods Enzymol 2016; 581:105-145. [PMID: 27793278 PMCID: PMC5403009 DOI: 10.1016/bs.mie.2016.08.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Large, dynamic macromolecular complexes play essential roles in many cellular processes. Knowing how the components of these complexes associate with one another and undergo structural rearrangements is critical to understanding how they function. Single-molecule total internal reflection fluorescence (TIRF) microscopy is a powerful approach for addressing these fundamental issues. In this article, we first discuss single-molecule TIRF microscopes and strategies to immobilize and fluorescently label macromolecules. We then review the use of single-molecule TIRF microscopy to study the formation of binary macromolecular complexes using one-color imaging and inhibitors. We conclude with a discussion of the use of TIRF microscopy to examine the formation of higher-order (i.e., ternary) complexes using multicolor setups. The focus throughout this article is on experimental design, controls, data acquisition, and data analysis. We hope that single-molecule TIRF microscopy, which has largely been the province of specialists, will soon become as common in the tool box of biophysicists and biochemists as structural approaches have become today.
Collapse
|