1
|
Lopez Martinez D, Todorovski I, Noe Gonzalez M, Rusimbi C, Blears D, Khallou N, Han Z, Dirac-Svejstrup AB, Svejstrup JQ. PAF1C-mediated activation of CDK12/13 kinase activity is critical for CTD phosphorylation and transcript elongation. Mol Cell 2025; 85:1952-1967.e8. [PMID: 40315851 DOI: 10.1016/j.molcel.2025.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 03/12/2025] [Accepted: 04/09/2025] [Indexed: 05/04/2025]
Abstract
The transcription cycle is regulated by dynamic changes in RNA polymerase II (RNAPII) C-terminal domain (CTD) phosphorylation, which are crucial for gene expression. However, the mechanisms regulating the transcription-specific cyclin-dependent kinases (CDKs) during the transcription cycle remain poorly understood. Here, we show that human CDK12 co-phosphorylates CTD Serine2 and Serine5. This di-phosphorylated Serine2-Serine5 CTD mark may then act as a precursor for Serine2 mono-phosphorylated CTD through Serine5 de-phosphorylation. Notably, CDK12 is specifically regulated by association with the elongation-specific factor PAF1 complex (PAF1C), in which the CDC73 subunit contains a metazoan-specific peptide motif, capable of allosteric CDK12/cyclin K activation. This motif is essential for cell proliferation and required for normal levels of CTD phosphorylation in chromatin, and for transcript elongation, particularly across long human genes. Together, these findings provide insight into the mechanisms governing RNAPII phospho-CTD dynamics that ensure progression through the human transcription cycle.
Collapse
Affiliation(s)
- David Lopez Martinez
- Center for Gene Expression, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen 2200, Denmark
| | - Izabela Todorovski
- Center for Gene Expression, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen 2200, Denmark
| | - Melvin Noe Gonzalez
- Center for Gene Expression, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen 2200, Denmark
| | - Charlotte Rusimbi
- Center for Gene Expression, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen 2200, Denmark
| | - Daniel Blears
- Center for Gene Expression, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen 2200, Denmark
| | - Nessrine Khallou
- Center for Gene Expression, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen 2200, Denmark
| | - Zhong Han
- Center for Gene Expression, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen 2200, Denmark
| | - A Barbara Dirac-Svejstrup
- Center for Gene Expression, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen 2200, Denmark
| | - Jesper Q Svejstrup
- Center for Gene Expression, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen 2200, Denmark.
| |
Collapse
|
2
|
Fischer J, Alders M, Mannens MMAM, Genevieve D, Hackmann K, Schröck E, Sadikovic B, Porrmann J. Validation of a hypomorphic variant in CDK13 as the cause of CHDFIDD with autosomal recessive inheritance through determination of an episignature. Clin Epigenetics 2025; 17:5. [PMID: 39800774 PMCID: PMC11727325 DOI: 10.1186/s13148-024-01807-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 12/22/2024] [Indexed: 01/16/2025] Open
Abstract
Autosomal dominant CDK13-related disease is characterized by congenital heart defects, dysmorphic facial features, and intellectual developmental disorder (CHDFIDD). Heterozygous pathogenic variants, particularly missense variants in the kinase domain, have previously been described as disease causing. Using the determination of a methylation pattern and comparison with an established episignature, we reveal the first hypomorphic variant in the kinase domain of CDK13, leading to a never before described autosomal recessive form of CHDFIDD in a boy with characteristic features. This highlights the utility of episignatures in variant interpretation, as well as a potential novel diagnostic approach in unsolved cases or for disease prognosis.
Collapse
Affiliation(s)
- Jan Fischer
- Faculty of Medicine of TUD Dresden University of Technology, Institute for Clinical Genetics, University Hospital Carl Gustav Carus at TUD Dresden University of Technology, Dresden, Germany.
| | - Mariëlle Alders
- Department of Human Genetics, Amsterdam Reproduction and Development Research Institute, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Marcel M A M Mannens
- Department of Human Genetics, Amsterdam Reproduction and Development Research Institute, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - David Genevieve
- Genetic Department, Reference Center for Abnormal Development and Malformative Syndrome, Montpellier University, ERN ITHACA, CHU Montpellier, Inserm Unit 1183, Montpellier, France
| | - Karl Hackmann
- Faculty of Medicine of TUD Dresden University of Technology, Institute for Clinical Genetics, University Hospital Carl Gustav Carus at TUD Dresden University of Technology, Dresden, Germany
| | - Evelin Schröck
- Faculty of Medicine of TUD Dresden University of Technology, Institute for Clinical Genetics, University Hospital Carl Gustav Carus at TUD Dresden University of Technology, Dresden, Germany
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Bekim Sadikovic
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, N6A 5W9, Canada
- Department of Pathology and Laboratory Medicine, Western University, London, ON, N6A 3K7, Canada
| | - Joseph Porrmann
- Faculty of Medicine of TUD Dresden University of Technology, Institute for Clinical Genetics, University Hospital Carl Gustav Carus at TUD Dresden University of Technology, Dresden, Germany.
- Faculty of Medicine of TUD Dresden University of Technology, University Centre for Rare Diseases, Dresden, Germany.
| |
Collapse
|
3
|
Ghosh P, Schmitz M, Pandurangan T, Zeleke ST, Chan SC, Mosior J, Sun L, Palve V, Grassie D, Anand K, Frydman S, Roush WR, Schönbrunn E, Geyer M, Duckett D, Monastyrskyi A. Discovery and design of molecular glue enhancers of CDK12-DDB1 interactions for targeted degradation of cyclin K. RSC Chem Biol 2024:d4cb00190g. [PMID: 39450271 PMCID: PMC11494886 DOI: 10.1039/d4cb00190g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 10/04/2024] [Indexed: 10/26/2024] Open
Abstract
The CDK12 inhibitor SR-4835 promotes the proteasomal degradation of cyclin K, contingent on the presence of CDK12 and the CUL4-RBX1-DDB1 E3 ligase complex. The inhibitor displays molecular glue activity, which correlates with its enhanced ability to inhibit cell growth. This effect is achieved by facilitating the formation of a ternary complex that requires the small molecule SR-4835, CDK12, and the adaptor protein DDB1, leading to the subsequent ubiquitination and degradation of cyclin K. We have successfully solved the structure of the ternary complex, enabling the de novo design of molecular glues that transform four different CDK12 scaffold inhibitors, including the clinical pan-CDK inhibitor dinaciclib, into cyclin K degraders. These results not only deepen our understanding of CDK12's role in cell regulation but also underscore significant progress in designing molecular glues for targeted protein degradation in cancers associated with dysregulated cyclin K activity.
Collapse
Affiliation(s)
- Pompom Ghosh
- Department of Drug Discovery, Moffitt Cancer Center Tampa Florida 33612 USA
| | - Maximilian Schmitz
- Institute of Structural Biology, University of Bonn Venusberg-Campus 1 53127 Bonn Germany
| | | | | | - Sean Chin Chan
- Department of Drug Discovery, Moffitt Cancer Center Tampa Florida 33612 USA
| | - John Mosior
- Department of Drug Discovery, Moffitt Cancer Center Tampa Florida 33612 USA
| | - Luxin Sun
- Department of Drug Discovery, Moffitt Cancer Center Tampa Florida 33612 USA
| | - Vinayak Palve
- Department of Drug Discovery, Moffitt Cancer Center Tampa Florida 33612 USA
| | - Dylan Grassie
- Department of Drug Discovery, Moffitt Cancer Center Tampa Florida 33612 USA
| | - Kanchan Anand
- Institute of Structural Biology, University of Bonn Venusberg-Campus 1 53127 Bonn Germany
| | - Sylvia Frydman
- Department of Drug Discovery, Moffitt Cancer Center Tampa Florida 33612 USA
| | - William R Roush
- Department of Chemistry, The Scripps Research Institute Jupiter Florida 33458 USA
| | - Ernst Schönbrunn
- Department of Drug Discovery, Moffitt Cancer Center Tampa Florida 33612 USA
| | - Matthias Geyer
- Institute of Structural Biology, University of Bonn Venusberg-Campus 1 53127 Bonn Germany
| | - Derek Duckett
- Department of Drug Discovery, Moffitt Cancer Center Tampa Florida 33612 USA
| | | |
Collapse
|
4
|
Karolak A, Urbaniak K, Monastyrskyi A, Duckett DR, Branciamore S, Stewart PA. Structure-independent machine-learning predictions of the CDK12 interactome. Biophys J 2024; 123:2910-2920. [PMID: 38762754 PMCID: PMC11393676 DOI: 10.1016/j.bpj.2024.05.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 04/24/2024] [Accepted: 05/15/2024] [Indexed: 05/20/2024] Open
Abstract
Cyclin-dependent kinase 12 (CDK12) is a critical regulatory protein involved in transcription and DNA repair processes. Dysregulation of CDK12 has been implicated in various diseases, including cancer. Understanding the CDK12 interactome is pivotal for elucidating its functional roles and potential therapeutic targets. Traditional methods for interactome prediction often rely on protein structure information, limiting applicability to CDK12 characterized by partly disordered terminal C region. In this study, we present a structure-independent machine-learning model that utilizes proteins' sequence and functional data to predict the CDK12 interactome. This approach is motivated by the disordered character of the CDK12 C-terminal region mitigating a structure-driven search for binding partners. Our approach incorporates multiple data sources, including protein-protein interaction networks, functional annotations, and sequence-based features, to construct a comprehensive CDK12 interactome prediction model. The ability to predict CDK12 interactions without relying on structural information is a significant advancement, as many potential interaction partners may lack crystallographic data. In conclusion, our structure-independent machine-learning model presents a powerful tool for predicting the CDK12 interactome and holds promise in advancing our understanding of CDK12 biology, identifying potential therapeutic targets, and facilitating precision-medicine approaches for CDK12-associated diseases.
Collapse
Affiliation(s)
| | - Konstancja Urbaniak
- Department of Computational and Quantitative Medicine, City of Hope, Duarte, California
| | | | - Derek R Duckett
- Department of Drug Discovery, Moffitt Cancer Center, Tampa, Florida
| | - Sergio Branciamore
- Department of Computational and Quantitative Medicine, City of Hope, Duarte, California
| | - Paul A Stewart
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, Florida
| |
Collapse
|
5
|
Chen L, Yu K, Ma A, Zhu W, Wang H, Tang X, Tang Y, Li Y, Li J. Enhanced Thermostability of Nattokinase by Computation-Based Rational Redesign of Flexible Regions. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:14241-14254. [PMID: 38864682 DOI: 10.1021/acs.jafc.4c02335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Nattokinase is a nutrient in healthy food natto that has the function of preventing and treating blood thrombus. However, its low thermostability and fibrinolytic activity limit its application in food and pharmaceuticals. In this study, we used bioinformatics analysis to identify two loops (loop10 and loop12) in the flexible region of nattokinase rAprY. Using this basis, we screened the G131S-S161T variant, which showed a 2.38-fold increase in half-life at 55 °C, and the M3 variant, which showed a 2.01-fold increase in activity, by using a thermostability prediction algorithm. Bioinformatics analysis revealed that the enhanced thermostability of the G131S-S161T variant was due to the increased rigidity and structural shrinkage of the overall structure. Additionally, the increased rigidity of the local region surrounding the active center and its mutated sites helps maintain its normal conformation in high-temperature environments. The increased catalytic activity of the M3 variant may be due to its more efficient substrate binding mechanism. We investigated strategies to improve the thermostability and fibrinolytic activity of nattokinase, and the resulting variants show promise for industrial production and application.
Collapse
Affiliation(s)
- Liangqi Chen
- Institute of Materia Medica, College of Pharmacy, Xinjiang University, Urumqi 830017, China
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830017, China
| | - Kongfang Yu
- Institute of Materia Medica, College of Pharmacy, Xinjiang University, Urumqi 830017, China
| | - Aixia Ma
- Institute of Materia Medica, College of Pharmacy, Xinjiang University, Urumqi 830017, China
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830017, China
| | - Wenhui Zhu
- Institute of Materia Medica, College of Pharmacy, Xinjiang University, Urumqi 830017, China
| | - Hong Wang
- Institute of Materia Medica, College of Pharmacy, Xinjiang University, Urumqi 830017, China
| | - Xiyu Tang
- Institute of Materia Medica, College of Pharmacy, Xinjiang University, Urumqi 830017, China
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830017, China
| | - Yaolei Tang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830017, China
- The Third People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi 830000, China
| | - Yuan Li
- Institute of Materia Medica, College of Pharmacy, Xinjiang University, Urumqi 830017, China
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830017, China
| | - Jinyao Li
- Institute of Materia Medica, College of Pharmacy, Xinjiang University, Urumqi 830017, China
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830017, China
| |
Collapse
|
6
|
Yan Z, Du Y, Zhang H, Zheng Y, Lv H, Dong N, He F. Research progress of anticancer drugs targeting CDK12. RSC Med Chem 2023; 14:1629-1644. [PMID: 37731700 PMCID: PMC10507796 DOI: 10.1039/d3md00004d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 05/17/2023] [Indexed: 09/22/2023] Open
Abstract
Cyclin-dependent kinase 12 (CDK12) is a transcription-associated CDK that plays key roles in transcription, translation, mRNA splicing, the cell cycle, and DNA damage repair. Research has identified that high expression of CDK12 in organs such as the breast, stomach, and uterus can lead to HER2-positive breast cancer, gastric cancer and cervical cancer. Inhibiting high expression of CDK12 suppresses tumor growth and proliferation, suggesting that it is both a biomarker for cancer and a potential target for cancer therapy. CDK12 inhibitors can competitively bind the CDK12 hydrophobic pocket with ATP to avoid CDK12 phosphorylation, blocking subsequent signaling pathways. The development of CDK12 inhibitors is challenging due to the high homology of CDK12 with other CDKs. This review summarizes the research progress of CDK12 inhibitors, their mechanism of action and the structure-activity relationship, providing new insights into the design of CDK12 selective inhibitors.
Collapse
Affiliation(s)
- Zhijia Yan
- School of Chemistry & Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences) 3501 Da Xue Road Jinan 250353 China
| | - Yongli Du
- School of Chemistry & Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences) 3501 Da Xue Road Jinan 250353 China
| | - Haibin Zhang
- School of Chemistry & Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences) 3501 Da Xue Road Jinan 250353 China
| | - Yong Zheng
- School of Chemistry & Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences) 3501 Da Xue Road Jinan 250353 China
| | - Huiting Lv
- School of Chemistry & Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences) 3501 Da Xue Road Jinan 250353 China
| | - Ning Dong
- School of Chemistry & Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences) 3501 Da Xue Road Jinan 250353 China
| | - Fang He
- School of Water Conservancy and Environment, University of Jinan 336 Nanxinzhuang West Road Jinan 250022 China
| |
Collapse
|
7
|
Bai Y, Liu Z, Li Y, Zhao H, Lai C, Zhao S, Chen K, Luo C, Yang X, Wang F. Structural Mass Spectrometry Probes the Inhibitor-Induced Allosteric Activation of CDK12/CDK13-Cyclin K Dissociation. J Am Chem Soc 2023; 145:11477-11481. [PMID: 37207290 DOI: 10.1021/jacs.3c01697] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The rational design and development of effective inhibitors for cyclin-dependent kinases 12 and 13 (CDK12 and CDK13) are largely dependent on the understanding of the dynamic inhibition conformations but are difficult to be achieved by conventional characterization tools. Herein, we integrate the structural mass spectrometry (MS) methods of lysine reactivity profiling (LRP) and native MS (nMS) to systematically interrogate both the dynamic molecular interactions and overall protein assembly of CDK12/CDK13-cyclin K (CycK) complexes under the modulation of small molecule inhibitors. The essential structure insights, including inhibitor binding pocket, binding strength, interfacial molecular details, and dynamic conformation changes, can be derived from the complementary results of LRP and nMS. We find the inhibitor SR-4835 binding can greatly destabilize the CDK12/CDK13-CycK interactions in an unusual allosteric activation way, thereby providing a novel alternative for the kinase activity inhibition. Our results underscore the great potential of LRP combination with nMS for the evaluation and rational design of effective kinase inhibitors at the molecular level.
Collapse
Affiliation(s)
- Yu Bai
- School of Pharmacy, China Medical University, Shenyang 110122, China
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Zheyi Liu
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuanqing Li
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Drug Discovery and Design Center, the Center for Chemical Biology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Heng Zhao
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Can Lai
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shan Zhao
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Kaixian Chen
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Drug Discovery and Design Center, the Center for Chemical Biology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Cheng Luo
- Drug Discovery and Design Center, the Center for Chemical Biology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xueming Yang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Fangjun Wang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
8
|
Wang C, Chen Q, Yuan K, He M, Zhu J, Fang Y, Hu J, Yan Q. The first central precocious puberty proteomic profiles revealed multiple metabolic networks and novel key disease-associated proteins. Aging (Albany NY) 2021; 13:24236-24250. [PMID: 34748517 PMCID: PMC8610109 DOI: 10.18632/aging.203676] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 10/28/2021] [Indexed: 12/12/2022]
Abstract
Though central precocious puberty (CPP) as a disease that seriously affects the development of a child is increasing year by year, treatment options remain limited and is the same as the 1980s’ method. These are mainly due to the complex pathogenesis of central precocious puberty. Therefore, systems biology approach to identify and explore the multiple factors related to the pathogenesis of central precocious puberty is necessary. Our data established the first proteome profile of CPP revealed 163 down-regulated and 129 were up-regulated differentially expressed proteins. These altered proteins were primarily enriched in three metabolic process including energy metabolism, amino acid metabolism and nitrogenous base metabolism. The identified altered members of the metabolic signaling are valuable and potential novel therapeutic targets of central precocious puberty.
Collapse
Affiliation(s)
- Chunlin Wang
- Department of Pediatrics, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Qingqing Chen
- Department of Pediatrics, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Ke Yuan
- Department of Pediatrics, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Minfei He
- Department of Pediatrics, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Jianfang Zhu
- Department of Pediatrics, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Yanlan Fang
- Department of Pediatrics, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Jianhong Hu
- Hailiang Hospital, Zhuji, Zhejiang Province, China
| | - Qingfeng Yan
- Department of Pediatrics, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China.,College of Life Science, Zhejiang University, Hangzhou, Zhejiang Province, China
| |
Collapse
|
9
|
Ni D, Kırtel O, Yin D, Xu W, Chen Q, Öner ET, Mu W. Improving the catalytic behaviors of Lactobacillus-derived fructansucrases by truncation strategies. Enzyme Microb Technol 2021; 149:109857. [PMID: 34311894 DOI: 10.1016/j.enzmictec.2021.109857] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 06/04/2021] [Accepted: 06/21/2021] [Indexed: 01/17/2023]
Abstract
Fructansucrases (FSs), including inulosucrase (IS) and levansucrase (LS), are the members of the Glycoside Hydrolase family 68 (GH68) enzymes. IS and LS catalyze the polymerization of the fructosyl moiety from sucrose to inulin- and levan-type fructans, respectively. Lactobacillus-derived FSs have relatively extended N- and C-terminal sequences. However, the functional roles of these sequences in their enzymatic properties and fructan biosynthesis remain largely unknown. Limosilactobacillus reuteri (basionym: Lactobacillus reuteri) 121 could produce both IS and LS, abbreviated as Lare121-IS and Lare121-LS, respectively. In this study, it was found that the terminal truncation displayed an obvious effect on their activities and the N-terminal truncated variants, Lare121-ISΔ177-701 and Lare121-LSΔ154-686, displayed the highest activities. Melting temperature (Tm) and the thermostability at 50 °C were measured to evaluate the stability of various truncated versions, revealing the different effects of N-terminal on the stability. The average molecular weight and polymerization degree of the fructans produced by different truncated variants did not change considerably, indicating that N-terminal truncation had low influence on fructan biosynthesis. In addition, it was found that N-terminal truncation could also improve the activity of other reported FSs from Lactobacillus species.
Collapse
Affiliation(s)
- Dawei Ni
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Onur Kırtel
- IBSB-Industrial Biotechnology and Systems Biology Research Group, Department of Bioengineering, Marmara University, Göztepe Campus, Istanbul, Turkey
| | - Dejing Yin
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Wei Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Qiuming Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Ebru Toksoy Öner
- IBSB-Industrial Biotechnology and Systems Biology Research Group, Department of Bioengineering, Marmara University, Göztepe Campus, Istanbul, Turkey
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, 214122, China.
| |
Collapse
|
10
|
Structure and activation mechanism of the yeast RNA Pol II CTD kinase CTDK-1 complex. Proc Natl Acad Sci U S A 2021; 118:2019163118. [PMID: 33431688 DOI: 10.1073/pnas.2019163118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The C-terminal domain (CTD) kinase I (CTDK-1) complex is the primary RNA Polymerase II (Pol II) CTD Ser2 kinase in budding yeast. CTDK-1 consists of a cyclin-dependent kinase (CDK) Ctk1, a cyclin Ctk2, and a unique subunit Ctk3 required for CTDK-1 activity. Here, we present a crystal structure of CTDK-1 at 1.85-Å resolution. The structure reveals that, compared to the canonical two-component CDK-cyclin system, the third component Ctk3 of CTDK-1 plays a critical role in Ctk1 activation by stabilizing a key element of CDK regulation, the T-loop, in an active conformation. In addition, Ctk3 contributes to the assembly of CTDK-1 through extensive interactions with both Ctk1 and Ctk2. We also demonstrate that CTDK-1 physically and genetically interacts with the serine/arginine-like protein Gbp2. Together, the data in our work reveal a regulatory mechanism of CDK complexes.
Collapse
|
11
|
The promise and current status of CDK12/13 inhibition for the treatment of cancer. Future Med Chem 2020; 13:117-141. [PMID: 33295810 DOI: 10.4155/fmc-2020-0240] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
CDK12 and CDK13 are Ser/Thr protein kinases that regulate transcription and co-transcriptional processes. Genetic silencing of CDK12 is associated with genomic instability in a variety of cancers, including difficult-to-treat breast, ovarian, colorectal, brain and pancreatic cancers, and is synthetic lethal with PARP, MYC or EWS/FLI inhibition. CDK13 is amplified in hepatocellular carcinoma. Consequently, selective CDK12/13 inhibitors constitute powerful research tools as well as promising anti-cancer therapeutics, either alone or in combination therapy. Herein the authors discuss the role of CDK12 and CDK13 in normal and cancer cells, describe their utility as a biomarker and therapeutic target, review the medicinal chemistry optimization of existing CDK12/13 inhibitors and outline strategies for the rational design of CDK12/13 selective inhibitors.
Collapse
|
12
|
Tatum NJ, Endicott JA. Chatterboxes: the structural and functional diversity of cyclins. Semin Cell Dev Biol 2020; 107:4-20. [PMID: 32414682 DOI: 10.1016/j.semcdb.2020.04.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/28/2020] [Accepted: 04/29/2020] [Indexed: 12/16/2022]
Abstract
Proteins of the cyclin family have divergent sequences and execute diverse roles within the cell while sharing a common fold: the cyclin box domain. Structural studies of cyclins have played a key role in our characterization and understanding of cellular processes that they control, though to date only ten of the 29 CDK-activating cyclins have been structurally characterized by X-ray crystallography or cryo-electron microscopy with or without their cognate kinases. In this review, we survey the available structures of human cyclins, highlighting their molecular features in the context of their cellular roles. We pay particular attention to how cyclin activity is regulated through fine control of degradation motif recognition and ubiquitination. Finally, we discuss the emergent roles of cyclins independent of their roles as cyclin-dependent protein kinase activators, demonstrating the cyclin box domain to be a versatile and generalized scaffolding domain for protein-protein interactions across the cellular machinery.
Collapse
Affiliation(s)
- Natalie J Tatum
- Cancer Research UK Newcastle Drug Discovery Unit, Newcastle Centre for Cancer, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Jane A Endicott
- Cancer Research UK Newcastle Drug Discovery Unit, Newcastle Centre for Cancer, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom.
| |
Collapse
|
13
|
CDK12: a potential therapeutic target in cancer. Drug Discov Today 2020; 25:2257-2267. [PMID: 33038524 DOI: 10.1016/j.drudis.2020.09.035] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/30/2020] [Accepted: 09/30/2020] [Indexed: 12/14/2022]
Abstract
Cyclin-dependent kinase (CDK) 12 engages in diversified biological functions, from transcription, post-transcriptional modification, cell cycle, and translation to cellular proliferation. Moreover, it regulates the expression of cancer-related genes involved in DNA damage response (DDR) and replication, which are responsible for maintaining genomic stability. CDK12 emerges as an oncogene or tumor suppressor in different cellular contexts, where its dysregulation results in tumorigenesis. Current CDK12 inhibitors are nonselective, which impedes the process of pharmacological target validation and drug development. Herein, we discuss the latest understanding of the biological roles of CDK12 in cancers and provide molecular analyses of CDK12 inhibitors to guide the rational design of selective inhibitors.
Collapse
|
14
|
Słabicki M, Kozicka Z, Petzold G, Li YD, Manojkumar M, Bunker RD, Donovan KA, Sievers QL, Koeppel J, Suchyta D, Sperling AS, Fink EC, Gasser JA, Wang LR, Corsello SM, Sellar RS, Jan M, Gillingham D, Scholl C, Fröhling S, Golub TR, Fischer ES, Thomä NH, Ebert BL. The CDK inhibitor CR8 acts as a molecular glue degrader that depletes cyclin K. Nature 2020; 585:293-297. [PMID: 32494016 PMCID: PMC7486275 DOI: 10.1038/s41586-020-2374-x] [Citation(s) in RCA: 276] [Impact Index Per Article: 55.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 04/29/2020] [Indexed: 12/16/2022]
Abstract
Molecular glue compounds induce protein-protein interactions that, in the context of a ubiquitin ligase, lead to protein degradation1. Unlike traditional enzyme inhibitors, these molecular glue degraders act substoichiometrically to catalyse the rapid depletion of previously inaccessible targets2. They are clinically effective and highly sought-after, but have thus far only been discovered serendipitously. Here, through systematically mining databases for correlations between the cytotoxicity of 4,518 clinical and preclinical small molecules and the expression levels of E3 ligase components across hundreds of human cancer cell lines3-5, we identify CR8-a cyclin-dependent kinase (CDK) inhibitor6-as a compound that acts as a molecular glue degrader. The CDK-bound form of CR8 has a solvent-exposed pyridyl moiety that induces the formation of a complex between CDK12-cyclin K and the CUL4 adaptor protein DDB1, bypassing the requirement for a substrate receptor and presenting cyclin K for ubiquitination and degradation. Our studies demonstrate that chemical alteration of surface-exposed moieties can confer gain-of-function glue properties to an inhibitor, and we propose this as a broader strategy through which target-binding molecules could be converted into molecular glues.
Collapse
Affiliation(s)
- Mikołaj Słabicki
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Division of Translational Medical Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Zuzanna Kozicka
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- Faculty of Science, University of Basel, Basel, Switzerland
| | - Georg Petzold
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Yen-Der Li
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Manisha Manojkumar
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Division of Translational Medical Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Richard D Bunker
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- Monte Rosa Therapeutics, Basel, Switzerland
| | - Katherine A Donovan
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Quinlan L Sievers
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Jonas Koeppel
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Division of Translational Medical Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Dakota Suchyta
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- Faculty of Science, University of Basel, Basel, Switzerland
| | - Adam S Sperling
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Emma C Fink
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Jessica A Gasser
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Li R Wang
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Steven M Corsello
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Rob S Sellar
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Haematology, UCL Cancer Institute, University College London, London, UK
| | - Max Jan
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | | | - Claudia Scholl
- Division of Applied Functional Genomics, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Stefan Fröhling
- Division of Translational Medical Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany
- German Cancer Consortium, Heidelberg, Germany
| | - Todd R Golub
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Howard Hughes Medical Institute, Boston, MA, USA
| | - Eric S Fischer
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Nicolas H Thomä
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland.
| | - Benjamin L Ebert
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Howard Hughes Medical Institute, Boston, MA, USA.
| |
Collapse
|
15
|
Lv L, Chen P, Cao L, Li Y, Zeng Z, Cui Y, Wu Q, Li J, Wang JH, Dong MQ, Qi X, Han T. Discovery of a molecular glue promoting CDK12-DDB1 interaction to trigger cyclin K degradation. eLife 2020; 9:59994. [PMID: 32804079 PMCID: PMC7462607 DOI: 10.7554/elife.59994] [Citation(s) in RCA: 133] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 08/14/2020] [Indexed: 02/06/2023] Open
Abstract
Molecular-glue degraders mediate interactions between target proteins and components of the ubiquitin-proteasome system to cause selective protein degradation. Here, we report a new molecular glue HQ461 discovered by high-throughput screening. Using loss-of-function and gain-of-function genetic screening in human cancer cells followed by biochemical reconstitution, we show that HQ461 acts by promoting an interaction between CDK12 and DDB1-CUL4-RBX1 E3 ubiquitin ligase, leading to polyubiquitination and degradation of CDK12-interacting protein Cyclin K (CCNK). Degradation of CCNK mediated by HQ461 compromised CDK12 function, leading to reduced phosphorylation of a CDK12 substrate, downregulation of DNA damage response genes, and cell death. Structure-activity relationship analysis of HQ461 revealed the importance of a 5-methylthiazol-2-amine pharmacophore and resulted in an HQ461 derivate with improved potency. Our studies reveal a new molecular glue that recruits its target protein directly to DDB1 to bypass the requirement of a substrate-specific receptor, presenting a new strategy for targeted protein degradation.
Collapse
Affiliation(s)
- Lu Lv
- College of Life Sciences, Beijing Normal University, Beijing, China.,National Institute of Biological Sciences, Beijing, China
| | - Peihao Chen
- National Institute of Biological Sciences, Beijing, China.,School of Life Sciences, Peking University, Beijing, China
| | - Longzhi Cao
- National Institute of Biological Sciences, Beijing, China.,Graduate School of Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Yamei Li
- National Institute of Biological Sciences, Beijing, China.,Graduate School of Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Zhi Zeng
- National Institute of Biological Sciences, Beijing, China.,Graduate School of Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Yue Cui
- College of Life Sciences, Beijing Normal University, Beijing, China.,National Institute of Biological Sciences, Beijing, China
| | - Qingcui Wu
- National Institute of Biological Sciences, Beijing, China
| | - Jiaojiao Li
- National Institute of Biological Sciences, Beijing, China
| | - Jian-Hua Wang
- National Institute of Biological Sciences, Beijing, China
| | - Meng-Qiu Dong
- National Institute of Biological Sciences, Beijing, China.,Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China
| | - Xiangbing Qi
- National Institute of Biological Sciences, Beijing, China.,Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China
| | - Ting Han
- National Institute of Biological Sciences, Beijing, China.,Graduate School of Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China
| |
Collapse
|
16
|
Pilarova K, Herudek J, Blazek D. CDK12: cellular functions and therapeutic potential of versatile player in cancer. NAR Cancer 2020; 2:zcaa003. [PMID: 34316683 PMCID: PMC8210036 DOI: 10.1093/narcan/zcaa003] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/14/2020] [Accepted: 02/20/2020] [Indexed: 12/16/2022] Open
Abstract
Cyclin-dependent kinase 12 (CDK12) phosphorylates the C-terminal domain of RNA polymerase II and is needed for the optimal transcription elongation and translation of a subset of human protein-coding genes. The kinase has a pleiotropic effect on the maintenance of genome stability, and its inactivation in prostate and ovarian tumours results in focal tandem duplications, a CDK12-unique genome instability phenotype. CDK12 aberrations were found in many other malignancies and have the potential to be used as biomarkers for therapeutic intervention. Moreover, the inhibition of CDK12 emerges as a promising strategy for treatment in several types of cancers. In this review, we summarize mechanisms that CDK12 utilizes for the regulation of gene expression and discuss how the perturbation of CDK12-sensitive genes contributes to the disruption of cell cycle progression and the onset of genome instability. Furthermore, we describe tumour-suppressive and oncogenic functions of CDK12 and its potential as a biomarker and inhibition target in anti-tumour treatments.
Collapse
Affiliation(s)
- Kveta Pilarova
- Central European Institute of Technology (CEITEC), Masaryk University, 62500 Brno, Czech Republic
| | - Jan Herudek
- Central European Institute of Technology (CEITEC), Masaryk University, 62500 Brno, Czech Republic
| | - Dalibor Blazek
- Central European Institute of Technology (CEITEC), Masaryk University, 62500 Brno, Czech Republic
| |
Collapse
|
17
|
Nibau C, Dadarou D, Kargios N, Mallioura A, Fernandez-Fuentes N, Cavallari N, Doonan JH. A Functional Kinase Is Necessary for Cyclin-Dependent Kinase G1 (CDKG1) to Maintain Fertility at High Ambient Temperature in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2020; 11:586870. [PMID: 33240303 PMCID: PMC7683410 DOI: 10.3389/fpls.2020.586870] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 10/15/2020] [Indexed: 05/15/2023]
Abstract
Maintaining fertility in a fluctuating environment is key to the reproductive success of flowering plants. Meiosis and pollen formation are particularly sensitive to changes in growing conditions, especially temperature. We have previously identified cyclin-dependent kinase G1 (CDKG1) as a master regulator of temperature-dependent meiosis and this may involve the regulation of alternative splicing (AS), including of its own transcript. CDKG1 mRNA can undergo several AS events, potentially producing two protein variants: CDKG1L and CDKG1S, differing in their N-terminal domain which may be involved in co-factor interaction. In leaves, both isoforms have distinct temperature-dependent functions on target mRNA processing, but their role in pollen development is unknown. In the present study, we characterize the role of CDKG1L and CDKG1S in maintaining Arabidopsis fertility. We show that the long (L) form is necessary and sufficient to rescue the fertility defects of the cdkg1-1 mutant, while the short (S) form is unable to rescue fertility. On the other hand, an extra copy of CDKG1L reduces fertility. In addition, mutation of the ATP binding pocket of the kinase indicates that kinase activity is necessary for the function of CDKG1. Kinase mutants of CDKG1L and CDKG1S correctly localize to the cell nucleus and nucleus and cytoplasm, respectively, but are unable to rescue either the fertility or the splicing defects of the cdkg1-1 mutant. Furthermore, we show that there is partial functional overlap between CDKG1 and its paralog CDKG2 that could in part be explained by overlapping gene expression.
Collapse
Affiliation(s)
- Candida Nibau
- Institute of Biological Environmental and Rural Sciences (IBERS), Aberystwyth University, Aberystwyth, United Kingdom
- *Correspondence: Candida Nibau,
| | - Despoina Dadarou
- Institute of Biological Environmental and Rural Sciences (IBERS), Aberystwyth University, Aberystwyth, United Kingdom
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Nestoras Kargios
- Institute of Biological Environmental and Rural Sciences (IBERS), Aberystwyth University, Aberystwyth, United Kingdom
| | - Areti Mallioura
- Institute of Biological Environmental and Rural Sciences (IBERS), Aberystwyth University, Aberystwyth, United Kingdom
| | - Narcis Fernandez-Fuentes
- Institute of Biological Environmental and Rural Sciences (IBERS), Aberystwyth University, Aberystwyth, United Kingdom
| | - Nicola Cavallari
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - John H. Doonan
- Institute of Biological Environmental and Rural Sciences (IBERS), Aberystwyth University, Aberystwyth, United Kingdom
- John H. Doonan,
| |
Collapse
|
18
|
Sokol ES, Pavlick D, Frampton GM, Ross JS, Miller VA, Ali SM, Lotan TL, Pardoll DM, Chung JH, Antonarakis ES. Pan-Cancer Analysis of CDK12 Loss-of-Function Alterations and Their Association with the Focal Tandem-Duplicator Phenotype. Oncologist 2019; 24:1526-1533. [PMID: 31292271 PMCID: PMC6975947 DOI: 10.1634/theoncologist.2019-0214] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 06/06/2019] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND CDK12 loss-of-function (LOF) genomic alterations are associated with focal tandem duplications (FTDs) in ovarian and prostate cancers. Because these FTDs may produce fusion-induced neoantigens (FINAs), CDK12 alteration is a candidate biomarker for immune checkpoint inhibitor sensitivity. Here we determine the prevalence of CDK12-LOF alterations and their association with FTDs across diverse tumor types. MATERIALS AND METHODS A total of 142,133 tumor samples comprising 379 cancer types were sequenced (August 2014 to April 2018) by hybrid capture-based comprehensive genomic profiling (Foundation Medicine, Cambridge, MA) as part of routine clinical care. Results were analyzed for base substitutions, short insertions/deletions, rearrangements, and copy number alterations. CDK12-LOF genomic alterations were assessed for zygosity status and association with FTDs/focal copy number gain. RESULTS CDK12 genomic alterations were detected in 1.1% of all cases, most frequently in prostate cancer (5.6%), but were also observed at >1% frequency in 11 cancer types. Across multiple cancer types, including prostate, gastric/esophageal, ovarian, breast, and endometrial cancer, the number of FTDs was significantly increased in CDK12-LOF versus CDK12 wild-type cases. Notably, CDK12-LOF was not consistently associated with a homologous recombination deficiency genomic signature. Quantitative assessment of CDK12-associated FTDs by measurement of single copy number gains identified novel likely deleterious CDK12 kinase-domain mutations in prostate and ovarian cancers. CONCLUSION Detection of CDK12-LOF genomic alterations and their association with FTDs in a diverse spectrum of malignancies suggests that immunotherapy approaches targeting FINAs derived from CDK12-associated FTDs may be a broadly applicable strategy that could be explored across cancer types in a tumor-agnostic manner. IMPLICATIONS FOR PRACTICE CDK12 inactivation in ovarian and prostate cancer results in the generation of focal tandem duplications, which can cause fusion-induced neoantigens. In prostate cancer, CDK12 alterations have demonstrated promise as a potential predictive biomarker for response to immune checkpoint blockade. This study evaluated genomic profiling data from >142,000 tumors to determine the prevalence of CDK12 loss-of-function genomic alterations across tumor types and demonstrated that CDK12 alterations are associated with the tandem-duplicator phenotype in cancer types other than ovarian and prostate cancer. The association of CDK12 alterations with focal tandem duplications across broad cancer types suggests that CDK12 inactivation warrants further investigation as a pan-cancer biomarker for immunotherapy benefit.
Collapse
Affiliation(s)
- Ethan S Sokol
- Foundation Medicine, Inc., Cambridge, Massachusetts, USA
| | - Dean Pavlick
- Foundation Medicine, Inc., Cambridge, Massachusetts, USA
| | | | - Jeffrey S Ross
- Foundation Medicine, Inc., Cambridge, Massachusetts, USA
- Upstate Medical University, Syracuse, New York, USA
| | | | - Siraj M Ali
- Foundation Medicine, Inc., Cambridge, Massachusetts, USA
| | - Tamara L Lotan
- Johns Hopkins University School of Medicine and Bloomberg-Kimmel Institute for Cancer Immunotherapy, Baltimore, Maryland, USA
| | - Drew M Pardoll
- Johns Hopkins University School of Medicine and Bloomberg-Kimmel Institute for Cancer Immunotherapy, Baltimore, Maryland, USA
| | - Jon H Chung
- Foundation Medicine, Inc., Cambridge, Massachusetts, USA
| | - Emmanuel S Antonarakis
- Johns Hopkins University School of Medicine and Bloomberg-Kimmel Institute for Cancer Immunotherapy, Baltimore, Maryland, USA
| |
Collapse
|
19
|
Greenleaf AL. Human CDK12 and CDK13, multi-tasking CTD kinases for the new millenium. Transcription 2019; 10:91-110. [PMID: 30319007 PMCID: PMC6602566 DOI: 10.1080/21541264.2018.1535211] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 09/25/2018] [Accepted: 09/28/2018] [Indexed: 01/27/2023] Open
Abstract
As the new millennium began, CDK12 and CDK13 were discovered as nucleotide sequences that encode protein kinases related to cell cycle CDKs. By the end of the first decade both proteins had been qualified as CTD kinases, and it was emerging that both are heterodimers containing a Cyclin K subunit. Since then, many studies on CDK12 have shown that, through phosphorylating the CTD of transcribing RNAPII, it plays critical roles in several stages of gene expression, notably RNA processing; it is also crucial for maintaining genome stability. Fewer studies on CKD13 have clearly shown that it is functionally distinct from CDK12. CDK13 is important for proper expression of a number of genes, but it also probably plays yet-to-be-discovered roles in other processes. This review summarizes much of the work on CDK12 and CDK13 and attempts to evaluate the results and place them in context. Our understanding of these two enzymes has begun to mature, but we still have much to learn about both. An indicator of one major area of medically-relevant future research comes from the discovery that CDK12 is a tumor suppressor, notably for certain ovarian and prostate cancers. A challenge for the future is to understand CDK12 and CDK13 well enough to explain how their loss promotes cancer development and how we can intercede to prevent or treat those cancers. Abbreviations: CDK: cyclin-dependent kinase; CTD: C-terminal repeat domain of POLR2A; CTDK-I: CTD kinase I (yeast); Ctk1: catalytic subunit of CTDK-I; Ctk2: cyclin-like subunit of CTDK-I; PCAP: phosphoCTD-associating protein; POLR2A: largest subunit of RNAPII; SRI domain: Set2-RNAPII Interacting domain.
Collapse
Affiliation(s)
- Arno L. Greenleaf
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
20
|
Wood DJ, Endicott JA. Structural insights into the functional diversity of the CDK-cyclin family. Open Biol 2019; 8:rsob.180112. [PMID: 30185601 PMCID: PMC6170502 DOI: 10.1098/rsob.180112] [Citation(s) in RCA: 168] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 08/10/2018] [Indexed: 12/17/2022] Open
Abstract
Since their characterization as conserved modules that regulate progression through the eukaryotic cell cycle, cyclin-dependent protein kinases (CDKs) in higher eukaryotic cells are now also emerging as significant regulators of transcription, metabolism and cell differentiation. The cyclins, though originally characterized as CDK partners, also have CDK-independent roles that include the regulation of DNA damage repair and transcriptional programmes that direct cell differentiation, apoptosis and metabolic flux. This review compares the structures of the members of the CDK and cyclin families determined by X-ray crystallography, and considers what mechanistic insights they provide to guide functional studies and distinguish CDK- and cyclin-specific activities. Aberrant CDK activity is a hallmark of a number of diseases, and structural studies can provide important insights to identify novel routes to therapy.
Collapse
Affiliation(s)
- Daniel J Wood
- Newcastle Cancer Centre, Northern Institute for Cancer Research, Medical School, Newcastle University, Paul O'Gorman Building, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Jane A Endicott
- Newcastle Cancer Centre, Northern Institute for Cancer Research, Medical School, Newcastle University, Paul O'Gorman Building, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| |
Collapse
|
21
|
Ito M, Tanaka T, Toita A, Uchiyama N, Kokubo H, Morishita N, Klein MG, Zou H, Murakami M, Kondo M, Sameshima T, Araki S, Endo S, Kawamoto T, Morin GB, Aparicio SA, Nakanishi A, Maezaki H, Imaeda Y. Discovery of 3-Benzyl-1-( trans-4-((5-cyanopyridin-2-yl)amino)cyclohexyl)-1-arylurea Derivatives as Novel and Selective Cyclin-Dependent Kinase 12 (CDK12) Inhibitors. J Med Chem 2018; 61:7710-7728. [PMID: 30067358 DOI: 10.1021/acs.jmedchem.8b00683] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cyclin-dependent kinase 12 (CDK12) plays a key role in the coordination of transcription with elongation and mRNA processing. CDK12 mutations found in tumors and CDK12 inhibition sensitize cancer cells to DNA-damaging reagents and DNA-repair inhibitors. This suggests that CDK12 inhibitors are potential therapeutics for cancer that may cause synthetic lethality. Here, we report the discovery of 3-benzyl-1-( trans-4-((5-cyanopyridin-2-yl)amino)cyclohexyl)-1-arylurea derivatives as novel and selective CDK12 inhibitors. Structure-activity relationship studies of a HTS hit, structure-based drug design, and conformation-oriented design using the Cambridge Structural Database afforded the optimized compound 2, which exhibited not only potent CDK12 (and CDK13) inhibitory activity and excellent selectivity but also good physicochemical properties. Furthermore, 2 inhibited the phosphorylation of Ser2 in the C-terminal domain of RNA polymerase II and induced growth inhibition in SK-BR-3 cells. Therefore, 2 represents an excellent chemical probe for functional studies of CDK12 and could be a promising lead compound for drug discovery.
Collapse
Affiliation(s)
- Masahiro Ito
- Pharmaceutical Research Division , Takeda Pharmaceutical Company Limited , 26-1, Muraoka-Higashi 2-chome , Fujisawa , Kanagawa 251-8555 , Japan
| | - Toshio Tanaka
- Pharmaceutical Research Division , Takeda Pharmaceutical Company Limited , 26-1, Muraoka-Higashi 2-chome , Fujisawa , Kanagawa 251-8555 , Japan
| | - Akinori Toita
- Pharmaceutical Research Division , Takeda Pharmaceutical Company Limited , 26-1, Muraoka-Higashi 2-chome , Fujisawa , Kanagawa 251-8555 , Japan
| | - Noriko Uchiyama
- Pharmaceutical Research Division , Takeda Pharmaceutical Company Limited , 26-1, Muraoka-Higashi 2-chome , Fujisawa , Kanagawa 251-8555 , Japan
| | - Hironori Kokubo
- Pharmaceutical Research Division , Takeda Pharmaceutical Company Limited , 26-1, Muraoka-Higashi 2-chome , Fujisawa , Kanagawa 251-8555 , Japan
| | - Nao Morishita
- Pharmaceutical Research Division , Takeda Pharmaceutical Company Limited , 26-1, Muraoka-Higashi 2-chome , Fujisawa , Kanagawa 251-8555 , Japan
| | - Michael G Klein
- Department of Structural Biology , Takeda California Inc. , 10410 Science Center Drive , San Diego , California 92121 , United States
| | - Hua Zou
- Department of Structural Biology , Takeda California Inc. , 10410 Science Center Drive , San Diego , California 92121 , United States
| | - Morio Murakami
- Pharmaceutical Research Division , Takeda Pharmaceutical Company Limited , 26-1, Muraoka-Higashi 2-chome , Fujisawa , Kanagawa 251-8555 , Japan
| | - Mitsuyo Kondo
- Pharmaceutical Research Division , Takeda Pharmaceutical Company Limited , 26-1, Muraoka-Higashi 2-chome , Fujisawa , Kanagawa 251-8555 , Japan
| | - Tomoya Sameshima
- Pharmaceutical Research Division , Takeda Pharmaceutical Company Limited , 26-1, Muraoka-Higashi 2-chome , Fujisawa , Kanagawa 251-8555 , Japan
| | - Shinsuke Araki
- Pharmaceutical Research Division , Takeda Pharmaceutical Company Limited , 26-1, Muraoka-Higashi 2-chome , Fujisawa , Kanagawa 251-8555 , Japan
| | - Satoshi Endo
- Pharmaceutical Research Division , Takeda Pharmaceutical Company Limited , 26-1, Muraoka-Higashi 2-chome , Fujisawa , Kanagawa 251-8555 , Japan
| | - Tomohiro Kawamoto
- Pharmaceutical Research Division , Takeda Pharmaceutical Company Limited , 26-1, Muraoka-Higashi 2-chome , Fujisawa , Kanagawa 251-8555 , Japan
| | - Gregg B Morin
- Genome Sciences Centre , British Columbia Cancer Agency , 675 West 10th Avenue , Vancouver , British Columbia V5Z 1L3 , Canada.,Department of Medical Genetics , University of British Columbia , Vancouver , British Columbia V6H 3N1 , Canada
| | - Samuel A Aparicio
- Department of Molecular Oncology , British Columbia Cancer Agency , 675 West 10th Avenue , Vancouver , British Columbia V5Z 1L3 , Canada
| | - Atsushi Nakanishi
- Pharmaceutical Research Division , Takeda Pharmaceutical Company Limited , 26-1, Muraoka-Higashi 2-chome , Fujisawa , Kanagawa 251-8555 , Japan
| | - Hironobu Maezaki
- Pharmaceutical Research Division , Takeda Pharmaceutical Company Limited , 26-1, Muraoka-Higashi 2-chome , Fujisawa , Kanagawa 251-8555 , Japan
| | - Yasuhiro Imaeda
- Pharmaceutical Research Division , Takeda Pharmaceutical Company Limited , 26-1, Muraoka-Higashi 2-chome , Fujisawa , Kanagawa 251-8555 , Japan
| |
Collapse
|
22
|
Lui GYL, Grandori C, Kemp CJ. CDK12: an emerging therapeutic target for cancer. J Clin Pathol 2018; 71:957-962. [PMID: 30104286 DOI: 10.1136/jclinpath-2018-205356] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 07/25/2018] [Accepted: 07/26/2018] [Indexed: 12/20/2022]
Abstract
Cyclin-dependent kinase 12 (CDK12) belongs to the cyclin-dependent kinase (CDK) family of serine/threonine protein kinases that regulate transcriptional and post-transcriptional processes, thereby modulating multiple cellular functions. Early studies characterised CDK12 as a transcriptional CDK that complexes with cyclin K to mediate gene transcription by phosphorylating RNA polymerase II. CDK12 has been demonstrated to specifically upregulate the expression of genes involved in response to DNA damage, stress and heat shock. More recent studies have implicated CDK12 in regulating mRNA splicing, 3' end processing, pre-replication complex assembly and genomic stability during embryonic development. Genomic alterations in CDK12 have been detected in oesophageal, stomach, breast, endometrial, uterine, ovarian, bladder, colorectal and pancreatic cancers, ranging from 5% to 15% of sequenced cases. An increasing number of studies point to CDK12 inhibition as an effective strategy to inhibit tumour growth, and synthetic lethal interactions have been described with MYC, EWS/FLI and PARP/CHK1 inhibition. Herein, we discuss the present literature on CDK12 in cell function and human cancer, highlighting important roles for CDK12 as a clinical biomarker for treatment response and potential as an effective therapeutic target.
Collapse
Affiliation(s)
- Goldie Y L Lui
- Fred Hutchinson Cancer Research Center, Human Biology Division, Seattle, Washington, USA
| | | | - Christopher J Kemp
- Fred Hutchinson Cancer Research Center, Human Biology Division, Seattle, Washington, USA
| |
Collapse
|
23
|
Johannes JW, Denz CR, Su N, Wu A, Impastato AC, Mlynarski S, Varnes JG, Prince DB, Cidado J, Gao N, Haddrick M, Jones NH, Li S, Li X, Liu Y, Nguyen TB, O'Connell N, Rivers E, Robbins DW, Tomlinson R, Yao T, Zhu X, Ferguson AD, Lamb ML, Manchester JI, Guichard S. Structure-Based Design of Selective Noncovalent CDK12 Inhibitors. ChemMedChem 2018; 13:231-235. [PMID: 29266803 DOI: 10.1002/cmdc.201700695] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 12/13/2017] [Indexed: 12/21/2022]
Abstract
Cyclin-dependent kinase (CDK) 12 knockdown via siRNA decreases the transcription of DNA-damage-response genes and sensitizes BRCA wild-type cells to poly(ADP-ribose) polymerase (PARP) inhibition. To recapitulate this effect with a small molecule, we sought a potent, selective CDK12 inhibitor. Crystal structures and modeling informed hybridization between dinaciclib and SR-3029, resulting in lead compound 5 [(S)-2-(1-(6-(((6,7-difluoro-1H-benzo[d]imidazol-2-yl)methyl)amino)-9-ethyl-9H-purin-2-yl)piperidin-2-yl)ethan-1-ol]. Further structure-guided optimization delivered a series of selective CDK12 inhibitors, including compound 7 [(S)-2-(1-(6-(((6,7-difluoro-1H-benzo[d]imidazol-2-yl)methyl)amino)-9-isopropyl-9H-purin-2-yl)piperidin-2-yl)ethan-1-ol]. Profiling of this compound across CDK9, 7, 2, and 1 at high ATP concentration, single-point kinase panel screening against 352 targets at 0.1 μm, and proteomics via kinase affinity matrix technology demonstrated the selectivity. This series of compounds inhibits phosphorylation of Ser2 on the C-terminal repeat domain of RNA polymerase II, consistent with CDK12 inhibition. These selective compounds were also acutely toxic to OV90 as well as THP1 cells.
Collapse
Affiliation(s)
| | | | - Nancy Su
- Discovery Sciences, IMED Biotech Unit, AstraZeneca, Boston, MA, USA
| | - Allan Wu
- Discovery Sciences, IMED Biotech Unit, AstraZeneca, Boston, MA, USA
| | - Anna C Impastato
- Discovery Sciences, IMED Biotech Unit, AstraZeneca, Boston, MA, USA
| | | | | | - D Bryan Prince
- Discovery Sciences, IMED Biotech Unit, AstraZeneca, Boston, MA, USA
| | - Justin Cidado
- Oncology, IMED Biotech Unit, AstraZeneca, Boston, MA, USA
| | - Ning Gao
- Discovery Sciences, IMED Biotech Unit, AstraZeneca, Boston, MA, USA
| | - Malcolm Haddrick
- Discovery Sciences, IMED Biotech Unit, AstraZeneca Pharmaceuticals LP, Alderley Park, Macclesfield, SK10 4TG, UK
| | - Natalie H Jones
- Discovery Sciences, IMED Biotech Unit, AstraZeneca, Boston, MA, USA
| | - Shaobin Li
- Pharmaron Beijing Co. Ltd., 6 Taihe Road BDA, Beijing, 100176, P.R. China
| | - Xiuwei Li
- Pharmaron Beijing Co. Ltd., 6 Taihe Road BDA, Beijing, 100176, P.R. China
| | - Yang Liu
- Pharmaron Beijing Co. Ltd., 6 Taihe Road BDA, Beijing, 100176, P.R. China
| | - Toan B Nguyen
- Discovery Sciences, IMED Biotech Unit, AstraZeneca, Boston, MA, USA
| | | | - Emma Rivers
- Discovery Sciences, IMED Biotech Unit, AstraZeneca Pharmaceuticals LP, Unit 310 Darwin Building, Cambridge, CB4 0WG, UK
| | | | - Ronald Tomlinson
- Discovery Sciences, IMED Biotech Unit, AstraZeneca, Boston, MA, USA
| | - Tieguang Yao
- Pharmaron Beijing Co. Ltd., 6 Taihe Road BDA, Beijing, 100176, P.R. China
| | - Xiahui Zhu
- Discovery Sciences, IMED Biotech Unit, AstraZeneca, Boston, MA, USA
| | | | | | | | | |
Collapse
|
24
|
Biswas R, Gao S, Cultraro CM, Maity TK, Venugopalan A, Abdullaev Z, Shaytan AK, Carter CA, Thomas A, Rajan A, Song Y, Pitts S, Chen K, Bass S, Boland J, Hanada KI, Chen J, Meltzer PS, Panchenko AR, Yang JC, Pack S, Giaccone G, Schrump DS, Khan J, Guha U. Genomic profiling of multiple sequentially acquired tumor metastatic sites from an "exceptional responder" lung adenocarcinoma patient reveals extensive genomic heterogeneity and novel somatic variants driving treatment response. Cold Spring Harb Mol Case Stud 2017; 2:a001263. [PMID: 27900369 PMCID: PMC5111000 DOI: 10.1101/mcs.a001263] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
We used next-generation sequencing to identify somatic alterations in multiple metastatic sites from an “exceptional responder” lung adenocarcinoma patient during his 7-yr course of ERBB2-directed therapies. The degree of heterogeneity was unprecedented, with ∼1% similarity between somatic alterations of the lung and lymph nodes. One novel translocation, PLAG1-ACTA2, present in both sites, up-regulated ACTA2 expression. ERBB2, the predominant driver oncogene, was amplified in both sites, more pronounced in the lung, and harbored an L869R mutation in the lymph node. Functional studies showed increased proliferation, migration, metastasis, and resistance to ERBB2-directed therapy because of L869R mutation and increased migration because of ACTA2 overexpression. Within the lung, a nonfunctional CDK12, due to a novel G879V mutation, correlated with down-regulation of DNA damage response genes, causing genomic instability, and sensitivity to chemotherapy. We propose a model whereby a subclone metastasized early from the primary site and evolved independently in lymph nodes.
Collapse
Affiliation(s)
- Romi Biswas
- Thoracic and Gastrointestinal Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, USA
| | - Shaojian Gao
- Thoracic and Gastrointestinal Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, USA
| | - Constance M Cultraro
- Thoracic and Gastrointestinal Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, USA
| | - Tapan K Maity
- Thoracic and Gastrointestinal Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, USA
| | - Abhilash Venugopalan
- Thoracic and Gastrointestinal Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, USA
| | - Zied Abdullaev
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, USA
| | - Alexey K Shaytan
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894, USA
| | - Corey A Carter
- Walter Reed National Military Medical Center, Bethesda, Maryland 20889, USA
| | - Anish Thomas
- Thoracic and Gastrointestinal Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, USA
| | - Arun Rajan
- Thoracic and Gastrointestinal Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, USA
| | - Young Song
- Genetics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, USA
| | - Stephanie Pitts
- Thoracic and Gastrointestinal Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, USA
| | - Kevin Chen
- Thoracic and Gastrointestinal Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, USA
| | - Sara Bass
- Cancer Genomics Research Laboratory, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Gaithersburg, Maryland 20848, USA
| | - Joseph Boland
- Cancer Genomics Research Laboratory, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Gaithersburg, Maryland 20848, USA
| | - Ken-Ichi Hanada
- Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, USA
| | - Jinqiu Chen
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, USA
| | - Paul S Meltzer
- Genetics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, USA
| | - Anna R Panchenko
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894, USA
| | - James C Yang
- Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, USA
| | - Svetlana Pack
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, USA
| | - Giuseppe Giaccone
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, D.C. 20057, USA
| | - David S Schrump
- Thoracic and Gastrointestinal Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, USA
| | - Javed Khan
- Genetics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, USA
| | - Udayan Guha
- Thoracic and Gastrointestinal Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, USA
| |
Collapse
|
25
|
Martin MP, Endicott JA, Noble MEM. Structure-based discovery of cyclin-dependent protein kinase inhibitors. Essays Biochem 2017; 61:439-452. [PMID: 29118092 PMCID: PMC6248306 DOI: 10.1042/ebc20170040] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Revised: 09/24/2017] [Accepted: 09/25/2017] [Indexed: 01/02/2023]
Abstract
The cell fate-determining roles played by members of the cyclin-dependent protein kinase (CDK) family explain why their dysregulation can promote proliferative diseases, and identify them as potential targets for drug discovery in oncology and beyond. After many years of research, the first efficacious CDK inhibitors have now been registered for clinical use in a defined segment of breast cancer. Research is underway to identify inhibitors with appropriate CDK-inhibitory profiles to recapitulate this success in other disease settings. Here, we review the structural data that illustrate the interactions and properties that confer upon inhibitors affinity and/or selectivity toward different CDK family members. We conclude that where CDK inhibitors display selectivity, that selectivity derives from exploiting active site sequence peculiarities and/or from the capacity of the target CDK(s) to access conformations compatible with optimizing inhibitor-target interactions.
Collapse
Affiliation(s)
- Mathew P Martin
- Newcastle Cancer Centre, Northern Institute for Cancer Research, Paul O'Gorman Building, Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, U.K
| | - Jane A Endicott
- Newcastle Cancer Centre, Northern Institute for Cancer Research, Paul O'Gorman Building, Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, U.K
| | - Martin E M Noble
- Newcastle Cancer Centre, Northern Institute for Cancer Research, Paul O'Gorman Building, Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, U.K.
| |
Collapse
|
26
|
Tien JF, Mazloomian A, Cheng SWG, Hughes CS, Chow CCT, Canapi LT, Oloumi A, Trigo-Gonzalez G, Bashashati A, Xu J, Chang VCD, Shah SP, Aparicio S, Morin GB. CDK12 regulates alternative last exon mRNA splicing and promotes breast cancer cell invasion. Nucleic Acids Res 2017; 45:6698-6716. [PMID: 28334900 PMCID: PMC5499812 DOI: 10.1093/nar/gkx187] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 03/09/2017] [Indexed: 12/31/2022] Open
Abstract
CDK12 (cyclin-dependent kinase 12) is a regulatory kinase with evolutionarily conserved roles in modulating transcription elongation. Recent tumor genome studies of breast and ovarian cancers highlighted recurrent CDK12 mutations, which have been shown to disrupt DNA repair in cell-based assays. In breast cancers, CDK12 is also frequently co-amplified with the HER2 (ERBB2) oncogene. The mechanisms underlying functions of CDK12 in general and in cancer remain poorly defined. Based on global analysis of mRNA transcripts in normal and breast cancer cell lines with and without CDK12 amplification, we demonstrate that CDK12 primarily regulates alternative last exon (ALE) splicing, a specialized subtype of alternative mRNA splicing, that is both gene- and cell type-specific. These are unusual properties for spliceosome regulatory factors, which typically regulate multiple forms of alternative splicing in a global manner. In breast cancer cells, regulation by CDK12 modulates ALE splicing of the DNA damage response activator ATM and a DNAJB6 isoform that influences cell invasion and tumorigenesis in xenografts. We found that there is a direct correlation between CDK12 levels, DNAJB6 isoform levels and the migration capacity and invasiveness of breast tumor cells. This suggests that CDK12 gene amplification can contribute to the pathogenesis of the cancer.
Collapse
Affiliation(s)
- Jerry F Tien
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver V5Z 1L3, Canada
| | - Alborz Mazloomian
- Graduate Bioinformatics Training Program, University of British Columbia, Vancouver V5Z 4S6, Canada.,Department of Molecular Oncology, BC Cancer Agency, Vancouver V5Z 1L3, Canada
| | - S-W Grace Cheng
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver V5Z 1L3, Canada
| | - Christopher S Hughes
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver V5Z 1L3, Canada
| | - Christalle C T Chow
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver V5Z 1L3, Canada
| | - Leanna T Canapi
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver V5Z 1L3, Canada
| | - Arusha Oloumi
- Department of Molecular Oncology, BC Cancer Agency, Vancouver V5Z 1L3, Canada
| | - Genny Trigo-Gonzalez
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver V5Z 1L3, Canada
| | - Ali Bashashati
- Department of Molecular Oncology, BC Cancer Agency, Vancouver V5Z 1L3, Canada
| | - James Xu
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver V6T 2B5, Canada
| | - Vicky C-D Chang
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver V5Z 1L3, Canada
| | - Sohrab P Shah
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver V5Z 1L3, Canada.,Department of Molecular Oncology, BC Cancer Agency, Vancouver V5Z 1L3, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver V6T 2B5, Canada
| | - Samuel Aparicio
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver V5Z 1L3, Canada.,Department of Molecular Oncology, BC Cancer Agency, Vancouver V5Z 1L3, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver V6T 2B5, Canada
| | - Gregg B Morin
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver V5Z 1L3, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver V6H 3N1, Canada
| |
Collapse
|
27
|
Baeissa H, Benstead-Hume G, Richardson CJ, Pearl FMG. Identification and analysis of mutational hotspots in oncogenes and tumour suppressors. Oncotarget 2017; 8:21290-21304. [PMID: 28423505 PMCID: PMC5400584 DOI: 10.18632/oncotarget.15514] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 02/07/2017] [Indexed: 01/25/2023] Open
Abstract
Background The key to interpreting the contribution of a disease-associated mutation in the development and progression of cancer is an understanding of the consequences of that mutation both on the function of the affected protein and on the pathways in which that protein is involved. Protein domains encapsulate function and position-specific domain based analysis of mutations have been shown to help elucidate their phenotypes. Results In this paper we examine the domain biases in oncogenes and tumour suppressors, and find that their domain compositions substantially differ. Using data from over 30 different cancers from whole-exome sequencing cancer genomic projects we mapped over one million mutations to their respective Pfam domains to identify which domains are enriched in any of three different classes of mutation; missense, indels or truncations. Next, we identified the mutational hotspots within domain families by mapping small mutations to equivalent positions in multiple sequence alignments of protein domains We find that gain of function mutations from oncogenes and loss of function mutations from tumour suppressors are normally found in different domain families and when observed in the same domain families, hotspot mutations are located at different positions within the multiple sequence alignment of the domain. Conclusions By considering hotspots in tumour suppressors and oncogenes independently, we find that there are different specific positions within domain families that are particularly suited to accommodate either a loss or a gain of function mutation. The position is also dependent on the class of mutation. We find rare mutations co-located with well-known functional mutation hotspots, in members of homologous domain superfamilies, and we detect novel mutation hotspots in domain families previously unconnected with cancer. The results of this analysis can be accessed through the MOKCa database (http://strubiol.icr.ac.uk/extra/MOKCa).
Collapse
Affiliation(s)
- Hanadi Baeissa
- School of Life Sciences, University of Sussex, Falmer, Brighton, UK
| | | | | | | |
Collapse
|
28
|
Kalra S, Joshi G, Munshi A, Kumar R. Structural insights of cyclin dependent kinases: Implications in design of selective inhibitors. Eur J Med Chem 2017; 142:424-458. [PMID: 28911822 DOI: 10.1016/j.ejmech.2017.08.071] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Revised: 08/31/2017] [Accepted: 08/31/2017] [Indexed: 12/17/2022]
Abstract
There are around 20 Cyclin-dependent kinases (CDKs) known till date, and various research groups have reported their role in different types of cancer. The X-ray structures of some CDKs especially CDK2 was exploited in the past few years, and several inhibitors have been found, e.g., flavopiridol, indirubicin, roscovitine, etc., but due to the specificity issues of these inhibitors (binding to all CDKs), these were called as pan inhibitors. The revolutionary outcome of palbociclib in 2015 as CDK4/6 inhibitor added a new charm to the specific inhibitor design for CDKs. Computer-aided drug design (CADD) tools added a benefit to the design and development of new CDK inhibitors by studying the binding pattern of the inhibitors to the ATP binding domain of CDKs. Herein, we have attempted a comparative analysis of structural differences between several CDKs ATP binding sites and their inhibitor specificity by depicting the important ligand-receptor interactions for a particular CDK to be targeted. This perspective provides futuristic implications in the design of inhibitors considering the spatial features and structural insights of the specific CDK.
Collapse
Affiliation(s)
- Sourav Kalra
- Centre for Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, India
| | - Gaurav Joshi
- Centre for Pharmaceutical Sciences and Natural Products, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, India
| | - Anjana Munshi
- Centre for Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, India.
| | - Raj Kumar
- Centre for Pharmaceutical Sciences and Natural Products, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, India.
| |
Collapse
|
29
|
Chilà R, Guffanti F, Damia G. Role and therapeutic potential of CDK12 in human cancers. Cancer Treat Rev 2016; 50:83-88. [PMID: 27662623 DOI: 10.1016/j.ctrv.2016.09.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 08/30/2016] [Accepted: 09/01/2016] [Indexed: 12/31/2022]
Abstract
Phosphorylation of the RNA polymerase II C-terminal domain by cyclin-dependent kinases (CDKs) is important for productive transcription. Deregulated transcription-CDKs have been reported in different human cancers. Until recently CDK9 was the only transcription-CDK with a causative role in cancer, but evidence is cumulating of the importance of CDK12. This review summarizes the role of CDK12 in transcription and RNA processing, in maintaining genomic stability/integrity and in tumorigenesis. CDK12 mutations have been reported in many cancers and have been suggested as a cause of defective DNA repair in ovarian carcinoma. CDK12 may have a role as a new therapeutic target in oncology.
Collapse
Affiliation(s)
- Rosaria Chilà
- Laboratory of Molecular Pharmacology, Oncology Department, IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Federica Guffanti
- Laboratory of Molecular Pharmacology, Oncology Department, IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Giovanna Damia
- Laboratory of Molecular Pharmacology, Oncology Department, IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy.
| |
Collapse
|