1
|
Goto Y, Nakajima K, Yamamoto S, Yamaguchi K. Supersaturation, a Critical Factor Underlying Proteostasis of Amyloid Fibril Formation. J Mol Biol 2024; 436:168475. [PMID: 38311232 DOI: 10.1016/j.jmb.2024.168475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 02/10/2024]
Abstract
From a physicochemical viewpoint, amyloid fibril formation is a phase transition from soluble to crystal-like sates limited by supersaturation. It occurs only above solubility (i.e., the solubility limit) coupled with a breakdown of supersaturation. Although many studies have examined the role of molecular chaperones in the context of proteostasis, the role of supersaturation has not been addressed. Moreover, although molecular chaperone-dependent disaggregations have been reported for preformed amyloid fibrils, amyloid fibrils will not dissolve above the solubility of monomers, even if agitations fragment long fibrils to shorter amyloid particles. On the other hand, on considering a reversible and coupled equilibrium of interactions, folding/unfolding and amyloid formation/disaggregation, molecules stabilizing native states can work as a disaggregase reversing the amyloid fibrils to monomers. It is likely that the proteostasis network has various intra- and extracellular components which disaggregate preformed amyloid fibrils as well as prevent amyloid formation. Further studies with a view of solubility and supersaturation will be essential for comprehensive understanding of proteostasis.
Collapse
Affiliation(s)
- Yuji Goto
- Microsonochemistry Joint Research Chair, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Kichitaro Nakajima
- Microsonochemistry Joint Research Chair, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Suguru Yamamoto
- Division of Clinical Nephrology and Rheumatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan
| | - Keiichi Yamaguchi
- Microsonochemistry Joint Research Chair, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
2
|
Sasaki YC. Diffracted X-ray Tracking for Observing the Internal Motions of Individual Protein Molecules and Its Extended Methodologies. Int J Mol Sci 2023; 24:14829. [PMID: 37834277 PMCID: PMC10573657 DOI: 10.3390/ijms241914829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/27/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
In 1998, the diffracted X-ray tracking (DXT) method pioneered the attainment of molecular dynamics measurements within individual molecules. This breakthrough revolutionized the field by enabling unprecedented insights into the complex workings of molecular systems. Similar to the single-molecule fluorescence labeling technique used in the visible range, DXT uses a labeling method and a pink beam to closely track the diffraction pattern emitted from the labeled gold nanocrystals. Moreover, by utilizing X-rays with extremely short wavelengths, DXT has achieved unparalleled accuracy and sensitivity, exceeding initial expectations. As a result, this remarkable advance has facilitated the search for internal dynamics within many protein molecules. DXT has recently achieved remarkable success in elucidating the internal dynamics of membrane proteins in living cell membranes. This breakthrough has not only expanded our knowledge of these important biomolecules but also has immense potential to advance our understanding of cellular processes in their native environment.
Collapse
Affiliation(s)
- Yuji C. Sasaki
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Chiba 277-8561, Japan;
- AIST-UTokyo Advanced Operando-Measurement Technology Open Innovation Laboratory (OPERANDO-OIL), National Institute of Advanced Industrial Science and Technology (AIST), 6-2-3 Kashiwanoha, Chiba 277-0882, Japan
- Center for Synchrotron Radiation Research, Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho 679-5198, Japan
| |
Collapse
|
3
|
Supersaturation-Dependent Formation of Amyloid Fibrils. Molecules 2022; 27:molecules27144588. [PMID: 35889461 PMCID: PMC9321232 DOI: 10.3390/molecules27144588] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 01/27/2023] Open
Abstract
The supersaturation of a solution refers to a non-equilibrium phase in which the solution is trapped in a soluble state, even though the solute’s concentration is greater than its thermodynamic solubility. Upon breaking supersaturation, crystals form and the concentration of the solute decreases to its thermodynamic solubility. Soon after the discovery of the prion phenomena, it was recognized that prion disease transmission and propagation share some similarities with the process of crystallization. Subsequent studies exploring the structural and functional association between amyloid fibrils and amyloidoses solidified this paradigm. However, recent studies have not necessarily focused on supersaturation, possibly because of marked advancements in structural studies clarifying the atomic structures of amyloid fibrils. On the other hand, there is increasing evidence that supersaturation plays a critical role in the formation of amyloid fibrils and the onset of amyloidosis. Here, we review the recent evidence that supersaturation plays a role in linking unfolding/folding and amyloid fibril formation. We also introduce the HANABI (HANdai Amyloid Burst Inducer) system, which enables high-throughput analysis of amyloid fibril formation by the ultrasonication-triggered breakdown of supersaturation. In addition to structural studies, studies based on solubility and supersaturation are essential both to developing a comprehensive understanding of amyloid fibrils and their roles in amyloidosis, and to developing therapeutic strategies.
Collapse
|
4
|
Development of HANABI, an ultrasonication-forced amyloid fibril inducer. Neurochem Int 2021; 153:105270. [PMID: 34954259 DOI: 10.1016/j.neuint.2021.105270] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/16/2021] [Accepted: 12/21/2021] [Indexed: 12/20/2022]
Abstract
Amyloid fibrils involved in amyloidoses are crystal-like aggregates, which are formed by breaking supersaturation of denatured proteins. Ultrasonication is an efficient method of agitation for breaking supersaturation and thus inducing amyloid fibrils. By combining an ultrasonicator and a microplate reader, we developed the HANABI (HANdai Amyloid Burst Inducer) system that enables high-throughput analysis of amyloid fibril formation. Among high-throughput approaches of amyloid fibril assays, the HANABI system has advantages in accelerating and detecting spontaneous amyloid fibril formation. HANABI is also powerful for amplifying a tiny amount of preformed amyloid fibrils by seeding. Thus, HANABI will contribute to creating therapeutic strategies against amyloidoses by identifying their biomarkers.
Collapse
|
5
|
Gebauer D, Wolf SE. Designing Solid Materials from Their Solute State: A Shift in Paradigms toward a Holistic Approach in Functional Materials Chemistry. J Am Chem Soc 2019; 141:4490-4504. [DOI: 10.1021/jacs.8b13231] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Denis Gebauer
- Department of Chemistry, Physical Chemistry, University of Konstanz, 78457 Konstanz, Germany
| | - Stephan E. Wolf
- Department of Materials Science and Engineering, Institute of Glass and Ceramics and Interdisciplinary Center for Functional Particle Systems, Friedrich-Alexander-University Erlangen-Nuremberg, 91058 Erlangen, Germany
| |
Collapse
|
6
|
Sekiguchi H, Kuramochi M, Ikezaki K, Okamura Y, Yoshimura K, Matsubara K, Chang JW, Ohta N, Kubo T, Mio K, Suzuki Y, Chavas LMG, Sasaki YC. Diffracted X-ray Blinking Tracks Single Protein Motions. Sci Rep 2018; 8:17090. [PMID: 30504916 PMCID: PMC6269541 DOI: 10.1038/s41598-018-35468-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 11/06/2018] [Indexed: 11/09/2022] Open
Abstract
Single molecule dynamics studies have begun to use quantum probes. Single particle analysis using cryo-transmission electron microscopy has dramatically improved the resolution when studying protein structures and is shifting towards molecular motion observations. X-ray free-electron lasers are also being explored as routes for determining single molecule structures of biological entities. Here, we propose a new X-ray single molecule technology that allows observation of molecular internal motion over long time scales, ranging from milliseconds up to 103 seconds. Our method uses both low-dose monochromatic X-rays and nanocrystal labelling technology. During monochromatic X-ray diffraction experiments, the intensity of X-ray diffraction from moving single nanocrystals appears to blink because of Brownian motion in aqueous solutions. X-ray diffraction spots from moving nanocrystals were observed to cycle in and out of the Bragg condition. Consequently, the internal motions of a protein molecule labelled with nanocrystals could be extracted from the time trajectory using this diffracted X-ray blinking (DXB) approach. Finally, we succeeded in distinguishing the degree of fluctuation motions of an individual acetylcholine-binding protein (AChBP) interacting with acetylcholine (ACh) using a laboratory X-ray source.
Collapse
Affiliation(s)
- Hiroshi Sekiguchi
- Research & Utilization Div., Japan Synchrotron Radiation Research Institute, 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo, 567-5198, Japan.
| | - Masahiro Kuramochi
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan
| | - Keigo Ikezaki
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan
| | - Yu Okamura
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan
| | - Kazuki Yoshimura
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan
| | - Ken Matsubara
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan
| | - Jae-Won Chang
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan
| | - Noboru Ohta
- Research & Utilization Div., Japan Synchrotron Radiation Research Institute, 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo, 567-5198, Japan
| | - Tai Kubo
- Molecular Profiling Research Center for Drug Discovery, National Institute of Advanced Industrial Science and Technology, 2-4-7 Aomi, Koto-ku, Tokyo, 135-0064, Japan.,JapanAIST-UTokyo Advanced Operando Measurement Technology Open Innovation Laboratory, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan
| | - Kazuhiro Mio
- Molecular Profiling Research Center for Drug Discovery, National Institute of Advanced Industrial Science and Technology, 2-4-7 Aomi, Koto-ku, Tokyo, 135-0064, Japan.,JapanAIST-UTokyo Advanced Operando Measurement Technology Open Innovation Laboratory, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan
| | - Yoshio Suzuki
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan
| | - Leonard M G Chavas
- Proxima-I, Synchrotron SOLEIL, L'Orme des Merisiers Saint-Aubin, BP 48 91192, Gif-sur-Yvette Cedex, France
| | - Yuji C Sasaki
- Research & Utilization Div., Japan Synchrotron Radiation Research Institute, 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo, 567-5198, Japan. .,Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan. .,JapanAIST-UTokyo Advanced Operando Measurement Technology Open Innovation Laboratory, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan.
| |
Collapse
|
7
|
Nitani A, Muta H, Adachi M, So M, Sasahara K, Sakurai K, Chatani E, Naoe K, Ogi H, Hall D, Goto Y. Heparin-dependent aggregation of hen egg white lysozyme reveals two distinct mechanisms of amyloid fibrillation. J Biol Chem 2017; 292:21219-21230. [PMID: 29101231 DOI: 10.1074/jbc.m117.813097] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 10/19/2017] [Indexed: 01/22/2023] Open
Abstract
Heparin, a biopolymer possessing high negative charge density, is known to accelerate amyloid fibrillation by various proteins. Using hen egg white lysozyme, we studied the effects of heparin on protein aggregation at low pH, raised temperature, and applied ultrasonic irradiation, conditions under which amyloid fibrillation was promoted. Heparin exhibited complex bimodal concentration-dependent effects, either accelerating or inhibiting fibrillation at pH 2.0 and 60 °C. At concentrations lower than 20 μg/ml, heparin accelerated fibrillation through transient formation of hetero-oligomeric aggregates. Between 0.1 and 10 mg/ml, heparin rapidly induced amorphous heteroaggregation with little to no accompanying fibril formation. Above 10 mg/ml, heparin again induced fibrillation after a long lag time preceded by oligomeric aggregate formation. Compared with studies performed using monovalent and divalent anions, the results suggest two distinct mechanisms of heparin-induced fibrillation. At low heparin concentrations, initial hen egg white lysozyme cluster formation and subsequent fibrillation is promoted by counter ion binding and screening of repulsive charges. At high heparin concentrations, fibrillation is caused by a combination of salting out and macromolecular crowding effects probably independent of protein net charge. Both fibrillation mechanisms compete against amorphous aggregation, producing a complex heparin concentration-dependent phase diagram. Moreover, the results suggest an active role for amorphous oligomeric aggregates in triggering fibrillation, whereby breakdown of supersaturation takes place through heterogeneous nucleation of amyloid on amorphous aggregates.
Collapse
Affiliation(s)
- Ayame Nitani
- From the Institute for Protein Research, Osaka University, Yamadaoka 3-2, Suita, Osaka 565-0871, Japan
| | - Hiroya Muta
- From the Institute for Protein Research, Osaka University, Yamadaoka 3-2, Suita, Osaka 565-0871, Japan
| | - Masayuki Adachi
- From the Institute for Protein Research, Osaka University, Yamadaoka 3-2, Suita, Osaka 565-0871, Japan
| | - Masatomo So
- From the Institute for Protein Research, Osaka University, Yamadaoka 3-2, Suita, Osaka 565-0871, Japan
| | - Kenji Sasahara
- From the Institute for Protein Research, Osaka University, Yamadaoka 3-2, Suita, Osaka 565-0871, Japan
| | - Kazumasa Sakurai
- Institute of Advanced Technology, Kindai University, 930 Nishimitani, Kinokawa, Wakayama 649-6493, Japan
| | - Eri Chatani
- Department of Chemistry, Graduate School of Science, Kobe University, Hyogo 657-8501, Japan
| | - Kazumitsu Naoe
- National Institute of Technology, Nara College, Nara 639-1080, Japan
| | - Hirotsugu Ogi
- Graduate School of Engineering, Suita, Osaka 565-0871, Japan, and
| | - Damien Hall
- From the Institute for Protein Research, Osaka University, Yamadaoka 3-2, Suita, Osaka 565-0871, Japan.,Research School of Chemistry, Australian National University, Acton, ACT 2601, Australia
| | - Yuji Goto
- From the Institute for Protein Research, Osaka University, Yamadaoka 3-2, Suita, Osaka 565-0871, Japan,
| |
Collapse
|
8
|
Matsushita Y, Sekiguchi H, Wong CJ, Nishijima M, Ikezaki K, Hamada D, Goto Y, Sasaki YC. Nanoscale Dynamics of Protein Assembly Networks in Supersaturated Solutions. Sci Rep 2017; 7:13883. [PMID: 29093529 PMCID: PMC5665898 DOI: 10.1038/s41598-017-14022-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 10/02/2017] [Indexed: 11/21/2022] Open
Abstract
Proteins in solution are conventionally considered macromolecules. Dynamic microscopic structures in supersaturated protein solutions have received increasing attention in the study of protein crystallisation and the formation of misfolded aggregates. Here, we present a method for observing rotational dynamic structures that can detect the interaction of nanoscale lysozyme protein networks via diffracted X-ray tracking (DXT). Our DXT analysis demonstrated that the rearrangement behaviours of lysozyme networks or clusters, which are driven by local density and concentration fluctuations, generate force fields on the femtonewton to attonewton (fN – aN) scale. This quantitative parameter was previously observed in our experiments on supersaturated inorganic solutions. This commonality provides a way to clarify the solution structures of a variety of supersaturated solutions as well as to control nucleation and crystallisation in supersaturated solutions.
Collapse
Affiliation(s)
- Y Matsushita
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, Japan
| | - H Sekiguchi
- Japan Synchrotron Radiation Research Institute, SPring-8, 1-1-1 Kouto, Sayo, Hyogo, Japan
| | - C Jae Wong
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, Japan.,AIST-UTokyo Advanced Operando-Measurement Technology Open Innovation Laboratory (OPERANDO-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Chiba, 277-8568, Japan
| | - M Nishijima
- Office for University - Industry Collaboration, Osaka University, 2-8, Yamadaoka, Suita, Osaka, Japan
| | - K Ikezaki
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, Japan.,AIST-UTokyo Advanced Operando-Measurement Technology Open Innovation Laboratory (OPERANDO-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Chiba, 277-8568, Japan
| | - D Hamada
- Graduate School of Engineering, Kobe University, 7-1-48 Minato-jima, Minami, Kobe, Hyogo, Japan.,SPring-8/RIKEN, 1-1-1 Kouto, Sayo, Hyogo, Japan
| | - Y Goto
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka, Japan
| | - Y C Sasaki
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, Japan. .,Japan Synchrotron Radiation Research Institute, SPring-8, 1-1-1 Kouto, Sayo, Hyogo, Japan. .,AIST-UTokyo Advanced Operando-Measurement Technology Open Innovation Laboratory (OPERANDO-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Chiba, 277-8568, Japan.
| |
Collapse
|