1
|
Kanie T, Ng R, Abbott KL, Tanvir NM, Lorentzen E, Pongs O, Jackson PK. Myristoylated Neuronal Calcium Sensor-1 captures the preciliary vesicle at distal appendages. eLife 2025; 14:e85998. [PMID: 39882855 PMCID: PMC11984960 DOI: 10.7554/elife.85998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 01/09/2025] [Indexed: 01/31/2025] Open
Abstract
The primary cilium is a microtubule-based organelle that cycles through assembly and disassembly. In many cell types, formation of the cilium is initiated by recruitment of preciliary vesicles to the distal appendage of the mother centriole. However, the distal appendage mechanism that directly captures preciliary vesicles is yet to be identified. In an accompanying paper, we show that the distal appendage protein, CEP89, is important for the preciliary vesicle recruitment, but not for other steps of cilium formation (Kanie et al., 2025). The lack of a membrane-binding motif in CEP89 suggests that it may indirectly recruit preciliary vesicles via another binding partner. Here, we identify Neuronal Calcium Sensor-1 (NCS1) as a stoichiometric interactor of CEP89. NCS1 localizes to the position between CEP89 and the centriole-associated vesicle marker, RAB34, at the distal appendage. This localization was completely abolished in CEP89 knockouts, suggesting that CEP89 recruits NCS1 to the distal appendage. Similar to CEP89 knockouts, preciliary vesicle recruitment as well as subsequent cilium formation was perturbed in NCS1 knockout cells. The ability of NCS1 to recruit the preciliary vesicle is dependent on its myristoylation motif and NCS1 knockout cells expressing a myristoylation defective mutant failed to rescue the vesicle recruitment defect despite localizing properly to the centriole. In sum, our analysis reveals the first known mechanism for how the distal appendage recruits the preciliary vesicles.
Collapse
Affiliation(s)
- Tomoharu Kanie
- Baxter Laboratory, Department of Microbiology & Immunology and Department of Pathology, Stanford UniversityStanfordUnited States
- Department of Cell Biology, University of Oklahoma Health Sciences CenterOklahoma CityUnited States
| | - Roy Ng
- Baxter Laboratory, Department of Microbiology & Immunology and Department of Pathology, Stanford UniversityStanfordUnited States
| | - Keene L Abbott
- Baxter Laboratory, Department of Microbiology & Immunology and Department of Pathology, Stanford UniversityStanfordUnited States
| | | | - Esben Lorentzen
- Department of Molecular Biology and Genetics, Aarhus UniversityAarhusDenmark
| | - Olaf Pongs
- Institute for Physiology, Center for Integrative Physiology and Molecular Medicine, Saarland UniversitySaarbrückenGermany
| | - Peter K Jackson
- Baxter Laboratory, Department of Microbiology & Immunology and Department of Pathology, Stanford UniversityStanfordUnited States
| |
Collapse
|
2
|
Lipina TV, Li S, Petrova ES, Amstislavskaya TG, Cameron RT, Elliott C, Gondo Y, McGirr A, Mullins JGL, Baillie GS, Woodgett JR, Clapcote SJ. PDE4B Missense Variant Increases Susceptibility to Post-traumatic Stress Disorder-Relevant Phenotypes in Mice. J Neurosci 2024; 44:e0137242024. [PMID: 39256048 PMCID: PMC11502227 DOI: 10.1523/jneurosci.0137-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 08/20/2024] [Accepted: 08/26/2024] [Indexed: 09/12/2024] Open
Abstract
Large-scale genome-wide association studies (GWASs) have associated intronic variants in PDE4B, encoding cAMP-specific phosphodiesterase-4B (PDE4B), with increased risk for post-traumatic stress disorder (PTSD), as well as schizophrenia and substance use disorders that are often comorbid with it. However, the pathophysiological mechanisms of genetic risk involving PDE4B are poorly understood. To examine the effects of PDE4B variation on phenotypes with translational relevance to psychiatric disorders, we focused on PDE4B missense variant M220T, which is present in the human genome as rare coding variant rs775201287. When expressed in HEK-293 cells, PDE4B1-M220T exhibited an attenuated response to a forskolin-elicited increase in the intracellular cAMP concentration. In behavioral tests, homozygous Pde4b M220T male mice with a C57BL/6JJcl background exhibited increased reactivity to novel environments, startle hyperreactivity, prepulse inhibition deficits, altered cued fear conditioning, and enhanced spatial memory, accompanied by an increase in cAMP signaling pathway-regulated expression of BDNF in the hippocampus. In response to a traumatic event (10 tone-shock pairings), neuronal activity was decreased in the cortex but enhanced in the amygdala and hippocampus of Pde4b M220T mice. At 24 h post-trauma, Pde4b M220T mice exhibited increased startle hyperreactivity and decreased plasma corticosterone levels, similar to phenotypes exhibited by PTSD patients. Trauma-exposed Pde4b M220T mice also exhibited a slower decay in freezing at 15 and 30 d post-trauma, demonstrating enhanced persistence of traumatic memories, similar to that exhibited by PTSD patients. These findings provide substantive mouse model evidence linking PDE4B variation to PTSD-relevant phenotypes and thus highlight how genetic variation of PDE4B may contribute to PTSD risk.
Collapse
Affiliation(s)
- Tatiana V Lipina
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Shupeng Li
- School of Chemical Biology and Biotechnology, Shenzhen Graduate School, Peking University, Shenzhen 518071, China
| | - Ekaterina S Petrova
- Federal State Budgetary Scientific Institution, Scientific Research Institute of Physiology & Basic Medicine, Novosibirsk 630117, Russia
| | - Tamara G Amstislavskaya
- Federal State Budgetary Scientific Institution, Scientific Research Institute of Physiology & Basic Medicine, Novosibirsk 630117, Russia
| | - Ryan T Cameron
- School of Cardiovascular & Metabolic Health, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow G12 8TA, United Kingdom
| | - Christina Elliott
- School of Cardiovascular & Metabolic Health, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow G12 8TA, United Kingdom
| | - Yoichi Gondo
- Mutagenesis and Genomics Team, RIKEN BioResource Center, Tsukuba, Ibaraki 305-0074, Japan
| | - Alexander McGirr
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | | | - George S Baillie
- School of Cardiovascular & Metabolic Health, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow G12 8TA, United Kingdom
| | - James R Woodgett
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada
| | - Steven J Clapcote
- School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| |
Collapse
|
3
|
Concetti C, Viskaitis P, Grujic N, Duss SN, Privitera M, Bohacek J, Peleg-Raibstein D, Burdakov D. Exploratory Rearing Is Governed by Hypothalamic Melanin-Concentrating Hormone Neurons According to Locus Ceruleus. J Neurosci 2024; 44:e0015242024. [PMID: 38575343 PMCID: PMC11112542 DOI: 10.1523/jneurosci.0015-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/20/2024] [Accepted: 03/25/2024] [Indexed: 04/06/2024] Open
Abstract
Information seeking, such as standing on tiptoes to look around in humans, is observed across animals and helps survival. Its rodent analog-unsupported rearing on hind legs-was a classic model in deciphering neural signals of cognition and is of intense renewed interest in preclinical modeling of neuropsychiatric states. Neural signals and circuits controlling this dedicated decision to seek information remain largely unknown. While studying subsecond timing of spontaneous behavioral acts and activity of melanin-concentrating hormone (MCH) neurons (MNs) in behaving male and female mice, we observed large MN activity spikes that aligned to unsupported rears. Complementary causal, loss and gain of function, analyses revealed specific control of rear frequency and duration by MNs and MCHR1 receptors. Activity in a key stress center of the brain-the locus ceruleus noradrenaline cells-rapidly inhibited MNs and required functional MCH receptors for its endogenous modulation of rearing. By defining a neural module that both tracks and controls rearing, these findings may facilitate further insights into biology of information seeking.
Collapse
Affiliation(s)
- Cristina Concetti
- Department of Health Sciences and Technology, Neuroscience Center Zürich (ZNZ), Swiss Federal Institute of Technology (ETH Zürich), Zürich 8092, Switzerland
| | - Paulius Viskaitis
- Department of Health Sciences and Technology, Neuroscience Center Zürich (ZNZ), Swiss Federal Institute of Technology (ETH Zürich), Zürich 8092, Switzerland
| | - Nikola Grujic
- Department of Health Sciences and Technology, Neuroscience Center Zürich (ZNZ), Swiss Federal Institute of Technology (ETH Zürich), Zürich 8092, Switzerland
| | - Sian N Duss
- Department of Health Sciences and Technology, Neuroscience Center Zürich (ZNZ), Swiss Federal Institute of Technology (ETH Zürich), Zürich 8092, Switzerland
| | - Mattia Privitera
- Department of Health Sciences and Technology, Neuroscience Center Zürich (ZNZ), Swiss Federal Institute of Technology (ETH Zürich), Zürich 8092, Switzerland
| | - Johannes Bohacek
- Department of Health Sciences and Technology, Neuroscience Center Zürich (ZNZ), Swiss Federal Institute of Technology (ETH Zürich), Zürich 8092, Switzerland
| | - Daria Peleg-Raibstein
- Department of Health Sciences and Technology, Neuroscience Center Zürich (ZNZ), Swiss Federal Institute of Technology (ETH Zürich), Zürich 8092, Switzerland
| | - Denis Burdakov
- Department of Health Sciences and Technology, Neuroscience Center Zürich (ZNZ), Swiss Federal Institute of Technology (ETH Zürich), Zürich 8092, Switzerland
| |
Collapse
|
4
|
O'Leary TP, Brown RE. Age-related changes in species-typical behaviours in the 5xFAD mouse model of Alzheimer's disease from 4 to 16 months of age. Behav Brain Res 2024; 465:114970. [PMID: 38531510 DOI: 10.1016/j.bbr.2024.114970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/12/2024] [Accepted: 03/23/2024] [Indexed: 03/28/2024]
Abstract
Alzheimer's disease (AD) patients show age-related decreases in the ability to perform activities of daily living and the decline in these activities is related to the severity of neurobiological deterioration underlying the disease. The 5xFAD mouse model of AD shows age-related impairments in sensory- motor and cognitive function, but little is known about changes in species-typical behaviours that may model activities of daily living in AD patients. Therefore, we examined species-typical behaviours used as indices of exploration (rearing) and compulsivity (grooming) across six tests of anxiety-like behaviour or motor function in female 5xFAD mice from 3 to 16 months of age. Robust decreases in rearing were found in 5xFAD mice across all tests after 9 months of age, although few differences were observed in grooming. A fine-scale analysis of grooming, however, revealed a previously unresolved and spatially restricted pattern of grooming in 5xFAD mice at 13-16 months of age. We then examined changes in species-typical behaviours in the home-cage, and show impaired nest building in 5xFAD mice at all ages tested. Lastly, we examined the relationship between reduced species typical behaviours in 5xFAD mice and the presentation of freezing behaviour, a commonly used measure of memory for conditioned fear. These results showed that along with cognitive and sensory-motor behaviour, 5xFAD mice have robust age-related impairments in species-typical behaviours. Therefore, species typical behaviours in 5xFAD mice may help to model the decline in activities of daily living observed in AD patients, and may provide useful behavioural phenotypes for evaluating the pre-clinical efficacy of novel therapeutics for AD.
Collapse
Affiliation(s)
- Timothy P O'Leary
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Richard E Brown
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS B3H 4R2, Canada.
| |
Collapse
|
5
|
Ahmadi M, Rouhi N, Fathollahi Y, Shojaei A, Rezaei M, Rostami S, Saab BJ, Mirnajafi-Zadeh J. A Dual Effect of Dopamine on Hippocampal LTP and Cognitive Functions in Control and Kindled Mice. J Neurosci 2024; 44:e0926212023. [PMID: 38124004 PMCID: PMC10860576 DOI: 10.1523/jneurosci.0926-21.2023] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 11/02/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023] Open
Abstract
The impact of dopamine on synaptic plasticity and cognitive function following seizure is not well understood. Here, using optogenetics in the freely behaving animal, we examined exploratory behavior and short-term memory in control and kindled male mice during tonic stimulation of dopaminergic neurons within the ventral tegmental area (VTA). Furthermore, using field potential recording, we compared the effect of dopamine on synaptic plasticity in stratum radiatum and stratum oriens layers of both ventral and dorsal hippocampal CA1 regions, and again in both control and kindled male mice. Our results demonstrate that tonic stimulation of VTA dopaminergic neurons enhances novelty-driven exploration and short-term spatial memory in kindled mice, essentially rescuing the seizure-induced cognitive impairment. In addition, we found that dopamine has a dual effect on LTP in control versus kindled mice, such that application of dopamine prevented LTP induction in slices from control mice, but rescued LTP in slices taken from the kindled animal. Taken together, our results highlight the potential for dopaminergic modulation in improving synaptic plasticity and cognitive function following seizure.
Collapse
Affiliation(s)
- Mahboubeh Ahmadi
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran 1411713116, Iran
| | - Nahid Rouhi
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran 1411713116, Iran
| | - Yaghoub Fathollahi
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran 1411713116, Iran
| | - Amir Shojaei
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran 1411713116, Iran
| | - Mahmoud Rezaei
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran 1411713116, Iran
| | - Sareh Rostami
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran 1411713116, Iran
| | - Bechara J Saab
- Preclinical Laboratory for Translational Research into Affective Disorders, DPPP, Psychiatric Hospital, University of Zurich, Zurich CH-8008, Switzerland
- Neuroscience Center Zurich, University of Zurich and ETH, Zurich 8057, Switzerland
- Mobio Interactive Pte. Ltd., 389637, Singapore, Republic of Singapore
| | - Javad Mirnajafi-Zadeh
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran 1411713116, Iran
- Institute for Brain Sciences and Cognition, Tarbiat Modares University, Tehran 1411713116, Iran
| |
Collapse
|
6
|
Shan X, Contreras MP, Sawangjit A, Dimitrov S, Born J, Inostroza M. Rearing is critical for forming spatial representations in pre-weanling rats. Behav Brain Res 2023; 452:114545. [PMID: 37321311 DOI: 10.1016/j.bbr.2023.114545] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 05/24/2023] [Accepted: 06/13/2023] [Indexed: 06/17/2023]
Abstract
Rearing, i.e., standing on the hind limbs in an upright posture, is part of a rat's innate exploratory motor program. Here, we examined in developing rats whether rearing is critical for the pup's capability to form spatial representations based on distal environmental cues. Pups (male) were tested at PD18, i.e., the first day they typically exhibit stable rearing, on a spatial habituation paradigm comprising a Familiarization session (with the pup exposed to an arena with a specific configuration of distal cues) followed, 3 h later, by a Test session where the pups were either re-exposed to the identical distal cue configuration (NoChange) or a changed configuration (DistalChange). In Experiment 1, rearing activity (rearing events, duration) decreased from Familiarization to Test in the NoChange pups but, remained elevated in the DistalChange group indicating that these pups recognized the distal novelty. Recognition of distal novelty was associated with increased c-Fos expression in hippocampal and medial prefrontal cortex (mPFC) areas, compared with NoChange pups. Analysis of GAD67+ cells suggested a parallel increase in excitation and inhibition specifically in prelimbic mPFC networks in response to distal cue changes. In Experiment 2, the pups were mechanically prevented from rearing while still seeing the distal cues during Familiarization. Rearing activity in the Test session of these pups did not differ between groups that were or were not exposed to a changed distal cue configuration at Test. The findings evidence a critical role of rearing for the emergence of allocentric representations integrating distal space during early development.
Collapse
Affiliation(s)
- Xia Shan
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany; Graduate School of Neural & Behavioural Science, International Max Planck Research School, Tübingen, Germany
| | - María Paz Contreras
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany; Graduate School of Neural & Behavioural Science, International Max Planck Research School, Tübingen, Germany
| | - Anuck Sawangjit
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
| | - Stoyan Dimitrov
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
| | - Jan Born
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany; German Center for Diabetes Research (DZD), Institute for Diabetes Research & Metabolic Diseases of the Helmholtz Center Munich at the University Tübingen (IDM), Germany; Werner Reichert Center for Integrative Neuroscience, University of Tübingen, Tübingen, Germany; German Center for Mental Health (DZPG), Germany.
| | - Marion Inostroza
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
7
|
Layfield D, Sidell N, Blankenberger K, Newman EL. Hippocampal inactivation during rearing on hind legs impairs spatial memory. Sci Rep 2023; 13:6136. [PMID: 37061540 PMCID: PMC10105745 DOI: 10.1038/s41598-023-33209-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 04/09/2023] [Indexed: 04/17/2023] Open
Abstract
Spatial memory requires an intact hippocampus. Hippocampal function during epochs of locomotion and quiet rest (e.g., grooming and reward consumption) has been the target of extensive study. However, during navigation rats frequently rear up onto their hind legs, and the importance of hippocampal activity during these periods of attentive sampling for spatial memory is unknown. To address this, we tested the necessity of dorsal hippocampal activity during rearing epochs in the study phase of a delayed win-shift task for memory performance in the subsequent test phase. Hippocampal activity was manipulated with closed-loop, bilateral, optogenetic inactivation. Spatial memory accuracy was significantly and selectively reduced when the dorsal hippocampus was inactivated during rearing epochs at encoding. These data show that hippocampal activity during periods of rearing can be important for spatial memory, revealing a novel link between hippocampal function during epochs of rearing and spatial memory.
Collapse
Affiliation(s)
- Dylan Layfield
- Program in Neuroscience, Indiana University, 1101 E 10th St, Bloomington, IN, 47405, USA.
- Department of Psychological and Brain Sciences, Indiana University, 1101 E 10th St, Bloomington, IN, 47405, USA.
| | - Nathan Sidell
- Department of Psychological and Brain Sciences, Indiana University, 1101 E 10th St, Bloomington, IN, 47405, USA
| | - Kevin Blankenberger
- Department of Psychological and Brain Sciences, Indiana University, 1101 E 10th St, Bloomington, IN, 47405, USA
| | - Ehren Lee Newman
- Program in Neuroscience, Indiana University, 1101 E 10th St, Bloomington, IN, 47405, USA
- Department of Psychological and Brain Sciences, Indiana University, 1101 E 10th St, Bloomington, IN, 47405, USA
| |
Collapse
|
8
|
Kanie T, Ng R, Abbott KL, Pongs O, Jackson PK. Myristoylated Neuronal Calcium Sensor-1 captures the ciliary vesicle at distal appendages. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.06.523037. [PMID: 36712037 PMCID: PMC9881967 DOI: 10.1101/2023.01.06.523037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The primary cilium is a microtubule-based organelle that cycles through assembly and disassembly. In many cell types, formation of the cilium is initiated by recruitment of ciliary vesicles to the distal appendage of the mother centriole. However, the distal appendage mechanism that directly captures ciliary vesicles is yet to be identified. In an accompanying paper, we show that the distal appendage protein, CEP89, is important for thef ciliary vesicle recruitment, but not for other steps of cilium formation (Tomoharu Kanie, Love, Fisher, Gustavsson, & Jackson, 2023). The lack of a membrane binding motif in CEP89 suggests that it may indirectly recruit ciliary vesicles via another binding partner. Here, we identify Neuronal Calcium Sensor-1 (NCS1) as a stoichiometric interactor of CEP89. NCS1 localizes to the position between CEP89 and a ciliary vesicle marker, RAB34, at the distal appendage. This localization was completely abolished in CEP89 knockouts, suggesting that CEP89 recruits NCS1 to the distal appendage. Similarly to CEP89 knockouts, ciliary vesicle recruitment as well as subsequent cilium formation was perturbed in NCS1 knockout cells. The ability of NCS1 to recruit the ciliary vesicle is dependent on its myristoylation motif and NCS1 knockout cells expressing myristoylation defective mutant failed to rescue the vesicle recruitment defect despite localizing proper localization to the centriole. In sum, our analysis reveals the first known mechanism for how the distal appendage recruits the ciliary vesicles.
Collapse
Affiliation(s)
- Tomoharu Kanie
- Baxter Laboratory, Department of Microbiology & Immunology and Department of Pathology, Stanford University, Stanford, CA, 94305
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma, OK, 73112
| | - Roy Ng
- Baxter Laboratory, Department of Microbiology & Immunology and Department of Pathology, Stanford University, Stanford, CA, 94305
| | - Keene L. Abbott
- Baxter Laboratory, Department of Microbiology & Immunology and Department of Pathology, Stanford University, Stanford, CA, 94305
| | - Olaf Pongs
- Institute for Physiology, Center for Integrative Physiology and Molecular Medicine (CIPPM), Saarland University, Homburg, Germany
| | - Peter K. Jackson
- Baxter Laboratory, Department of Microbiology & Immunology and Department of Pathology, Stanford University, Stanford, CA, 94305
| |
Collapse
|
9
|
Pays E. The function of apolipoproteins L (APOLs): relevance for kidney disease, neurotransmission disorders, cancer and viral infection. FEBS J 2021; 288:360-381. [PMID: 32530132 PMCID: PMC7891394 DOI: 10.1111/febs.15444] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/24/2020] [Accepted: 06/03/2020] [Indexed: 12/17/2022]
Abstract
The discovery that apolipoprotein L1 (APOL1) is the trypanolytic factor of human serum raised interest about the function of APOLs, especially following the unexpected finding that in addition to their protective action against sleeping sickness, APOL1 C-terminal variants also cause kidney disease. Based on the analysis of the structure and trypanolytic activity of APOL1, it was proposed that APOLs could function as ion channels of intracellular membranes and be involved in mechanisms triggering programmed cell death. In this review, the recent finding that APOL1 and APOL3 inversely control the synthesis of phosphatidylinositol-4-phosphate (PI(4)P) by the Golgi PI(4)-kinase IIIB (PI4KB) is commented. APOL3 promotes Ca2+ -dependent activation of PI4KB, but due to their increased interaction with APOL3, APOL1 C-terminal variants can inactivate APOL3, leading to reduction of Golgi PI(4)P synthesis. The impact of APOLs on several pathological processes that depend on Golgi PI(4)P levels is discussed. I propose that through their effect on PI4KB activity, APOLs control not only actomyosin activities related to vesicular trafficking, but also the generation and elongation of autophagosomes induced by inflammation.
Collapse
Affiliation(s)
- Etienne Pays
- Laboratory of Molecular ParasitologyIBMMUniversité Libre de BruxellesGosseliesBelgium
| |
Collapse
|
10
|
Hippocampal Network Dynamics during Rearing Episodes. Cell Rep 2019; 23:1706-1715. [PMID: 29742427 PMCID: PMC5978794 DOI: 10.1016/j.celrep.2018.04.021] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 02/19/2018] [Accepted: 04/03/2018] [Indexed: 12/12/2022] Open
Abstract
Animals build a model of their surroundings on the basis of information gathered during exploration. Rearing on the hindlimbs changes the vantage point of the animal, increasing the sampled area of the environment. This environmental knowledge is suggested to be integrated into a cognitive map stored by the hippocampus. Previous studies have found that damage to the hippocampus impairs rearing. Here, we characterize the operational state of the hippocampus during rearing episodes. We observe an increase of theta frequency paralleled by a sink in the dentate gyrus and a prominent theta-modulated fast gamma transient in the middle molecular layer. On the descending phase of rearing, a decrease of theta power is detected. Place cells stop firing during rearing, while a different subset of putative pyramidal cells is activated. Our results suggest that the hippocampus switches to a different operational state during rearing, possibly to update spatial representation with information from distant sources. Theta frequency increased during rearing coupled with an elevated dentate theta sink Robust theta-fast gamma phase coupling in the dentate gyrus accompanied rearing Rearing-specific firing rate increase of putative pyramidal cells was detected Conversely, if rearing occurred in a neuron’s place field, its firing rate decreased
Collapse
|
11
|
Ng E, Georgiou J, Avila A, Trought K, Mun HS, Hodgson M, Servinis P, Roder JC, Collingridge GL, Wong AHC. Mice lacking neuronal calcium sensor-1 show social and cognitive deficits. Behav Brain Res 2019; 381:112420. [PMID: 31821787 DOI: 10.1016/j.bbr.2019.112420] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 12/06/2019] [Accepted: 12/06/2019] [Indexed: 12/18/2022]
Abstract
Neuronal calcium sensor-1 or Frequenin is a calcium sensor widely expressed in the nervous system, with roles in neurotransmission, neurite outgrowth, synaptic plasticity, learning, and motivated behaviours. Neuronal calcium sensor-1 has been implicated in neuropsychiatric disorders including autism spectrum disorder, schizophrenia, and bipolar disorder. However, the role of neuronal calcium sensor-1 in behavioural phenotypes and brain changes relevant to autism spectrum disorder have not been evaluated. We show that neuronal calcium sensor-1 deletion in the mouse leads to a mild deficit in social approach and impaired displaced object recognition without affecting social interactions, behavioural flexibility, spatial reference memory, anxiety-like behaviour, or sensorimotor gating. Morphologically, neuronal calcium sensor-1 deletion leads to increased dendritic arbour complexity in the frontal cortex. At the level of hippocampal synaptic plasticity, neuronal calcium sensor-1 deletion leads to a reduction in long-term potentiation in the dentate gyrus, but not area Cornu Ammonis 1. Metabotropic glutamate receptor-induced long-term depression was unaffected in both dentate and Cornu Ammonis 1. These studies identify roles for neuronal calcium sensor-1 in specific subregions of the brain including a phenotype relevant to neuropsychiatric disorders.
Collapse
Affiliation(s)
- Enoch Ng
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, M5G 1X5, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
| | - John Georgiou
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, M5G 1X5, Canada
| | - Ariel Avila
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, M5G 1X5, Canada; Basic Science Department, Faculty of Medicine, Universidad Católica de la Santísima Concepción (UCSC), Concepción, 4090541, Chile
| | - Kathleen Trought
- Institute of Medical Science, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
| | - Ho-Suk Mun
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, M5G 1X5, Canada; Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
| | - Meggie Hodgson
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, M5G 1X5, Canada
| | - Panayiotis Servinis
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, M5G 1X5, Canada
| | - John C Roder
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, M5G 1X5, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, M5S 1A8, Canada; Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
| | - Graham L Collingridge
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, M5G 1X5, Canada; Tanz Centre for Research in Neurodegenerative Diseases and Department of Physiology, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
| | - Albert H C Wong
- Institute of Medical Science, University of Toronto, Toronto, Ontario, M5S 1A8, Canada; Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, M5T 1R8, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, M5T 1R8, Canada.
| |
Collapse
|
12
|
Abstract
Mammals have evolved specialized brain systems to support efficient navigation within diverse habitats and over varied distances, but while navigational strategies and sensory mechanisms vary across species, core spatial components appear to be widely shared. This review presents common elements found in mammalian spatial mapping systems, focusing on the cells in the hippocampal formation representing orientational and locational spatial information, and 'core' mammalian hippocampal circuitry. Mammalian spatial mapping systems make use of both allothetic cues (space-defining cues in the external environment) and idiothetic cues (cues derived from self-motion). As examples of each cue type, we discuss: environmental boundaries, which control both orientational and locational neuronal activity and behaviour; and 'path integration', a process that allows the estimation of linear translation from velocity signals, thought to depend upon grid cells in the entorhinal cortex. Building cognitive maps entails sampling environments: we consider how the mapping system controls exploration to acquire spatial information, and how exploratory strategies may integrate idiothetic with allothetic information. We discuss how 'replay' may act to consolidate spatial maps, and simulate trajectories to aid navigational planning. Finally, we discuss grid cell models of vector navigation.
Collapse
Affiliation(s)
| | - Tom Hartley
- Department of Psychology, University of York, YO10 5DD, UK
| | - Colin Lever
- Psychology Department, Durham University, DH1 3LE, UK.
| |
Collapse
|
13
|
Hughes S, Celikel T. Prominent Inhibitory Projections Guide Sensorimotor Computation: An Invertebrate Perspective. Bioessays 2019; 41:e1900088. [DOI: 10.1002/bies.201900088] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/17/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Samantha Hughes
- HAN BioCentreHAN University of Applied Sciences Nijmegen 6525EM The Netherlands
| | - Tansu Celikel
- Department of Neurophysiology, Donders Institute for Brain Cognition and BehaviourRadboud University Nijmegen 6525AJ The Netherlands
| |
Collapse
|
14
|
Insights into real-time chemical processes in a calcium sensor protein-directed dynamic library. Nat Commun 2019; 10:2798. [PMID: 31243268 PMCID: PMC6595003 DOI: 10.1038/s41467-019-10627-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 05/22/2019] [Indexed: 12/12/2022] Open
Abstract
Dynamic combinatorial chemistry (DCC) has proven its potential in drug discovery speeding the identification of modulators of biological targets. However, the exchange chemistries typically take place under specific reaction conditions, with limited tools capable of operating under physiological parameters. Here we report a catalyzed protein-directed DCC working at low temperatures that allows the calcium sensor NCS-1 to find the best ligands in situ. Ultrafast NMR identifies the reaction intermediates of the acylhydrazone exchange, tracing the molecular assemblies and getting a real-time insight into the essence of DCC processes at physiological pH. Additionally, NMR, X-ray crystallography and computational methods are employed to elucidate structural and mechanistic aspects of the molecular recognition event. The DCC approach leads us to the identification of a compound stabilizing the NCS-1/Ric8a complex and whose therapeutic potential is proven in a Drosophila model of disease with synaptic alterations. Dynamic combinatorial chemistry (DCC) is instrumental in the discovery of ligands for pharmaceutical targets. Here, the authors adapted DCC to work at 4 degrees Celsius and used it to identify a ligand for Neuronal Calcium Sensor-1 that promotes NCS-1/Ric8a protein-protein interaction.
Collapse
|
15
|
Nakamura TY, Nakao S, Wakabayashi S. Emerging Roles of Neuronal Ca 2+ Sensor-1 in Cardiac and Neuronal Tissues: A Mini Review. Front Mol Neurosci 2019; 12:56. [PMID: 30886571 PMCID: PMC6409499 DOI: 10.3389/fnmol.2019.00056] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 02/15/2019] [Indexed: 11/13/2022] Open
Abstract
The EF-hand calcium (Ca2+)-binding protein, neuronal Ca2+ sensor-1 (NCS-1/frequenin), is predominantly expressed in neuronal tissues and plays a crucial role in neuronal functions, including synaptic transmission and plasticity. NCS-1 has diverse functional roles, as elucidated in the past 15 years, which include the regulation of phosphatidylinositol 4-kinase IIIβ (PI-4K-β) and several ion channels such as voltage-gated K+ and Ca2+ channels, the D2 dopamine receptors, and inositol 1,4,5-trisphosphate receptors (InsP3Rs). Functional analyses demonstrated that NCS-1 enhances exocytosis and neuronal survival after injury, as well as promotes learning and memory in mice. NCS-1 is also expressed in the heart including the Purkinje fibers (PFs) of the conduction system. NCS-1 interacts with KV4 K+ channels together with dipeptidyl peptidase-like protein-6 (DPP-6), and this macromolecule then composes the transient outward current in PFs and contributes to the repolarization of PF action potential, thus being responsible for idiopathic arrhythmia. Moreover, NCS-1 expression was reported to be significantly high at the immature stage and at hypertrophy in adults. That report demonstrated that NCS-1 positively regulates cardiac contraction in immature hearts by increasing intracellular Ca2+ signals through interaction with InsP3Rs. With the related signals, NCS-1 activates nuclear Ca2+ signals, which would be a mechanism underlying hormone-induced cardiac hypertrophy. Furthermore, NCS-1 contributes to stress tolerance in cardiomyocytes by activating mitochondrial detoxification pathways, with a key role in Ca2+-dependent pathways. In this review, we will discuss recent findings supporting the functional significance of NCS-1 in the brain and heart and will address possible underlying molecular mechanisms.
Collapse
Affiliation(s)
- Tomoe Y Nakamura
- Department of Molecular Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Japan
| | - Shu Nakao
- Department of Molecular Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Japan.,Department of Biomedical Sciences, College of Life Sciences, Ritsumeikan University, Kusatsu, Japan
| | - Shigeo Wakabayashi
- Department of Molecular Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Japan.,Department of Pharmacology, Osaka Medical College, Takatsuki, Japan
| |
Collapse
|
16
|
Boeckel GR, Ehrlich BE. NCS-1 is a regulator of calcium signaling in health and disease. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:1660-1667. [PMID: 29746899 DOI: 10.1016/j.bbamcr.2018.05.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 05/02/2018] [Accepted: 05/04/2018] [Indexed: 02/07/2023]
Abstract
Neuronal Calcium Sensor-1 (NCS-1) is a highly conserved calcium binding protein which contributes to the maintenance of intracellular calcium homeostasis and regulation of calcium-dependent signaling pathways. It is involved in a variety of physiological cell functions, including exocytosis, regulation of calcium permeable channels, neuroplasticity and response to neuronal damage. Over the past 30 years, continuing investigation of cellular functions of NCS-1 and associated disease states have highlighted its function in the pathophysiology of several disorders and as a therapeutic target. Among the diseases that were found to be associated with NCS-1 are neurological disorders such as bipolar disease and non-neurological conditions such as breast cancer. Furthermore, alteration of NCS-1 expression is associated with substance abuse disorders and severe side effects of chemotherapeutic agents. The objective of this article is to summarize the current body of evidence describing NCS-1 and its interactions on a molecular and cellular scale, as well as describing macroscopic implications in physiology and medicine. Particular attention is paid to the role of NCS-1 in development and prevention of chemotherapy induced peripheral neuropathy (CIPN).
Collapse
Affiliation(s)
- Göran R Boeckel
- Department of Pharmacology, Yale University, New Haven, CT, United States; Institut für Physiologie, Universität zu Lübeck, Ratzeburger Allee 160, D-23562 Lübeck, Germany
| | - Barbara E Ehrlich
- Department of Pharmacology, Yale University, New Haven, CT, United States; Institut für Physiologie, Universität zu Lübeck, Ratzeburger Allee 160, D-23562 Lübeck, Germany.
| |
Collapse
|
17
|
Campbell SL, van Groen T, Kadish I, Smoot LHM, Bolger GB. Altered phosphorylation, electrophysiology, and behavior on attenuation of PDE4B action in hippocampus. BMC Neurosci 2017; 18:77. [PMID: 29197324 PMCID: PMC5712142 DOI: 10.1186/s12868-017-0396-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Accepted: 11/28/2017] [Indexed: 01/19/2023] Open
Abstract
Background PDE4 cyclic nucleotide phosphodiesterases regulate 3′, 5′ cAMP abundance in the CNS and thereby regulate PKA activity and phosphorylation of CREB, which has been implicated in learning and memory, depression and other functions. The PDE4 isoform PDE4B1 also interacts with the DISC1 protein, implicated in neural development and behavioral disorders. The cellular functions of PDE4B1 have been investigated extensively, but its function(s) in the intact organism remained unexplored. Results To specifically disrupt PDE4B1, we developed mice that express a PDE4B1-D564A transgene in the hippocampus and forebrain. The transgenic mice showed enhanced phosphorylation of CREB and ERK1/2 in hippocampus. Hippocampal neurogenesis was increased in the transgenic mice. Hippocampal electrophysiological studies showed increased baseline synaptic transmission and enhanced LTP in male transgenic mice. Behaviorally, male transgenic mice showed increased activity in prolonged open field testing, but neither male nor female transgenic mice showed detectable anxiety-like behavior or antidepressant effects in the elevated plus-maze, tail-suspension or forced-swim tests. Neither sex showed any significant differences in associative fear conditioning or showed any demonstrable abnormalities in pre-pulse inhibition. Conclusions These data support the use of an isoform-selective approach to the study of PDE4B1 function in the CNS and suggest a probable role of PDE4B1 in synaptic plasticity and behavior. They also provide additional rationale and a refined approach to the development of small-molecule PDE4B1-selective inhibitors, which have potential functions in disorders of cognition, memory, mood and affect.
Collapse
Affiliation(s)
- Susan L Campbell
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.,Center for Glial Biology in Health, Disease, and Cancer, Virginia Tech Carilion Research Institute, 2 Riverside Circle, Roanoke, VA, 24016, USA
| | - Thomas van Groen
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Inga Kadish
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Lisa High Mitchell Smoot
- Department of Medicine, University of Alabama at Birmingham, NP 2501, 1720 2nd Ave S, Birmingham, AL, 35294-3300, USA
| | - Graeme B Bolger
- Department of Pharmacology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA. .,Department of Medicine, University of Alabama at Birmingham, NP 2501, 1720 2nd Ave S, Birmingham, AL, 35294-3300, USA. .,Center for Glial Biology in Health, Disease, and Cancer, Virginia Tech Carilion Research Institute, 2 Riverside Circle, Roanoke, VA, 24016, USA.
| |
Collapse
|
18
|
Abstract
Current interpretations of hippocampal memory function are blind to the fact that viewing behaviors are pervasive and complicate the relationships among perception, behavior, memory, and brain activity. For example, hippocampal activity and associative memory demands increase with stimulus complexity. Stimulus complexity also strongly modulates viewing. Associative processing and viewing thus are often confounded, rendering interpretation of hippocampal activity ambiguous. Similar considerations challenge many accounts of hippocampal function. To explain relationships between memory and viewing, we propose that the hippocampus supports the online memory demands necessary to guide visual exploration. The hippocampus thus orchestrates memory-guided exploration that unfolds over time to build coherent memories. This new perspective on hippocampal function harmonizes with the fact that memory formation and exploratory viewing are tightly intertwined.
Collapse
|
19
|
Ahmadi M, Dufour JP, Seifritz E, Mirnajafi-Zadeh J, Saab BJ. The PTZ kindling mouse model of epilepsy exhibits exploratory drive deficits and aberrant activity amongst VTA dopamine neurons in both familiar and novel space. Behav Brain Res 2017; 330:1-7. [PMID: 28506618 DOI: 10.1016/j.bbr.2017.05.025] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 05/04/2017] [Accepted: 05/10/2017] [Indexed: 01/12/2023]
Abstract
Recurrent seizures that define epilepsy are often accompanied by psychosocial problems and cognitive deficits with incompletely understood aetiology. We therefore used the pentylenetetrazol (PTZ) kindling model of epilepsy in mice to examine potential seizure-associated neuropathologies, focusing on motivation, memory and novel-environment-induced activation of midbrain dopaminergic neurons. In addition to recurrent seizures, we found that PTZ kindling led to a strong suppression of novelty-driven exploration while largely sparing fear-driven exploration. The deficits in exploratory drive may be relevant for other cognitive impairments since reduced unassisted rearing in a learning arena correlated with poorer spatial memory of object location. Using c-Fos immunofluorescence as a marker of neuronal activity, we observed that dopamine neurons within the ventral tegmental area (VTA) of PTZ kindled mice demonstrate hyperactivity at baseline and hypoactivity in response to a novel environment compared to saline-injected cagemate controls. These data extend previous findings of PTZ kindling-mediated disruptions of hippocampal processes important for novel environment recognition and learning by demonstrating PTZ kindling also induces motivational deficits that are associated with reduced stimulus-evoked activation of VTA dopamine neurons. More broadly, these data help understand the aetiology of complex behavioural changes in the PTZ kindling model, and may assist in the development of superior diagnoses and treatments for epilepsy.
Collapse
Affiliation(s)
- Mahboubeh Ahmadi
- Preclinical Laboratory for Translational Research into Affective Disorders, DPPP, Psychiatric Hospital, University of Zurich, August-Forel-Strasse 7, CH-8008 Zurich, Switzerland; Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, PO Box: 14115-331, 1411713116, Tehran, Iran
| | - Jean-Philippe Dufour
- Preclinical Laboratory for Translational Research into Affective Disorders, DPPP, Psychiatric Hospital, University of Zurich, August-Forel-Strasse 7, CH-8008 Zurich, Switzerland; Faculty of Medicine, University of Zurich, Switzerland
| | - Erich Seifritz
- Preclinical Laboratory for Translational Research into Affective Disorders, DPPP, Psychiatric Hospital, University of Zurich, August-Forel-Strasse 7, CH-8008 Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich and ETH Zurich, Switzerland; Department of Psychiatry, Psychotherapy and Pesychosomatics (DPPP), Psychiatric Hospital, Universit of Zurich, Lengstrasse 31, CH-8032 Zurich, Switzerland
| | - Javad Mirnajafi-Zadeh
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, PO Box: 14115-331, 1411713116, Tehran, Iran.
| | - Bechara J Saab
- Preclinical Laboratory for Translational Research into Affective Disorders, DPPP, Psychiatric Hospital, University of Zurich, August-Forel-Strasse 7, CH-8008 Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich and ETH Zurich, Switzerland; Department of Psychiatry, Psychotherapy and Pesychosomatics (DPPP), Psychiatric Hospital, Universit of Zurich, Lengstrasse 31, CH-8032 Zurich, Switzerland.
| |
Collapse
|
20
|
Herde A, Ioanas HI, Boss S, Seifritz E, Ametamey S, Saab B. Using Tandem Behaviour-PET to Examine Dopaminergic Signalling Underlying Exploration. ACTA ACUST UNITED AC 2017. [DOI: 10.19185/matters.201702000008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
21
|
Nakamura TY, Nakao S, Nakajo Y, Takahashi JC, Wakabayashi S, Yanamoto H. Possible Signaling Pathways Mediating Neuronal Calcium Sensor-1-Dependent Spatial Learning and Memory in Mice. PLoS One 2017; 12:e0170829. [PMID: 28122057 PMCID: PMC5266288 DOI: 10.1371/journal.pone.0170829] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 01/11/2017] [Indexed: 01/10/2023] Open
Abstract
Intracellular Ca2+ signaling regulates diverse functions of the nervous system. Many of these neuronal functions, including learning and memory, are regulated by neuronal calcium sensor-1 (NCS-1). However, the pathways by which NCS-1 regulates these functions remain poorly understood. Consistent with the findings of previous reports, we revealed that NCS-1 deficient (Ncs1-/-) mice exhibit impaired spatial learning and memory function in the Morris water maze test, although there was little change in their exercise activity, as determined via treadmill-analysis. Expression of brain-derived neurotrophic factor (BDNF; a key regulator of memory function) and dopamine was significantly reduced in the Ncs1-/- mouse brain, without changes in the levels of glial cell-line derived neurotrophic factor or nerve growth factor. Although there were no gross structural abnormalities in the hippocampi of Ncs1-/- mice, electron microscopy analysis revealed that the density of large dense core vesicles in CA1 presynaptic neurons, which release BDNF and dopamine, was decreased. Phosphorylation of Ca2+/calmodulin-dependent protein kinase II-α (CaMKII-α, which is known to trigger long-term potentiation and increase BDNF levels, was significantly reduced in the Ncs1-/- mouse brain. Furthermore, high voltage electric potential stimulation, which increases the levels of BDNF and promotes spatial learning, significantly increased the levels of NCS-1 concomitant with phosphorylated CaMKII-α in the hippocampus; suggesting a close relationship between NCS-1 and CaMKII-α. Our findings indicate that NCS-1 may regulate spatial learning and memory function at least in part through activation of CaMKII-α signaling, which may directly or indirectly increase BDNF production.
Collapse
Affiliation(s)
- Tomoe Y. Nakamura
- Department of Molecular Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan
- * E-mail:
| | - Shu Nakao
- Department of Molecular Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan
| | - Yukako Nakajo
- Laboratory of Neurology and Neurosurgery, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan
| | - Jun C. Takahashi
- Department of Neurosurgery, National Cerebral and Cardiovascular Center Hospital, Suita, Osaka, Japan
| | - Shigeo Wakabayashi
- Department of Molecular Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan
| | - Hiroji Yanamoto
- Laboratory of Neurology and Neurosurgery, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan
| |
Collapse
|
22
|
Tsai Cabal A, Ioanas HI, Seifritz E, Saab BJ. Selective amotivation deficits following chronic psychosocial stress in mice. Behav Brain Res 2016; 317:424-433. [PMID: 27693850 DOI: 10.1016/j.bbr.2016.09.055] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 09/22/2016] [Accepted: 09/24/2016] [Indexed: 12/14/2022]
Abstract
Amotivation is a major symptom of several psychiatric disorders. However, which specific motivations are most affected in various illnesses is not well understood. In major depressive disorder (MDD), anecdotal evidence suggests the motivation to explore may be especially affected, but direct evidence from either patients or animal models is lacking. To investigate the potential for, and nature of, exploratory drive deficits in MDD, we subjected mice to a chronic social defeat (CSD) manipulation that gives rise to a MDD-like behavioural ensemble, and performed a behavioural battery to examine bodyweight homeostasis, ambulation, anxiety, exploratory behaviour motivated by either novelty or fear, and short-term memory. Consistent with previous reports, we found a disruption of bodyweight homeostasis and reduced ambulation following CSD treatment, but we found no evidence for anxiogenic effects or impairments in short-term memory. Surprisingly, we also observed profoundly delayed and diminished exploration of novel, safe space following CSD, while exploration motivated by fear remained intact. These results extend our knowledge of the behavioural phenotypes in mice resulting from CSD by homing in on specific motivational drives. In MDD patients, reduced exploration could compound disease symptomatology by preventing engagement in what could be rewarding exploration experiences, and targeting deficits in the motivation to explore may represent a novel avenue for treatment.
Collapse
Affiliation(s)
- Alejandro Tsai Cabal
- Preclinical Laboratory for Translational Research into Affective Disorders, DPPP, Psychiatric Hospital, University of Zurich, August-Forel-Strasse 7, CH-8008, Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich and ETH, Zurich, Switzerland; Department of Biology, ETH, Zurich, Switzerland
| | - Horea-Ioan Ioanas
- Preclinical Laboratory for Translational Research into Affective Disorders, DPPP, Psychiatric Hospital, University of Zurich, August-Forel-Strasse 7, CH-8008, Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich and ETH, Zurich, Switzerland; Institute for Biomedical Engineering, University and ETH Zurich, CH-8093, Zurich, Switzerland
| | - Erich Seifritz
- Preclinical Laboratory for Translational Research into Affective Disorders, DPPP, Psychiatric Hospital, University of Zurich, August-Forel-Strasse 7, CH-8008, Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich and ETH, Zurich, Switzerland; Department of Psychiatry, Psychotherapy and Pesychosomatics (DPPP), Psychiatric Hospital, University of Zurich, Lengstrasse 31, CH-8032, Zurich, Switzerland
| | - Bechara J Saab
- Preclinical Laboratory for Translational Research into Affective Disorders, DPPP, Psychiatric Hospital, University of Zurich, August-Forel-Strasse 7, CH-8008, Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich and ETH, Zurich, Switzerland; Department of Psychiatry, Psychotherapy and Pesychosomatics (DPPP), Psychiatric Hospital, University of Zurich, Lengstrasse 31, CH-8032, Zurich, Switzerland.
| |
Collapse
|
23
|
Prenatal immune activation in mice blocks the effects of environmental enrichment on exploratory behavior and microglia density. Prog Neuropsychopharmacol Biol Psychiatry 2016; 67:10-20. [PMID: 26776071 DOI: 10.1016/j.pnpbp.2016.01.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 12/21/2015] [Accepted: 01/12/2016] [Indexed: 02/01/2023]
Abstract
Adverse environmental factors including prenatal maternal infection are capable of inducing long-lasting behavioral and neural alterations which can enhance the risk to develop schizophrenia. It is so far not clear whether supportive postnatal environments are able to modify such prenatally-induced alterations. In rodent models, environmental enrichment influences behavior and cognition, for instance by affecting endocrinologic, immunologic, and neuroplastic parameters. The current study was designed to elucidate the influence of postnatal environmental enrichment on schizophrenia-like behavioral alterations induced by prenatal polyI:C immune stimulation at gestational day 9 in mice. Adult offspring were tested for amphetamine-induced locomotion, social interaction, and problem-solving behavior as well as expression of dopamine D1 and D2 receptors and associated molecules, microglia density and adult neurogenesis. Prenatal polyI:C treatment resulted in increased dopamine sensitivity and dopamine D2 receptor expression in adult offspring which was not reversed by environmental enrichment. Prenatal immune activation prevented the effects of environmental enrichment which increased exploratory behavior and microglia density in NaCl treated mice. Problem-solving behavior as well as the number of immature neurons was affected by neither prenatal immune stimulation nor postnatal environmental enrichment. The behavioral and neural alterations that persist into adulthood could not generally be modified by environmental enrichment. This might be due to early neurodevelopmental disturbances which could not be rescued or compensated for at a later developmental stage.
Collapse
|