1
|
Elbialy A, Sood A, Wang SJ, Wang P, Fadiel A, Parwani AV, Huang S, Shvets G, Putluri N, Li J, Liu X. Unveiling racial disparities in prostate cancer using an integrative genomic and transcriptomic analysis. CELL INSIGHT 2025; 4:100238. [PMID: 40104216 PMCID: PMC11914995 DOI: 10.1016/j.cellin.2025.100238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 02/02/2025] [Accepted: 02/03/2025] [Indexed: 03/20/2025]
Abstract
Prostate cancer exhibits significant racial disparities, with African American (AA) individuals showing ∼64% higher incidence and 2.3 times greater mortality rates compared to their Caucasian (CA) counterparts. Understanding the complex interplay of genetic, environmental, lifestyle, socioeconomic, and healthcare access factors is crucial for developing effective interventions to reduce this disproportionate burden. This study aims to uncover the genetic and transcriptomic differences driving these disparities through a comprehensive analysis using RNA sequencing (RNA-seq) and exome sequencing of prostate cancer tissues from both Black and White patients. Our transcriptomics analysis revealed enhanced activity in pathways linked to immune response and cellular interactions in AA prostate cancer samples, with notable regulation by histone-associated transcription factors (HIST1H1A, HIST1H1D, and HIST1H1B) suggests potential involvement of histone modification mechanisms. Additionally, pseudogenes and long non-coding RNAs (lncRNAs) among the regulated genes indicate non-coding elements' role in these disparities. Exome sequencing identified unique variants in AA patient samples within key genes, including TP73 (tumor suppression), XYLB (metabolism), ALDH4A1 (oxidative stress), PTPRB (cellular signaling), and HLA-DRB5 (immune response). These genetic variations likely contribute to disease progression and therapy response disparities. This study highlights the importance of considering genetic and epigenetic variations in developing tailored therapeutic approaches to improve treatment efficacy and reduce mortality rates across diverse populations.
Collapse
Affiliation(s)
- Abdalla Elbialy
- OSU Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA
- Computational Oncology Unit, The University of Chicago Comprehensive Cancer Center, 900 E 57th Street, KCBD Bldg., STE 4144, Chicago, IL, 60637, USA
| | - Akshay Sood
- OSU Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA
- Department of Urology, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Shang-Jui Wang
- OSU Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Peng Wang
- OSU Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA
- Department of Medicine, College of Medicine, The Ohio State University, Columbus, OH, 3210, USA
| | - Ahmed Fadiel
- Computational Oncology Unit, The University of Chicago Comprehensive Cancer Center, 900 E 57th Street, KCBD Bldg., STE 4144, Chicago, IL, 60637, USA
| | - Anil V Parwani
- OSU Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA
- Departments of Pathology, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Steven Huang
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY, 14850, USA
| | - Gennady Shvets
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY, 14850, USA
| | - Nagireddy Putluri
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Jenny Li
- OSU Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA
- Departments of Pathology, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Xuefeng Liu
- OSU Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA
- Departments of Pathology, Urology, and Radiation Oncology, College of Medicine, The Ohio StateUniversity, Columbus, OH, 43210, USA
| |
Collapse
|
2
|
Daneshdoust D, Luo M, Li Z, Mo X, Alothman S, Kallakury B, Schlegel R, Zhang J, Guo D, Furth PA, Liu X, Li J. Unlocking Translational Potential: Conditionally Reprogrammed Cells in Advancing Breast Cancer Research. Cells 2023; 12:2388. [PMID: 37830602 PMCID: PMC10572051 DOI: 10.3390/cells12192388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/07/2023] [Accepted: 09/19/2023] [Indexed: 10/14/2023] Open
Abstract
Preclinical in vitro models play an important role in studying cancer cell biology and facilitating translational research, especially in the identification of drug targets and drug discovery studies. This is particularly relevant in breast cancer, where the global burden of disease is quite high based on prevalence and a relatively high rate of lethality. Predictive tools to select patients who will be responsive to invasive or morbid therapies (radiotherapy, chemotherapy, immunotherapy, and/or surgery) are relatively lacking. To be clinically relevant, a model must accurately replicate the biology and cellular heterogeneity of the primary tumor. Addressing these requirements and overcoming the limitations of most existing cancer cell lines, which are typically derived from a single clone, we have recently developed conditional reprogramming (CR) technology. The CR technology refers to a co-culture system of primary human normal or tumor cells with irradiated murine fibroblasts in the presence of a Rho-associated kinase inhibitor to allow the primary cells to acquire stem cell properties and the ability to proliferate indefinitely in vitro without any exogenous gene or viral transfection. This innovative approach fulfills many of these needs and offers an alternative that surpasses the deficiencies associated with traditional cancer cell lines. These CR cells (CRCs) can be reprogrammed to maintain a highly proliferative state and reproduce the genomic and histological characteristics of the parental tissue. Therefore, CR technology may be a clinically relevant model to test and predict drug sensitivity, conduct gene profile analysis and xenograft research, and undertake personalized medicine. This review discusses studies that have applied CR technology to conduct breast cancer research.
Collapse
Affiliation(s)
- Danyal Daneshdoust
- Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210, USA
| | - Mingjue Luo
- Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210, USA
| | - Zaibo Li
- Departments of Pathology, Wexner Medical Center, Ohio State University, Columbus, OH 43210, USA
| | - Xiaokui Mo
- Department of Biostatics and Bioinformatics, Wexner Medical Center, Ohio State University, Columbus, OH 43210, USA
| | - Sahar Alothman
- Departments of Oncology and Medicine, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA
| | - Bhaskar Kallakury
- Departments of Pathology, Lombardi Comprehensive Cancer Center, Center for Cell Reprogramming, Georgetown University, Washington, DC 20057, USA
| | - Richard Schlegel
- Departments of Pathology, Lombardi Comprehensive Cancer Center, Center for Cell Reprogramming, Georgetown University, Washington, DC 20057, USA
| | - Junran Zhang
- Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210, USA
- Department of Radiation Oncology, Wexner Medical Center, Ohio State University, Columbus, OH 43210, USA
| | - Deliang Guo
- Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210, USA
- Department of Radiation Oncology, Wexner Medical Center, Ohio State University, Columbus, OH 43210, USA
| | - Priscilla A. Furth
- Departments of Oncology and Medicine, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA
| | - Xuefeng Liu
- Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210, USA
- Departments of Pathology, Urology, and Radiation Oncology, Wexner Medical Center, Ohio State University, Columbus, OH 43210, USA
| | - Jenny Li
- Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
3
|
Daneshdoust D, Yin M, Luo M, Sundi D, Dang Y, Lee C, Li J, Liu X. Conditional Reprogramming Modeling of Bladder Cancer for Clinical Translation. Cells 2023; 12:1714. [PMID: 37443748 PMCID: PMC10341071 DOI: 10.3390/cells12131714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/09/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
The use of advanced preclinical models has become increasingly important in drug development. This is particularly relevant in bladder cancer, where the global burden of disease is quite high based on prevalence and a relatively high rate of lethality. Predictive tools to select patients who will be responsive to invasive or morbid therapies (chemotherapy, radiotherapy, immunotherapy, and/or surgery) are largely absent. Patient-derived and clinically relevant models including patient-derived xenografts (PDX), organoids, and conditional reprogramming (CR) of cell cultures efficiently generate numerous models and are being used in both basic and translational cancer biology. These CR cells (CRCs) can be reprogrammed to maintain a highly proliferative state and reproduce the genomic and histological characteristics of the parental tissue. Therefore, CR technology may be a clinically relevant model to test and predict drug sensitivity, conduct gene profile analysis and xenograft research, and undertake personalized medicine. This review discusses studies that have utilized CR technology to conduct bladder cancer research.
Collapse
Affiliation(s)
- Danyal Daneshdoust
- Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210, USA (M.L.)
| | - Ming Yin
- Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210, USA (M.L.)
- Department of Medicine, Wexner Medical Center, Ohio State University, Columbus, OH 43210, USA
| | - Mingjue Luo
- Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210, USA (M.L.)
| | - Debasish Sundi
- Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210, USA (M.L.)
- Department of Urology, Wexner Medical Center, Ohio State University, Columbus, OH 43210, USA
| | - Yongjun Dang
- Center for Novel Target and Therapeutic Intervention, Chongqing Medical University, Chongqing 400016, China
| | - Cheryl Lee
- Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210, USA (M.L.)
- Department of Urology, Wexner Medical Center, Ohio State University, Columbus, OH 43210, USA
| | - Jenny Li
- Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210, USA (M.L.)
| | - Xuefeng Liu
- Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210, USA (M.L.)
- Departments of Pathology, Urology and Radiation Oncology, Wexner Medical Center, Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
4
|
Wijesinghe P, Sastry A, Hui E, Cogan TA, Zheng B, Ho G, Kakal J, Nunez DA. Adult porcine (Sus scrofa) derived inner ear cells: Characteristics in in-vitro cultures. Anat Rec (Hoboken) 2023. [PMID: 36598271 DOI: 10.1002/ar.25149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/21/2022] [Accepted: 12/10/2022] [Indexed: 01/05/2023]
Abstract
There is a need for an animal model that closely parallels human cochlea gestational development. This study aims to document porcine inner ear anatomy, and in vitro porcine derived inner ear cell culture characteristics. Twenty-four temporal bone were harvested from 12 adult pigs (Sus scrofa). Six were formalin fixed and their maximal diameters were measured. The cochlea duct length was determined by the insertion length of a Nucleus 22 cochlear implant in two bones. Four formalin fixed bones were sectioned for histology. Cochlear and vestibular tissues were harvested from non-fixed bones, cultured and characterized at different passages (P). Gene and protein expression of multipotent stem/progenitor (Nestin and Sox2), inner ear hair (Myosin VIIa, Prestin) and supporting (Cytokeratin 18 and Vimentin) cell markers were determined. The porcine cochlea was a 3.5 turn spiral. There was a separate vestibular compartment. The cochlear mean maximal diameter and height was 7.99 and 3.77 mm, respectively. Sphere forming cells were identified on phase-contrast microscopy. The relative mRNA expression levels of KRT18, MYO7A and SLC26A5 were significantly positively correlated in cochlear cultures; and MYO7A and SLC26A5; SOX2 and KRT18; NES and SLC26A5 genes were positively correlated in vestibular cultures (p = .037, Spearman correlation [τ] = .900). Inner ear sensory and stem cell characteristics persist in passaged porcine inner ear cells. Further work is required to establish the usefulness of porcine inner ear cell cultures to the study of human inner ear disorders.
Collapse
Affiliation(s)
- Printha Wijesinghe
- Division of Otolaryngology, Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
- Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada
| | - Anand Sastry
- Bristol Veterinary School, University of Bristol, Bristol, UK
| | - Elizabeth Hui
- Division of Otolaryngology, Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
- Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada
| | - Tristan A Cogan
- Bristol Veterinary School, University of Bristol, Bristol, UK
| | - Boyuan Zheng
- Division of Otolaryngology, Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
- Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada
| | - Germain Ho
- Division of Otolaryngology, Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
- Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada
| | - Juzer Kakal
- Division of Otolaryngology, Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
- Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada
| | - Desmond A Nunez
- Division of Otolaryngology, Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
- Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada
| |
Collapse
|
5
|
Alkhilaiwi F. Conditionally Reprogrammed Cells and Robotic High-Throughput Screening for Precision Cancer Therapy. Front Oncol 2021; 11:761986. [PMID: 34737964 PMCID: PMC8560709 DOI: 10.3389/fonc.2021.761986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 09/24/2021] [Indexed: 12/04/2022] Open
Abstract
Cancer is a devastating disease that takes the lives of millions of people globally every year. Precision cancer therapy is based on a patient's tumor histopathology, expression analyses, and/or tumor RNA or DNA analysis. Only 2%-20% of patients with solid tumors benefit from genomics-based precision oncology. Therefore, functional diagnostics and patient-derived cancer models are needed for precision cancer therapy. In this review, we will summarize the potential use of conditional cell reprogramming (CR) and robotic high-throughput screening in precision cancer medicine. Briefly, the CR method includes the co-culturing of irradiated Swiss-3T3-J2 mouse fibroblast cells alongside digested primary non-pathogenic or pathogenic cells with the existence of Rho-associated serine-threonine protein kinase inhibitor called Y-27632, creating an exterior culture environment, allowing the cells to have the ability to gain partial properties of stem cells. On the other hand, quantitative high-throughput screening (qHTS) assays screen thousands of compounds that use cells in a short period of time. The combination of both technologies has the potential to become a driving force for precision cancer therapy.
Collapse
Affiliation(s)
- Faris Alkhilaiwi
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
- Regenerative Medicine Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
6
|
Rousset F, B. C. Kokje V, Sipione R, Schmidbauer D, Nacher-Soler G, Ilmjärv S, Coelho M, Fink S, Voruz F, El Chemaly A, Marteyn A, Löwenheim H, Krause KH, Müller M, Glückert R, Senn P. Intrinsically Self-renewing Neuroprogenitors From the A/J Mouse Spiral Ganglion as Virtually Unlimited Source of Mature Auditory Neurons. Front Cell Neurosci 2020; 14:395. [PMID: 33362466 PMCID: PMC7761749 DOI: 10.3389/fncel.2020.599152] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 10/30/2020] [Indexed: 12/03/2022] Open
Abstract
Nearly 460 million individuals are affected by sensorineural hearing loss (SNHL), one of the most common human sensory disorders. In mammals, hearing loss is permanent due to the lack of efficient regenerative capacity of the sensory epithelia and spiral ganglion neurons (SGN). Sphere-forming progenitor cells can be isolated from the mammalian inner ear and give rise to inner ear specific cell types in vitro. However, the self-renewing capacities of auditory progenitor cells from the sensory and neuronal compartment are limited to few passages, even after adding powerful growth factor cocktails. Here, we provide phenotypical and functional characterization of a new pool of auditory progenitors as sustainable source for sphere-derived auditory neurons. The so-called phoenix auditory neuroprogenitors, isolated from the A/J mouse spiral ganglion, exhibit robust intrinsic self-renewal properties beyond 40 passages. At any passage or freezing-thawing cycle, phoenix spheres can be efficiently differentiated into mature spiral ganglion cells by withdrawing growth factors. The differentiated cells express both neuronal and glial cell phenotypic markers and exhibit similar functional properties as mouse spiral ganglion primary explants and human sphere-derived spiral ganglion cells. In contrast to other rodent models aiming at sustained production of auditory neurons, no genetic transformation of the progenitors is needed. Phoenix spheres therefore represent an interesting starting point to further investigate self-renewal in the mammalian inner ear, which is still far from any clinical application. In the meantime, phoenix spheres already offer an unlimited source of mammalian auditory neurons for high-throughput screens while substantially reducing the numbers of animals needed.
Collapse
Affiliation(s)
- Francis Rousset
- The Inner Ear and Olfaction Lab, Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Vivianne B. C. Kokje
- The Inner Ear and Olfaction Lab, Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Department of Clinical Neurosciences, Service of ORL & Head and Neck Surgery, University Hospital of Geneva, Geneva, Switzerland
| | - Rebecca Sipione
- The Inner Ear and Olfaction Lab, Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Dominik Schmidbauer
- Department of Otolaryngology, Medical University of Innsbruck, Innsbruck, Austria
| | - German Nacher-Soler
- The Inner Ear and Olfaction Lab, Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Sten Ilmjärv
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Marta Coelho
- The Inner Ear and Olfaction Lab, Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Stefan Fink
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Tübingen, Tübingen, Germany
| | - François Voruz
- The Inner Ear and Olfaction Lab, Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Department of Clinical Neurosciences, Service of ORL & Head and Neck Surgery, University Hospital of Geneva, Geneva, Switzerland
| | - Antoun El Chemaly
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Antoine Marteyn
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Hubert Löwenheim
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Tübingen, Tübingen, Germany
| | - Karl-Heinz Krause
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Marcus Müller
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Tübingen, Tübingen, Germany
| | - Rudolf Glückert
- Department of Otolaryngology, Medical University of Innsbruck, Innsbruck, Austria
| | - Pascal Senn
- The Inner Ear and Olfaction Lab, Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Department of Clinical Neurosciences, Service of ORL & Head and Neck Surgery, University Hospital of Geneva, Geneva, Switzerland
| |
Collapse
|
7
|
Tan X, Zhou Y, Agarwal A, Lim M, Xu Y, Zhu Y, O’Brien J, Tran E, Zheng J, Gius D, Richter CP. Systemic application of honokiol prevents cisplatin ototoxicity without compromising its antitumor effect. Am J Cancer Res 2020; 10:4416-4434. [PMID: 33415008 PMCID: PMC7783741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 11/02/2020] [Indexed: 06/12/2023] Open
Abstract
Cisplatin is a potent drug used in about 40% of cancer treatment but also leads to severe deafness in 60-80% of the cases. Although the mechanism is known to be related to the accumulation of reactive oxygen species (ROS), no drug or FDA approved treatment is currently available to prevent cisplatin ototoxicity. With this study, we show for the first time that honokiol (HNK), a pleiotropic poly-phenol prevents cisplatin-induced hearing loss. HNK also improves the wellbeing of the mice during the treatment, determined by the increase in the number of surviving animals. In a transgenic tumor mouse model, HNK does not hinder cisplatin's antitumor effect. The mechanism is related to the activation of sirtuin 3, a deacetylase in mitochondria essential for ROS detoxification. We expect a paradigm shift in cisplatin chemotherapy based on the current study and future clinical trials, where honokiol is applied to reduce side effects including hearing loss.
Collapse
Affiliation(s)
- Xiaodong Tan
- Department of Otolaryngology-Head and Neck Surgery, Feinberg School of Medicine, Northwestern University303 E Chicago Ave, Chicago, IL 60611, USA
| | - Yingjie Zhou
- Department of Communication Sciences and Disorders, Northwestern University633 Clark St, Evanston, IL 60208, USA
| | - Aditi Agarwal
- Department of Otolaryngology-Head and Neck Surgery, Feinberg School of Medicine, Northwestern University303 E Chicago Ave, Chicago, IL 60611, USA
| | - Michelle Lim
- Department of Otolaryngology-Head and Neck Surgery, Feinberg School of Medicine, Northwestern University303 E Chicago Ave, Chicago, IL 60611, USA
| | - Yingyue Xu
- Department of Otolaryngology-Head and Neck Surgery, Feinberg School of Medicine, Northwestern University303 E Chicago Ave, Chicago, IL 60611, USA
| | - Yueming Zhu
- Department of Oncology, Feinberg School of Medicine, Northwestern University303 E Chicago Ave, Chicago, IL 60611, USA
| | - Joseph O’Brien
- Department of Oncology, Feinberg School of Medicine, Northwestern University303 E Chicago Ave, Chicago, IL 60611, USA
| | - Elizabeth Tran
- Department of Oncology, Feinberg School of Medicine, Northwestern University303 E Chicago Ave, Chicago, IL 60611, USA
| | - Jing Zheng
- Department of Otolaryngology-Head and Neck Surgery, Feinberg School of Medicine, Northwestern University303 E Chicago Ave, Chicago, IL 60611, USA
- Department of Communication Sciences and Disorders, Northwestern University633 Clark St, Evanston, IL 60208, USA
- Knowles Hearing Center, Northwestern University633 Clark St, Evanston, IL 60208, USA
| | - David Gius
- Department of Radiation Oncology, Mays Cancer Center at UT Health San Antonio MD Anderson, Joe R. and Teresa Lozano Long School of Medicine7979 Wurzbach Road, San Antonio, TX 78229, USA
| | - Claus-Peter Richter
- Department of Otolaryngology-Head and Neck Surgery, Feinberg School of Medicine, Northwestern University303 E Chicago Ave, Chicago, IL 60611, USA
- Department of Communication Sciences and Disorders, Northwestern University633 Clark St, Evanston, IL 60208, USA
- Knowles Hearing Center, Northwestern University633 Clark St, Evanston, IL 60208, USA
- Department of Biomedical Engineering, Northwestern University633 Clark St, Evanston, IL 60208, USA
| |
Collapse
|
8
|
Liu X, Mondal AM. Conditional cell reprogramming for modeling host-virus interactions and human viral diseases. J Med Virol 2020; 92:2440-2452. [PMID: 32478897 PMCID: PMC7586785 DOI: 10.1002/jmv.26093] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 05/26/2020] [Accepted: 05/28/2020] [Indexed: 01/08/2023]
Abstract
Conventional cancer and transformed cell lines are widely used in cancer biology and other fields within biology. These cells usually have abnormalities from the original tumor itself, but may also develop abnormalities due to genetic manipulation, or genetic and epigenetic changes during long-term passages. Primary cultures may maintain lineage functions as the original tissue types, yet they have a very limited life span or population doubling time because of the nature of cellular senescence. Primary cultures usually have very low yields, and the high variability from any original tissue specimens, largely limiting their applications in research. Animal models are often used for studies of virus infections, disease modeling, development of antiviral drugs, and vaccines. Human viruses often need a series of passages in vivo to adapt to the host environment because of variable receptors on the cell surface and may have intracellular restrictions from the cell types or host species. Here, we describe a long-term cell culture system, conditionally reprogrammed cells (CRCs), and its applications in modeling human viral diseases and drug discovery. Using feeder layer coculture in presence of Y-27632 (conditional reprogramming, CR), CRCs can be obtained and rapidly propagated from surgical specimens, core or needle biopsies, and other minimally invasive or noninvasive specimens, for example, nasal cavity brushing. CRCs preserve their lineage functions and provide biologically relevant and physiological conditions, which are suitable for studies of viral entry and replication, innate immune responses of host cells, and discovery of antiviral drugs. In this review, we summarize the applications of CR technology in modeling host-virus interactions and human viral diseases including severe acute respiratory syndrome coronavirus-2 and coronavirus disease-2019, and antiviral discovery.
Collapse
Affiliation(s)
- Xuefeng Liu
- Department of Pathology, Center for Cell ReprogrammingGeorgetown University Medical CenterWashingtonDC
- Department of Oncology, Lombardi Comprehensive Cancer CenterGeorgetown University Medical CenterWashingtonDC
| | - Abdul M. Mondal
- Department of Pathology, Center for Cell ReprogrammingGeorgetown University Medical CenterWashingtonDC
- Department of Oncology, Lombardi Comprehensive Cancer CenterGeorgetown University Medical CenterWashingtonDC
| |
Collapse
|
9
|
Wu X, Wang S, Li M, Li J, Shen J, Zhao Y, Pang J, Wen Q, Chen M, Wei B, Kaboli PJ, Du F, Zhao Q, Cho CH, Wang Y, Xiao Z, Wu X. Conditional reprogramming: next generation cell culture. Acta Pharm Sin B 2020; 10:1360-1381. [PMID: 32963937 PMCID: PMC7488362 DOI: 10.1016/j.apsb.2020.01.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 11/11/2019] [Accepted: 11/12/2019] [Indexed: 12/12/2022] Open
Abstract
Long-term primary culture of mammalian cells has been always difficult due to unavoidable senescence. Conventional methods for generating immortalized cell lines usually require manipulation of genome which leads to change of important biological and genetic characteristics. Recently, conditional reprogramming (CR) emerges as a novel next generation tool for long-term culture of primary epithelium cells derived from almost all origins without alteration of genetic background of primary cells. CR co-cultures primary cells with inactivated mouse 3T3-J2 fibroblasts in the presence of RHO-related protein kinase (ROCK) inhibitor Y-27632, enabling primary cells to acquire stem-like characteristics while retain their ability to fully differentiate. With only a few years' development, CR shows broad prospects in applications in varied areas including disease modeling, regenerative medicine, drug evaluation, drug discovery as well as precision medicine. This review is thus to comprehensively summarize and assess current progress in understanding mechanism of CR and its wide applications, highlighting the value of CR in both basic and translational researches and discussing the challenges faced with CR.
Collapse
Key Words
- 3T3-J2 fibroblast
- AACR, American Association for Cancer Research
- ACC, adenoid cystic carcinoma
- AR, androgen receptor
- CFTR, cystic fibrosis transmembrane conductance regulators
- CR, conditional reprogramming
- CYPs, cytochrome P450 enzymes
- Conditional reprogramming
- DCIS, ductal carcinoma in situ
- ECM, extracellular matrix
- ESC, embryonic stem cell
- HCMI, human cancer model initiatives
- HGF, hepatocyte growth factor
- HNE, human nasal epithelial
- HPV, human papillomaviruses
- ICD, intracellular domain
- LECs, limbal epithelial cells
- NCI, National Cancer Institute
- NGFR, nerve growth factor receptor
- NSCLC, non-small cell lung cancer
- NSG, NOD/SCID/gamma
- PDAC, pancreatic ductal adenocarcinoma
- PDX, patient derived xenograft
- PP2A, protein phosphatase 2A
- RB, retinoblastoma-associated protein
- ROCK
- ROCK, Rho kinase
- SV40, simian virus 40 large tumor antigen
- Senescence
- UVB, ultraviolet radiation b
- Y-27632
- dECM, decellularized extracellular matrix
- hASC, human adipose stem cells
- hTERT, human telomerase reverse transcriptase
- iPSCs, induction of pluripotent stem cells
- ΔNP63α, N-terminal truncated form of P63α
Collapse
Affiliation(s)
- Xiaoxiao Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou 646000, China
| | - Shengpeng Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou 646000, China
| | - Jing Li
- Department of Oncology and Hematology, Hospital (T.C.M) Affiliated to Southwest Medical University, Luzhou 646000, China
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou 646000, China
| | - Yueshui Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou 646000, China
| | - Jun Pang
- Center of Radiation Oncology, Hospital (T.C.M) Affiliated to Southwest Medical University, Luzhou 646000, China
| | - Qinglian Wen
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou 646000, China
| | - Meijuan Chen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou 646000, China
| | - Bin Wei
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
| | - Parham Jabbarzadeh Kaboli
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou 646000, China
| | - Fukuan Du
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou 646000, China
| | - Qijie Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou 646000, China
| | - Chi Hin Cho
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou 646000, China
- School of Biomedical Sciences, Faculty of Medicine, the Chinese University of Hong Kong, Hong Kong, China
| | - Yitao Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou 646000, China
| | - Xu Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou 646000, China
| |
Collapse
|
10
|
Liu X, Wu Y, Rong L. Conditionally Reprogrammed Human Normal Airway Epithelial Cells at ALI: A Physiological Model for Emerging Viruses. Virol Sin 2020; 35:280-289. [PMID: 32557270 PMCID: PMC7298165 DOI: 10.1007/s12250-020-00244-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 05/22/2020] [Indexed: 01/08/2023] Open
Abstract
Cancer cell lines have been used widely in cancer biology, and as biological or functional cell systems in many biomedical research fields. These cells are usually defective for many normal activities or functions due to significant genetic and epigenetic changes. Normal primary cell yields and viability from any original tissue specimens are usually relatively low or highly variable. These normal cells cease after a few passages or population doublings due to very limited proliferative capacity. Animal models (ferret, mouse, etc.) are often used to study virus-host interaction. However, viruses usually need to be adapted to the animals by several passages due to tropism restrictions including viral receptors and intracellular restrictions. Here we summarize applications of conditionally reprogrammed cells (CRCs), long-term cultures of normal airway epithelial cells from human nose to lung generated by conditional cell reprogramming (CR) technology, as an ex vivo model in studies of emerging viruses. CR allows to robustly propagate cells from non-invasive or minimally invasive specimens, for example, nasal or endobronchial brushing. This process is rapid (2 days) and conditional. The CRCs maintain their differentiation potential and lineage functions, and have been used for studies of adenovirus, rhinovirus, respiratory syncytial virus, influenza viruses, parvovirus, and SARS-CoV. The CRCs can be easily used for air-liquid interface (ALI) polarized 3D cultures, and these coupled CRC/ALI cultures mimic physiological conditions and are suitable for studies of viral entry including receptor binding and internalization, innate immune responses, viral replications, and drug discovery as an ex vivo model for emerging viruses.
Collapse
Affiliation(s)
- Xuefeng Liu
- Department of Pathology, Center for Cell Reprogramming, Georgetown University Medical Center, Washington, DC, USA.
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA.
| | - Yuntao Wu
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, Manassas, VA, 20110, USA
| | - Lijun Rong
- Department of Microbiology and Immunology, University of Illinoi at Chicago, Chicago, IL, 60612, USA
| |
Collapse
|
11
|
Palechor-Ceron N, Krawczyk E, Dakic A, Simic V, Yuan H, Blancato J, Wang W, Hubbard F, Zheng YL, Dan H, Strome S, Cullen K, Davidson B, Deeken JF, Choudhury S, Ahn PH, Agarwal S, Zhou X, Schlegel R, Furth PA, Pan CX, Liu X. Conditional Reprogramming for Patient-Derived Cancer Models and Next-Generation Living Biobanks. Cells 2019; 8:E1327. [PMID: 31717887 PMCID: PMC6912808 DOI: 10.3390/cells8111327] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 10/14/2019] [Accepted: 10/25/2019] [Indexed: 12/21/2022] Open
Abstract
Traditional cancer models including cell lines and animal models have limited applications in both basic and clinical cancer research. Genomics-based precision oncology only help 2-20% patients with solid cancer. Functional diagnostics and patient-derived cancer models are needed for precision cancer biology. In this review, we will summarize applications of conditional cell reprogramming (CR) in cancer research and next generation living biobanks (NGLB). Together with organoids, CR has been cited in two NCI (National Cancer Institute, USA) programs (PDMR: patient-derived cancer model repository; HCMI: human cancer model initiatives. HCMI will be distributed through ATCC). Briefly, the CR method is a simple co-culture technology with a Rho kinase inhibitor, Y-27632, in combination with fibroblast feeder cells, which allows us to rapidly expand both normal and malignant epithelial cells from diverse anatomic sites and mammalian species and does not require transfection with exogenous viral or cellular genes. Establishment of CR cells from both normal and tumor tissue is highly efficient. The robust nature of the technique is exemplified by the ability to produce 2 × 106 cells in five days from a core biopsy of tumor tissue. Normal CR cell cultures retain a normal karyotype and differentiation potential and CR cells derived from tumors retain their tumorigenic phenotype. CR also allows us to enrich cancer cells from urine (for bladder cancer), blood (for prostate cancer), and pleural effusion (for non-small cell lung carcinoma). The ability to produce inexhaustible cell populations using CR technology from small biopsies and cryopreserved specimens has the potential to transform biobanking repositories (NGLB: next-generation living biobank) and current pathology practice by enabling genetic, biochemical, metabolomic, proteomic, and biological assays, including chemosensitivity testing as a functional diagnostics tool for precision cancer medicine. We discussed analyses of patient-derived matched normal and tumor models using a case with tongue squamous cell carcinoma as an example. Last, we summarized applications in cancer research, disease modeling, drug discovery, and regenerative medicine of CR-based NGLB.
Collapse
Affiliation(s)
- Nancy Palechor-Ceron
- Department of Pathology, Center for Cell Reprogramming, Georgetown University Medical Center, Washington, DC 20057, USA; (N.P.-C.); (E.K.); (A.D.); (V.S.); (H.Y.); (S.C.); (S.A.); (R.S.)
| | - Ewa Krawczyk
- Department of Pathology, Center for Cell Reprogramming, Georgetown University Medical Center, Washington, DC 20057, USA; (N.P.-C.); (E.K.); (A.D.); (V.S.); (H.Y.); (S.C.); (S.A.); (R.S.)
| | - Aleksandra Dakic
- Department of Pathology, Center for Cell Reprogramming, Georgetown University Medical Center, Washington, DC 20057, USA; (N.P.-C.); (E.K.); (A.D.); (V.S.); (H.Y.); (S.C.); (S.A.); (R.S.)
| | - Vera Simic
- Department of Pathology, Center for Cell Reprogramming, Georgetown University Medical Center, Washington, DC 20057, USA; (N.P.-C.); (E.K.); (A.D.); (V.S.); (H.Y.); (S.C.); (S.A.); (R.S.)
| | - Hang Yuan
- Department of Pathology, Center for Cell Reprogramming, Georgetown University Medical Center, Washington, DC 20057, USA; (N.P.-C.); (E.K.); (A.D.); (V.S.); (H.Y.); (S.C.); (S.A.); (R.S.)
| | - Jan Blancato
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA; (J.B.); (W.W.); (Y.-L.Z.); (P.A.F.)
| | - Weisheng Wang
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA; (J.B.); (W.W.); (Y.-L.Z.); (P.A.F.)
| | - Fleesie Hubbard
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Maryland, Baltimore, MD 21201, USA; (F.H.); (H.D.); (S.S.); (K.C.)
| | - Yun-Ling Zheng
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA; (J.B.); (W.W.); (Y.-L.Z.); (P.A.F.)
| | - Hancai Dan
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Maryland, Baltimore, MD 21201, USA; (F.H.); (H.D.); (S.S.); (K.C.)
| | - Scott Strome
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Maryland, Baltimore, MD 21201, USA; (F.H.); (H.D.); (S.S.); (K.C.)
| | - Kevin Cullen
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Maryland, Baltimore, MD 21201, USA; (F.H.); (H.D.); (S.S.); (K.C.)
| | - Bruce Davidson
- Department of Otorhinolaryngology-Head and Neck Surgery, Georgetown University Medical Center, Washington, DC 20057, USA;
| | - John F. Deeken
- Inova Translational Medicine Institute, Inova Health System, Fairfax, VA 22031, USA;
| | - Sujata Choudhury
- Department of Pathology, Center for Cell Reprogramming, Georgetown University Medical Center, Washington, DC 20057, USA; (N.P.-C.); (E.K.); (A.D.); (V.S.); (H.Y.); (S.C.); (S.A.); (R.S.)
| | - Peter H. Ahn
- Department of Radiation Medicine, Georgetown University Medical Center, Washington, DC 20057, USA;
| | - Seema Agarwal
- Department of Pathology, Center for Cell Reprogramming, Georgetown University Medical Center, Washington, DC 20057, USA; (N.P.-C.); (E.K.); (A.D.); (V.S.); (H.Y.); (S.C.); (S.A.); (R.S.)
| | - Xuexun Zhou
- iCryobiol and iFuture Technologies, Shanghai 200127, China;
| | - Richard Schlegel
- Department of Pathology, Center for Cell Reprogramming, Georgetown University Medical Center, Washington, DC 20057, USA; (N.P.-C.); (E.K.); (A.D.); (V.S.); (H.Y.); (S.C.); (S.A.); (R.S.)
| | - Priscilla A. Furth
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA; (J.B.); (W.W.); (Y.-L.Z.); (P.A.F.)
| | - Chong-Xian Pan
- University of California at Davis, Sacramento, CA 95817, USA;
| | - Xuefeng Liu
- Department of Pathology, Center for Cell Reprogramming, Georgetown University Medical Center, Washington, DC 20057, USA; (N.P.-C.); (E.K.); (A.D.); (V.S.); (H.Y.); (S.C.); (S.A.); (R.S.)
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA; (J.B.); (W.W.); (Y.-L.Z.); (P.A.F.)
| |
Collapse
|
12
|
Ogier JM, Burt RA, Drury HR, Lim R, Nayagam BA. Organotypic Culture of Neonatal Murine Inner Ear Explants. Front Cell Neurosci 2019; 13:170. [PMID: 31130846 PMCID: PMC6509234 DOI: 10.3389/fncel.2019.00170] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 04/11/2019] [Indexed: 01/08/2023] Open
Abstract
The inner ear is a complex organ containing highly specialised cell types and structures that are critical for sensing sound and movement. In vivo, the inner ear is difficult to study due to the osseous nature of the otic capsule and its encapsulation within an intricate bony labyrinth. As such, mammalian inner ear explants are an invaluable tool for the study and manipulation of the complex intercellular connections, structures, and cell types within this specialised organ. The greatest strength of this technique is that the complete organ of Corti, or peripheral vestibular organs including hair cells, supporting cells and accompanying neurons, is maintained in its in situ form. The greatest weakness of in vitro hair cell preparations is the short time frame in which the explanted tissue remains viable. Yet, cochlear explants have proven to be an excellent experimental model for understanding the fundamental aspects of auditory biology, substantiated by their use for over 40 years. In this protocol, we present a modernised inner ear explant technique that employs organotypic cell culture inserts and serum free media. This approach decreases the likelihood of explant damage by eliminating the need for adhesive substances. Serum free media also restricts excessive cellular outgrowth and inter-experimental variability, both of which are side effects of exogenous serum addition to cell cultures. The protocol described can be applied to culture both cochlear and vestibular explants from various mammals. Example outcomes are demonstrated by immunohistochemistry, hair cell quantification, and electrophysiological recordings to validate the versatility and viability of the protocol.
Collapse
Affiliation(s)
- Jacqueline M. Ogier
- Department of Genetics, The Murdoch Children's Research Institute, Parkville, VIC, Australia
- Department of Paediatrics, The University of Melbourne, Parkville, VIC, Australia
| | - Rachel A. Burt
- Department of Genetics, The Murdoch Children's Research Institute, Parkville, VIC, Australia
- Department of Paediatrics, The University of Melbourne, Parkville, VIC, Australia
- Department of Genetics, The University of Melbourne, Parkville, VIC, Australia
| | - Hannah R. Drury
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia
| | - Rebecca Lim
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia
| | - Bryony A. Nayagam
- Department of Audiology and Speech Pathology, The University of Melbourne, Parkville, VIC, Australia
- The Bionics Institute, East Melbourne, VIC, Australia
| |
Collapse
|
13
|
Walters BJ, Cox BC. Approaches for the study of epigenetic modifications in the inner ear and related tissues. Hear Res 2019; 376:69-85. [PMID: 30679030 PMCID: PMC6456365 DOI: 10.1016/j.heares.2019.01.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 12/12/2018] [Accepted: 01/11/2019] [Indexed: 12/12/2022]
Abstract
DNA methylation and histone modifications such as methylation, acetylation, and phosphorylation, are two types of epigenetic modifications that alter gene expression. These additions to DNA regulatory elements or to the tails of histones can be inherited or can also occur de novo. Since epigenetic modifications can have significant effects on various processes at both the cellular and organismal level, there has been a rapid increase in research on this topic throughout all fields of biology in recent years. However, epigenetic research is relativity new for the inner ear field, likely due to the limited number of cells present and their quiescent nature. Here, we provide an overview of methods used to detect DNA methylation and histone modifications with a focus on those that have been validated for use with limited cell numbers and a discussion of the strengths and limitations for each. We also provide examples for how these methods have been used to investigate the epigenetic landscape in the inner ear and related tissues.
Collapse
Affiliation(s)
- Bradley J Walters
- Departments of Neurobiology and Anatomical Sciences, and of Otolaryngology and Communicative Sciences, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | - Brandon C Cox
- Departments of Pharmacology and Surgery, Division of Otolaryngology, Southern Illinois University School of Medicine, Springfield, IL 62711, USA.
| |
Collapse
|
14
|
Lenz DR, Gunewardene N, Abdul-Aziz DE, Wang Q, Gibson TM, Edge ASB. Applications of Lgr5-Positive Cochlear Progenitors (LCPs) to the Study of Hair Cell Differentiation. Front Cell Dev Biol 2019; 7:14. [PMID: 30873406 PMCID: PMC6401656 DOI: 10.3389/fcell.2019.00014] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 01/31/2019] [Indexed: 01/05/2023] Open
Abstract
The mouse cochlea contains approximately 15,000 hair cells. Its dimensions and location, and the small number of hair cells, make mechanistic, developmental and cellular replacement studies difficult. We recently published a protocol to expand and differentiate murine neonatal cochlear progenitor cells into 3D organoids that recapitulate developmental pathways and can generate large numbers of hair cells with intact stereociliary bundles, molecular markers of the native cells and mechanotransduction channel activity, as indicated by FM1-43 uptake. Here, we elaborate on the method and application of these Lgr5-positive cochlear progenitors, termed LCPs, to the study of inner ear development and differentiation. We demonstrate the use of these cells for testing several drug candidates, gene silencing and overexpression, as well as genomic modification using CRISPR/Cas9. We thus establish LCPs as a valuable in vitro tool for the analysis of progenitor cell manipulation and hair cell differentiation.
Collapse
Affiliation(s)
- Danielle R Lenz
- Department of Otolaryngology, Harvard Medical School, Boston, MA, United States.,Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA, United States
| | - Niliksha Gunewardene
- Department of Otolaryngology, Harvard Medical School, Boston, MA, United States.,Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA, United States
| | - Dunia E Abdul-Aziz
- Department of Otolaryngology, Harvard Medical School, Boston, MA, United States.,Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA, United States
| | - Quan Wang
- Department of Otolaryngology, Harvard Medical School, Boston, MA, United States.,Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA, United States
| | - Tyler M Gibson
- Department of Otolaryngology, Harvard Medical School, Boston, MA, United States.,Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA, United States
| | - Albert S B Edge
- Department of Otolaryngology, Harvard Medical School, Boston, MA, United States.,Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA, United States.,Harvard Stem Cell Institute, Cambridge, MA, United States
| |
Collapse
|
15
|
Ryals M, Morell RJ, Martin D, Boger ET, Wu P, Raible DW, Cunningham LL. The Inner Ear Heat Shock Transcriptional Signature Identifies Compounds That Protect Against Aminoglycoside Ototoxicity. Front Cell Neurosci 2018; 12:445. [PMID: 30532693 PMCID: PMC6265442 DOI: 10.3389/fncel.2018.00445] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 11/06/2018] [Indexed: 12/28/2022] Open
Abstract
Mechanosensory hair cells of the inner ear transduce auditory and vestibular sensory input. Hair cells are susceptible to death from a variety of stressors, including treatment with therapeutic drugs that have ototoxic side effects. There is a need for co-therapies to mitigate drug-induced ototoxicity, and we showed previously that induction of heat shock proteins (HSPs) protects against hair cell death and hearing loss caused by aminoglycoside antibiotics in mouse. Here, we utilized the library of integrated cellular signatures (LINCS) to identify perturbagens that induce transcriptional profiles similar to that of heat shock. Massively parallel sequencing of RNA (RNA-Seq) of heat shocked and control mouse utricles provided a heat shock gene expression signature that was used in conjunction with LINCS to identify candidate perturbagens, several of which were known to protect the inner ear. Our data indicate that LINCS is a useful tool to screen for compounds that generate specific gene expression signatures in the inner ear. Forty-two LINCS-identified perturbagens were tested for otoprotection in zebrafish, and three of these were protective. These compounds also induced the heat shock gene expression signature in mouse utricles, and one compound protected against aminoglycoside-induced hair cell death in whole organ cultures of utricles from adult mice.
Collapse
Affiliation(s)
- Matthew Ryals
- Section on Sensory Cell Biology, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, United States.,Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Robert J Morell
- Genomics and Computational Biology Core, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, United States
| | - Daniel Martin
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, United States
| | - Erich T Boger
- Genomics and Computational Biology Core, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, United States
| | - Patricia Wu
- Virginia Merrill Bloedel Hearing Research Center, University of Washington, Seattle, Seattle, WA, United States
| | - David W Raible
- Virginia Merrill Bloedel Hearing Research Center, University of Washington, Seattle, Seattle, WA, United States.,Department of Biological Structure, University of Washington, Seattle, Seattle, WA, United States
| | - Lisa L Cunningham
- Section on Sensory Cell Biology, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
16
|
Wang L, Ye L, Wei G, Chen Y, Ye L, Wu X, Zeng Z, Wang Y, Yin G, Long X, Li H. Conditional reprogrammed human limbal epithelial cells represent a novel in vitro cell model for drug responses. Biochem Biophys Res Commun 2018; 499:735-742. [PMID: 29577905 DOI: 10.1016/j.bbrc.2018.03.168] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 03/22/2018] [Indexed: 01/08/2023]
Abstract
In this study, we established human limbal epithelial cells (LECs) from normal limbal tissues by using Conditional Reprogramming (CR) technology (refer to CR-LEC cells in this study). We have successfully established CR-LEC cell strains from three human donors (3 out of 3), and normal rabbits (2 out of 2) and pig (1 out of 1) as well. CR-LEC cells sustained a continuous and stable proliferation status with a normal karyotype, normal response to DNA damage, well-defined structured spheres in matrigel 3D culture. Responses of CR-LEC cells to IFN α2b, Ganciclovir and 5-Fluorouracil were different, suggesting that these drugs had different toxicities to these cells as expected. More important, there was no significant difference of responses to drugs between early and late passages of CR-LEC cells (p>0.05), indicating CR-LEC cells can serve a stable normal human cell model for toxicity assessment. Toxicity tests with monolayer cultures of CR-LEC cells were measured by staining the F-actin and Dsg-1 expression. Toxicity of three drugs at LD50 concentration resulted in a gradually increased destruction of monolayer, which is, in accordance with the irritation grade of three drugs on human cornea epithelium. Therefore, CR-LEC cells provide a novel and reliable in vitro physiological cell model for corneal toxicity assessment.
Collapse
Affiliation(s)
- Ling Wang
- Shenzhen Eye Hospital, Shenzhen, Guangdong 518040, China; Shenzhen R&D Center of State Key Laboratory of Virology, Wuhan University Shenzhen Institute, Shenzhen, Guangdong 518057, China; State Key Laboratory of Virology, Institute of Medical Virology, Wuhan University School of Basic Medical Sciences, Wuhan, Hubei 430071, China
| | - Lin Ye
- Shenzhen Eye Hospital, Shenzhen, Guangdong 518040, China; Visual Optics Institute, Health Science Center, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Gaobin Wei
- Shenzhen Eye Hospital, Shenzhen, Guangdong 518040, China; Shenzhen R&D Center of State Key Laboratory of Virology, Wuhan University Shenzhen Institute, Shenzhen, Guangdong 518057, China
| | - Yu Chen
- Shenzhen R&D Center of State Key Laboratory of Virology, Wuhan University Shenzhen Institute, Shenzhen, Guangdong 518057, China
| | - Lina Ye
- Shenzhen R&D Center of State Key Laboratory of Virology, Wuhan University Shenzhen Institute, Shenzhen, Guangdong 518057, China
| | - Xiaoting Wu
- Shenzhen R&D Center of State Key Laboratory of Virology, Wuhan University Shenzhen Institute, Shenzhen, Guangdong 518057, China
| | - Zhihong Zeng
- Shenzhen R&D Center of State Key Laboratory of Virology, Wuhan University Shenzhen Institute, Shenzhen, Guangdong 518057, China
| | - Yuan Wang
- Shenzhen Eye Hospital, Shenzhen, Guangdong 518040, China
| | - Guogan Yin
- Shenzhen Eye Hospital, Shenzhen, Guangdong 518040, China
| | - Xiang Long
- Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, China
| | - Hui Li
- Shenzhen R&D Center of State Key Laboratory of Virology, Wuhan University Shenzhen Institute, Shenzhen, Guangdong 518057, China; State Key Laboratory of Virology, Institute of Medical Virology, Wuhan University School of Basic Medical Sciences, Wuhan, Hubei 430071, China.
| |
Collapse
|
17
|
Conditionally reprogrammed normal and primary tumor prostate epithelial cells: a novel patient-derived cell model for studies of human prostate cancer. Oncotarget 2017; 8:22741-22758. [PMID: 28009986 PMCID: PMC5410259 DOI: 10.18632/oncotarget.13937] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 11/22/2016] [Indexed: 01/16/2023] Open
Abstract
Our previous study demonstrated that conditional reprogramming (CR) allows the establishment of patient-derived normal and tumor epithelial cell cultures from a variety of tissue types including breast, lung, colon and prostate. Using CR, we have established matched normal and tumor cultures, GUMC-29 and GUMC-30 respectively, from a patient's prostatectomy specimen. These CR cells proliferate indefinitely in vitro and retain stable karyotypes. Most importantly, only tumor-derived CR cells (GUMC-30) produced tumors in xenografted SCID mice, demonstrating maintenance of the critical tumor phenotype. Characterization of cells with DNA fingerprinting demonstrated identical patterns in normal and tumor CR cells as well as in xenografted tumors. By flow cytometry, both normal and tumor CR cells expressed basal, luminal, and stem cell markers, with the majority of the normal and tumor CR cells expressing prostate basal cell markers, CD44 and Trop2, as well as luminal marker, CD13, suggesting a transit-amplifying phenotype. Consistent with this phenotype, real time RT-PCR analyses demonstrated that CR cells predominantly expressed high levels of basal cell markers (KRT5, KRT14 and p63), and low levels of luminal markers. When the CR tumor cells were injected into SCID mice, the expression of luminal markers (AR, NKX3.1) increased significantly, while basal cell markers dramatically decreased. These data suggest that CR cells maintain high levels of proliferation and low levels of differentiation in the presence of feeder cells and ROCK inhibitor, but undergo differentiation once injected into SCID mice. Genomic analyses, including SNP and INDEL, identified genes mutated in tumor cells, including components of apoptosis, cell attachment, and hypoxia pathways. The use of matched patient-derived cells provides a unique in vitro model for studies of early prostate cancer.
Collapse
|
18
|
Drug discovery for hearing loss: Phenotypic screening of chemical compounds on primary cultures of the spiral ganglion. Hear Res 2017; 349:177-181. [DOI: 10.1016/j.heares.2016.07.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 07/21/2016] [Accepted: 07/30/2016] [Indexed: 11/23/2022]
|
19
|
Liu X, Krawczyk E, Suprynowicz FA, Palechor-Ceron N, Yuan H, Dakic A, Simic V, Zheng YL, Sripadhan P, Chen C, Lu J, Hou TW, Choudhury S, Kallakury B, Tang DG, Darling T, Thangapazham R, Timofeeva O, Dritschilo A, Randell SH, Albanese C, Agarwal S, Schlegel R. Conditional reprogramming and long-term expansion of normal and tumor cells from human biospecimens. Nat Protoc 2017; 12:439-451. [PMID: 28125105 PMCID: PMC6195120 DOI: 10.1038/nprot.2016.174] [Citation(s) in RCA: 230] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Historically, it has been difficult to propagate cells in vitro that are derived directly from human tumors or healthy tissue. However, in vitro preclinical models are essential tools for both the study of basic cancer biology and the promotion of translational research, including drug discovery and drug target identification. This protocol describes conditional reprogramming (CR), which involves coculture of irradiated mouse fibroblast feeder cells with normal and tumor human epithelial cells in the presence of a Rho kinase inhibitor (Y-27632). CR cells can be used for various applications, including regenerative medicine, drug sensitivity testing, gene expression profiling and xenograft studies. The method requires a pathologist to differentiate healthy tissue from tumor tissue, and basic tissue culture skills. The protocol can be used with cells derived from both fresh and cryopreserved tissue samples. As approximately 1 million cells can be generated in 7 d, the technique is directly applicable to diagnostic and predictive medicine. Moreover, the epithelial cells can be propagated indefinitely in vitro, yet retain the capacity to become fully differentiated when placed into conditions that mimic their natural environment.
Collapse
Affiliation(s)
- Xuefeng Liu
- Department of Pathology, Georgetown University Medical Center, Washington, DC, USA
- Center for Cell Reprogramming, Georgetown University Medical Center, Washington, DC, USA
- Correspondence should be addressed to X.L. () or R.S. ()
| | - Ewa Krawczyk
- Department of Pathology, Georgetown University Medical Center, Washington, DC, USA
- Center for Cell Reprogramming, Georgetown University Medical Center, Washington, DC, USA
- Correspondence should be addressed to X.L. () or R.S. ()
| | - Frank A Suprynowicz
- Department of Pathology, Georgetown University Medical Center, Washington, DC, USA
- Center for Cell Reprogramming, Georgetown University Medical Center, Washington, DC, USA
| | - Nancy Palechor-Ceron
- Department of Pathology, Georgetown University Medical Center, Washington, DC, USA
- Center for Cell Reprogramming, Georgetown University Medical Center, Washington, DC, USA
| | - Hang Yuan
- Department of Pathology, Georgetown University Medical Center, Washington, DC, USA
- Center for Cell Reprogramming, Georgetown University Medical Center, Washington, DC, USA
| | - Aleksandra Dakic
- Department of Pathology, Georgetown University Medical Center, Washington, DC, USA
- Center for Cell Reprogramming, Georgetown University Medical Center, Washington, DC, USA
| | - Vera Simic
- Department of Pathology, Georgetown University Medical Center, Washington, DC, USA
- Center for Cell Reprogramming, Georgetown University Medical Center, Washington, DC, USA
| | - Yun-Ling Zheng
- Department of Oncology, Georgetown University Medical Center, Washington, DC, USA
| | - Praathibha Sripadhan
- Department of Pathology, Georgetown University Medical Center, Washington, DC, USA
- Center for Cell Reprogramming, Georgetown University Medical Center, Washington, DC, USA
| | - Chen Chen
- Department of Pathology, Georgetown University Medical Center, Washington, DC, USA
- Center for Cell Reprogramming, Georgetown University Medical Center, Washington, DC, USA
| | - Jie Lu
- Department of Pathology, Georgetown University Medical Center, Washington, DC, USA
- Center for Cell Reprogramming, Georgetown University Medical Center, Washington, DC, USA
| | - Tung-Wei Hou
- Department of Pathology, Georgetown University Medical Center, Washington, DC, USA
- Center for Cell Reprogramming, Georgetown University Medical Center, Washington, DC, USA
| | - Sujata Choudhury
- Department of Pathology, Georgetown University Medical Center, Washington, DC, USA
- Center for Cell Reprogramming, Georgetown University Medical Center, Washington, DC, USA
| | - Bhaskar Kallakury
- Department of Pathology, Georgetown University Medical Center, Washington, DC, USA
- Center for Cell Reprogramming, Georgetown University Medical Center, Washington, DC, USA
| | - Dean G Tang
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Smithville, Texas, USA
| | - Thomas Darling
- Department of Dermatology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Rajesh Thangapazham
- Department of Dermatology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Olga Timofeeva
- Department of Oncology, Georgetown University Medical Center, Washington, DC, USA
- Department of Radiation Medicine, Georgetown University Medical Center, Washington, DC, USA
| | - Anatoly Dritschilo
- Department of Radiation Medicine, Georgetown University Medical Center, Washington, DC, USA
| | - Scott H Randell
- Department of Cell Biology and Physiology, The University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Christopher Albanese
- Department of Pathology, Georgetown University Medical Center, Washington, DC, USA
- Center for Cell Reprogramming, Georgetown University Medical Center, Washington, DC, USA
- Department of Oncology, Georgetown University Medical Center, Washington, DC, USA
| | - Seema Agarwal
- Department of Pathology, Georgetown University Medical Center, Washington, DC, USA
- Center for Cell Reprogramming, Georgetown University Medical Center, Washington, DC, USA
| | - Richard Schlegel
- Department of Pathology, Georgetown University Medical Center, Washington, DC, USA
- Center for Cell Reprogramming, Georgetown University Medical Center, Washington, DC, USA
| |
Collapse
|
20
|
Zheng F, Zuo J. Cochlear hair cell regeneration after noise-induced hearing loss: Does regeneration follow development? Hear Res 2016; 349:182-196. [PMID: 28034617 DOI: 10.1016/j.heares.2016.12.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 11/22/2016] [Accepted: 12/20/2016] [Indexed: 12/14/2022]
Abstract
Noise-induced hearing loss (NIHL) affects a large number of military personnel and civilians. Regenerating inner-ear cochlear hair cells (HCs) is a promising strategy to restore hearing after NIHL. In this review, we first summarize recent transcriptome profile analysis of zebrafish lateral lines and chick utricles where spontaneous HC regeneration occurs after HC damage. We then discuss recent studies in other mammalian regenerative systems such as pancreas, heart and central nervous system. Both spontaneous and forced HC regeneration occurs in mammalian cochleae in vivo involving proliferation and direct lineage conversion. However, both processes are inefficient and incomplete, and decline with age. For direct lineage conversion in vivo in cochleae and in other systems, further improvement requires multiple factors, including transcription, epigenetic and trophic factors, with appropriate stoichiometry in appropriate architectural niche. Increasing evidence from other systems indicates that the molecular paths of direct lineage conversion may be different from those of normal developmental lineages. We therefore hypothesize that HC regeneration does not have to follow HC development and that epigenetic memory of supporting cells influences the HC regeneration, which may be a key to successful cochlear HC regeneration. Finally, we discuss recent efforts in viral gene therapy and drug discovery for HC regeneration. We hope that combination therapy targeting multiple factors and epigenetic signaling pathways will provide promising avenues for HC regeneration in humans with NIHL and other types of hearing loss.
Collapse
Affiliation(s)
- Fei Zheng
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, MS 322, Memphis, TN 38105, United States.
| | - Jian Zuo
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, MS 322, Memphis, TN 38105, United States.
| |
Collapse
|