1
|
Alderete NA, Sathyan S, Raetz S, Margueritat J, Asgari M, Boechler N, Ghanem MA, Espinosa HD. Characterization of the Phononic Landscape of Natural Nacre from Abalone Shells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2407959. [PMID: 39588883 DOI: 10.1002/smll.202407959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/10/2024] [Indexed: 11/27/2024]
Abstract
Natural design and fabrication strategies have long served as a source of inspiration for novel materials with enhanced properties. Less investigated is the prospect of leveraging the complexity of readily available, naturally occurring micro-/nanostructures as platforms for investigating functional materials. In the field of phononics, exploiting structural biocomposites is gaining traction; but finding natural phononic structures that interact with ultra- and hypersonic acoustic waves remains an open quest. In this context, the phononic behavior of natural Nacre, a biocomposite often looked at for inspiration due to its superlattice-like architecture of alternating organic and inorganic phases, is here characterized. To such end, a combination of non-contact pump-probe laser ultrasonics techniques and Brillouin spectroscopy are employed to interrogate Nacre's hierarchical structure at the micro- and nanoscale and measure its phononic dispersion behavior in the MHz and GHz range. It is found that for wavelengths longer than the brick-and-mortar characteristic length, Nacre behaves as a dispersionless medium with effective transversely isotropic properties; but as the wavelengths become comparable to its structural periodicity an involved phononic spectrum arises which challenges the notion of a perfectly periodic, high mechanical-contrast biocomposite.
Collapse
Affiliation(s)
- N A Alderete
- Theoretical and Applied Mechanics, Northwestern University, Evanston, IL, 60208, USA
| | - S Sathyan
- Laboratoire d'Acoustique de l'Université du Mans (LAUM), UMR 6613, Institut d'Acoustique - Graduate School (IA-GS), CNRS, Le Mans Université, Le Mans, France
| | - S Raetz
- Laboratoire d'Acoustique de l'Université du Mans (LAUM), UMR 6613, Institut d'Acoustique - Graduate School (IA-GS), CNRS, Le Mans Université, Le Mans, France
| | - J Margueritat
- Universite Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, Villeurbanne, F-69622, France
| | - M Asgari
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - N Boechler
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA, 92093, USA
- Program in Materials Science and Engineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - M Abi Ghanem
- Universite Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, Villeurbanne, F-69622, France
| | - H D Espinosa
- Theoretical and Applied Mechanics, Northwestern University, Evanston, IL, 60208, USA
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, 60208, USA
| |
Collapse
|
2
|
Bollineni RK, Sayed Ahmed M, Shahab S, Mirzaeifar R. Nacre-like block lattice metamaterials with targeted phononic band gap and mechanical properties. J Mech Behav Biomed Mater 2024; 154:106511. [PMID: 38518512 DOI: 10.1016/j.jmbbm.2024.106511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/06/2024] [Accepted: 03/16/2024] [Indexed: 03/24/2024]
Abstract
The extraordinary quasi-static mechanical properties of nacre-like composite metamaterials, such as high specific strength, stiffness, and toughness, are due to the periodic arrangement of two distinct phases in a "brick and mortar" structure. It is also theorized that the hierarchical periodic structure of nacre structures can provide wider band gaps at different frequency scales. However, the function of hierarchy in the dynamic behavior of metamaterials is largely unknown, and most current investigations are focused on a single objective and specialized applications. Nature, on the other hand, appears to develop systems that represent a trade-off between multiple objectives, such as stiffness, fatigue resistance, and wave attenuation. Given the wide range of design options available to these systems, a multidisciplinary strategy combining diverse objectives may be a useful opportunity provided by bioinspired artificial systems. This paper describes a class of hierarchically-architected block lattice metamaterials with simultaneous wave filtering and enhanced mechanical properties, using deep learning based on artificial neural networks (ANN), to overcome the shortcomings of traditional design methods for forward prediction, parameter design, and topology design of block lattice metamaterial. Our approach uses ANN to efficiently describe the complicated interactions between nacre geometry and its attributes, and then use the Bayesian optimization technique to determine the optimal geometry constants that match the given fitness requirements. We numerically demonstrate that complete band gaps, that is attributed to the coupling effects of local resonances and Bragg scattering, exist. The coupling effects are naturally influenced by the topological arrangements of the continuous structures and the mechanical characteristics of the component phases. We also demonstrate how we can tune the frequency of the complete band gap by modifying the geometrical configurations and volume fraction distribution of the metamaterials. This research contributes to the development of mechanically robust block lattice metamaterials and lenses capable of controlling acoustic and elastic waves in hostile settings.
Collapse
Affiliation(s)
| | | | - Shima Shahab
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA, 24061, USA.
| | - Reza Mirzaeifar
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
| |
Collapse
|
3
|
Liu J, Zhang H, Gao Y, Yu Z, Cong C, Wei X, Yang Q. Reinforcement hybridization in staggered composites enhances wave attenuation performance. J Mech Behav Biomed Mater 2024; 152:106435. [PMID: 38340479 DOI: 10.1016/j.jmbbm.2024.106435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/23/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024]
Abstract
Advanced composites with superior wave attenuation or vibration isolation capacity are in high demand in engineering practice. In this study, we develop the hybrid dynamic shear-lag model with Bloch's theorem to investigate the hybrid effect of reinforcement on wave attenuation in bioinspired staggered composites. We present for the first time the relationship between macroscopic wave filtering and hybridization of building blocks in staggered composites. Viscoelasticity was taken into account for both reinforcement and matrix to reflect the damping effect on wave transmission. Our findings indicate that reinforcement hybridization significantly enhances wave attenuation performance through two critical parameters: the linear stiffness and linear density of reinforcements. For purely elastic constituents, reinforcement hybridization consistently improves wave attenuation by reducing the initial frequency of the first bandgap and broadening it. For viscoelastic constituents, increasing the heterogeneity of reinforcements can benefit wave attenuation, particularly in ultralow frequency regimes, due to the strengthening of the damping effect. Our case study demonstrates that controlling the difference in linear density can result in up to a 59 % reduction in energy transmission. Our analysis suggests that hybridizing reinforcements could provide a new approach to designing and synthesizing advanced composites with exceptional wave attenuation performance.
Collapse
Affiliation(s)
- Junjie Liu
- Department of Engineering Mechanics, School of Mathematics, Statistics and Mechanics, Beijing University of Technology, Beijing, 100124, China.
| | - Hangyuan Zhang
- College of Mechanical & Energy Engineering, Beijing University of Technology, Beijing, 100124, China
| | - Yang Gao
- State Key Laboratory for Turbulence and Complex System, Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing, 100871, China
| | - Zhongliang Yu
- College of Mechanical Engineering, Yangzhou University, Yangzhou, 225127, China
| | - Chaonan Cong
- State Key Laboratory for Turbulence and Complex System, Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing, 100871, China
| | - Xiaoding Wei
- State Key Laboratory for Turbulence and Complex System, Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing, 100871, China
| | - Qingsheng Yang
- Department of Engineering Mechanics, School of Mathematics, Statistics and Mechanics, Beijing University of Technology, Beijing, 100124, China.
| |
Collapse
|
4
|
Low frequency 3D ultra-wide vibration attenuation via elastic metamaterial. Sci Rep 2019; 9:8039. [PMID: 31142751 PMCID: PMC6541607 DOI: 10.1038/s41598-019-44507-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 05/14/2019] [Indexed: 11/26/2022] Open
Abstract
The design of innovative metamaterials with robust and reliable performances is attracting increasing interest in the scientific community because of their unique properties and for their unexplored potential. In particular, dynamical properties of periodic structures are widely studied specifically for their bandgap opening characteristic, which enables the design of structures with unprecedented dynamical behaviour. In the present work an ultra-wide three-dimensional bandgap is presented, with extremely low frequency range of operation. Numerical simulations and analytical models are proposed to prove the claimed properties, together with experiments carried out on a prototype built by means of additive manufacturing.
Collapse
|
5
|
Liu J, Zhu W, Yu Z, Wei X. Dynamic shear-lag model for understanding the role of matrix in energy dissipation in fiber-reinforced composites. Acta Biomater 2018; 74:270-279. [PMID: 29723702 DOI: 10.1016/j.actbio.2018.04.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 04/10/2018] [Accepted: 04/18/2018] [Indexed: 10/17/2022]
Abstract
Lightweight and high impact performance composite design is a big challenge for scientists and engineers. Inspired from well-known biological materials, e.g., the bones, spider silk, and claws of mantis shrimp, artificial composites have been synthesized for engineering applications. Presently, the design of ballistic resistant composites mainly emphasizes the utilization of light and high-strength fibers, whereas the contribution from matrix materials receives less attention. However, recent ballistic experiments on fiber-reinforced composites challenge our common sense. The use of matrix with "low-grade" properties enhances effectively the impact performance. In this study, we establish a dynamic shear-lag model to explore the energy dissipation through viscous matrix materials in fiber-reinforced composites and the associations of energy dissipation characteristics with the properties and geometries of constituents. The model suggests that an enhancement in energy dissipation before the material integrity is lost can be achieved by tuning the shear modulus and viscosity of a matrix. Furthermore, our model implies that an appropriately designed staggered microstructure, adopted by many natural composites, can repeatedly activate the energy dissipation process and thus improve dramatically the impact performance. This model demonstrates the role of matrix in energy dissipation, and stimulates new advanced material design concepts for ballistic applications. STATEMENT OF SIGNIFICANCE Biological composites found in nature often possess exceptional mechanical properties that man-made materials haven't be able to achieve. For example, it is predicted that a pencil thick spider silk thread can stop a flying Boeing airplane. Here, by proposing a dynamic shear-lag model, we investigate the relationships between the impact performance of a composite with the dimensions and properties of its constituents. Our analysis suggests that the impact performance of fiber-reinforced composites could improve surprisingly with "low-grade" matrix materials, and discontinuities (often regarded as "defects") may play an important role in energy dissipation. Counter-intuitive as it may seem, our work helps understanding the secrets of the outstanding dynamic properties of some biological materials, and inspire novel ideas for man-made composites.
Collapse
|
6
|
Hsieh AJ, Veysset D, Miranda DF, Kooi SE, Runt J, Nelson KA. Molecular influence in the glass/polymer interface design: The role of segmental dynamics. POLYMER 2018. [DOI: 10.1016/j.polymer.2018.05.034] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
7
|
3D auxetic single material periodic structure with ultra-wide tunable bandgap. Sci Rep 2018; 8:2262. [PMID: 29396487 PMCID: PMC5797155 DOI: 10.1038/s41598-018-19963-1] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 01/03/2018] [Indexed: 11/08/2022] Open
Abstract
The design and the combination of innovative metamaterials are attracting increasing interest in the scientific community because of their unique properties that go beyond the ones of natural materials. In particular, auxetic materials and phononic crystals are widely studied for their negative Poisson's ratio and their bandgap opening properties, respectively. In this work, auxeticity and phononic crystals bandgap properties are properly combined to obtain a single phase periodic structure with a tridimensional wide tunable bandgap. When an external tensile load is applied to the structure, the auxetic unit cells change their configurations by exploiting the negative Poisson's ratio and this results in the tuning, either hardening or softening, of the frequencies of the modes limiting the 3D bandgap. Moreover, the expansion of the unit cell in all the directions, due to the auxeticity property, guarantees a fully 3D bandgap tunability of the proposed structure. Numerical simulations and analytical models are proposed to prove the claimed properties. The first experimental evidence of the tunability of a wide 3D bandgap is then shown thanks to the fabrication of a prototype by means of additive manufacturing.
Collapse
|
8
|
Li B, Alamri S, Tan KT. A diatomic elastic metamaterial for tunable asymmetric wave transmission in multiple frequency bands. Sci Rep 2017; 7:6226. [PMID: 28740205 PMCID: PMC5524782 DOI: 10.1038/s41598-017-05526-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 05/30/2017] [Indexed: 11/09/2022] Open
Abstract
Unidirectional/asymmetric transmission of acoustic/elastic waves has recently been realized by linear structures. Research related to unidirectionality of wave propagation has received intense attention due to potentially transformative and unique wave control applications. However, asymmetric transmission performance in existing devices usually occurs only in a narrow frequency band, and the asymmetric frequencies are always within ultrasound range (above 20 kHz). In this work, we design and propose a linear diatomic elastic metamaterial using dual-resonator concept to obtain large asymmetric elastic wave transmission in multiple low frequency bands. All of these frequency bands can be theoretically predicted to realize one-way wave propagation along different directions of transmission. The mechanisms of multiple asymmetric transmission bands are theoretically investigated and numerically verified by both analytical lattice and continuum models. Dynamic responses of the proposed system in the broadband asymmetric transmission bands are explored and analyzed in time and frequency domains. The effect of damping on the asymmetric wave transmission is further discussed. Excellent agreements between theoretical results and numerical verification are obtained.
Collapse
Affiliation(s)
- Bing Li
- Department of Mechanical Engineering, The University of Akron, Akron, OH, 44325-3903, USA
| | - Sagr Alamri
- Department of Mechanical Engineering, The University of Akron, Akron, OH, 44325-3903, USA
| | - K T Tan
- Department of Mechanical Engineering, The University of Akron, Akron, OH, 44325-3903, USA.
| |
Collapse
|
9
|
Transcriptome analysis on the exoskeleton formation in early developmetal stages and reconstruction scenario in growth-moulting in Litopenaeus vannamei. Sci Rep 2017; 7:1098. [PMID: 28439089 PMCID: PMC5430884 DOI: 10.1038/s41598-017-01220-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 03/21/2017] [Indexed: 01/06/2023] Open
Abstract
Exoskeleton construction is an important issue in shrimp. To better understand the molecular mechanism of exoskeleton formation, development and reconstruction, the transcriptome of the entire developmental process in Litopenaeus vannamei, including nine early developmental stages and eight adult-moulting stages, was sequenced and analysed using Illumina RNA-seq technology. A total of 117,539 unigenes were obtained, with 41.2% unigenes predicting the full-length coding sequence. Gene Ontology, Clusters of Orthologous Group (COG), the Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis and functional annotation of all unigenes gave a better understanding of the exoskeleton developmental process in L. vannamei. As a result, more than six hundred unigenes related to exoskeleton development were identified both in the early developmental stages and adult-moulting. A cascade of sequential expression events of exoskeleton-related genes were summarized, including exoskeleton formation, regulation, synthesis, degradation, mineral absorption/reabsorption, calcification and hardening. This new insight on major transcriptional events provide a deep understanding for exoskeleton formation and reconstruction in L. vannamei. In conclusion, this is the first study that characterized the integrated transcriptomic profiles cover the entire exoskeleton development from zygote to adult-moulting in a crustacean, and these findings will serve as significant references for exoskeleton developmental biology and aquaculture research.
Collapse
|
10
|
Numerical investigation of band gaps in 3D printed cantilever-in-mass metamaterials. Sci Rep 2016; 6:28314. [PMID: 27329828 PMCID: PMC4916445 DOI: 10.1038/srep28314] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 05/31/2016] [Indexed: 11/26/2022] Open
Abstract
In this research, the negative effective mass behavior of elastic/mechanical metamaterials is exhibited by a cantilever-in-mass structure as a proposed design for creating frequency stopping band gaps, based on local resonance of the internal structure. The mass-in-mass unit cell model is transformed into a cantilever-in-mass model using the Bernoulli-Euler beam theory. An analytical model of the cantilever-in-mass structure is derived and the effects of geometrical dimensions and material parameters to create frequency band gaps are examined. A two-dimensional finite element model is created to validate the analytical results, and excellent agreement is achieved. The analytical model establishes an easily tunable metamaterial design to realize wave attenuation based on locally resonant frequency. To demonstrate feasibility for 3D printing, the analytical model is employed to design and fabricate 3D printable mechanical metamaterial. A three-dimensional numerical experiment is performed using COMSOL Multiphysics to validate the wave attenuation performance. Results show that the cantilever-in-mass metamaterial is capable of mitigating stress waves at the desired resonance frequency. Our study successfully presents the use of one constituent material to create a 3D printed cantilever-in-mass metamaterial with negative effective mass density for stress wave mitigation purposes.
Collapse
|