1
|
Khoo YW, Wang Q, Liu S, Zhan B, Xu T, Lv W, Liu G, Li S, Zhang Z. Resistance of the CRISPR-Cas13a Gene-Editing System to Potato Spindle Tuber Viroid Infection in Tomato and Nicotiana benthamiana. Viruses 2024; 16:1401. [PMID: 39339877 PMCID: PMC11437488 DOI: 10.3390/v16091401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/24/2024] [Accepted: 08/29/2024] [Indexed: 09/30/2024] Open
Abstract
Gene-editing technology, specifically the CRISPR-Cas13a system, has shown promise in breeding plants resistant to RNA viruses. This system targets RNA and, theoretically, can also combat RNA-based viroids. To test this, the CRISPR-Cas13a system was introduced into tomato plants via transient expression and into Nicotiana benthamiana through transgenic methods, using CRISPR RNAs (crRNAs) targeting the conserved regions of both sense and antisense genomes of potato spindle tuber viroid (PSTVd). In tomato plants, the expression of CRISPR-Cas13a and crRNAs substantially reduced PSTVd accumulation and alleviated disease symptoms. In transgenic N. benthamiana plants, the PSTVd levels were lower as compared to wild-type plants. Several effective crRNAs targeting the PSTVd genomic RNA were also identified. These results demonstrate that the CRISPR-Cas13a system can effectively target and combat viroid RNAs, despite their compact structures.
Collapse
Affiliation(s)
- Ying Wei Khoo
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.W.K.); (Q.W.); (B.Z.)
| | - Qingsong Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.W.K.); (Q.W.); (B.Z.)
- National Citrus Engineering Research Center, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Citrus Research Institute, Southwest University, Chongqing 400712, China
| | - Shangwu Liu
- Institute of Industrial Crops, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China;
| | - Binhui Zhan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.W.K.); (Q.W.); (B.Z.)
| | - Tengfei Xu
- Department of Fruit Science, College of Horticulture, China Agricultural University, Beijing 100193, China;
| | - Wenxia Lv
- Inner Mongolia Zhongjia Agricultural Biotechnology Co., Ltd., Ulanqab 011800, China; (W.L.); (G.L.)
| | - Guangjing Liu
- Inner Mongolia Zhongjia Agricultural Biotechnology Co., Ltd., Ulanqab 011800, China; (W.L.); (G.L.)
| | - Shifang Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.W.K.); (Q.W.); (B.Z.)
| | - Zhixiang Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.W.K.); (Q.W.); (B.Z.)
| |
Collapse
|
2
|
Sun J, Matsushita Y. Predicting symptom severity in PSTVd-infected tomato plants using the PSTVd genome sequence. MOLECULAR PLANT PATHOLOGY 2024; 25:e13469. [PMID: 38956901 PMCID: PMC11219469 DOI: 10.1111/mpp.13469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 05/02/2024] [Accepted: 05/08/2024] [Indexed: 07/04/2024]
Abstract
Viroids, one of the smallest known infectious agents, induce symptoms of varying severity, ranging from latent to severe, based on the combination of viroid isolates and host plant species. Because viroids are transmissible between plant species, asymptomatic viroid-infected plants may serve as latent sources of infection for other species that could exhibit severe symptoms, occasionally leading to agricultural and economic losses. Therefore, predicting the symptoms induced by viroids in host plants without biological experiments could remarkably enhance control measures against viroid damage. Here, we developed an algorithm using unsupervised machine learning to predict the severity of disease symptoms caused by viroids (e.g., potato spindle tuber viroid; PSTVd) in host plants (e.g., tomato). This algorithm, mimicking the RNA silencing mechanism thought to be linked to viroid pathogenicity, requires only the genome sequences of the viroids and host plants. It involves three steps: alignment of synthetic short sequences of the viroids to the host plant genome, calculation of the alignment coverage, and clustering of the viroids based on coverage using UMAP and DBSCAN. Validation through inoculation experiments confirmed the effectiveness of the algorithm in predicting the severity of disease symptoms induced by viroids. As the algorithm only requires the genome sequence data, it may be applied to any viroid and plant combination. These findings underscore a correlation between viroid pathogenicity and the genome sequences of viroid isolates and host plants, potentially aiding in the prevention of viroid outbreaks and the breeding of viroid-resistant crops.
Collapse
Affiliation(s)
- Jianqiang Sun
- Research Center for Agricultural Information TechnologyNational Agriculture and Food Research OrganizationTsukubaJapan
| | - Yosuke Matsushita
- Institute of Plant ProtectionNational Agriculture and Food Research OrganizationTsukubaJapan
| |
Collapse
|
3
|
Cisneros AE, Lisón P, Campos L, López-Tubau JM, Altabella T, Ferrer A, Daròs JA, Carbonell A. Down-regulation of tomato STEROL GLYCOSYLTRANSFERASE 1 perturbs plant development and facilitates viroid infection. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:1564-1578. [PMID: 36111947 PMCID: PMC10010610 DOI: 10.1093/jxb/erac361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
Potato spindle tuber viroid (PSTVd) is a plant pathogen naturally infecting economically important crops such as tomato (Solanum lycopersicum). Here, we aimed to engineer tomato plants highly resistant to PSTVd and developed several S. lycopersicum lines expressing an artificial microRNA (amiRNA) against PSTVd (amiR-PSTVd). Infectivity assays revealed that amiR-PSTVd-expressing lines were not resistant but instead hypersusceptible to the viroid. A combination of phenotypic, molecular, and metabolic analyses of amiRNA-expressing lines non-inoculated with the viroid revealed that amiR-PSTVd was accidentally silencing the tomato STEROL GLYCOSYLTRANSFERASE 1 (SlSGT1) gene, which caused late developmental and reproductive defects such as leaf epinasty, dwarfism, or reduced fruit size. Importantly, two independent transgenic tomato lines each expressing a different amiRNA specifically designed to target SlSGT1 were also hypersusceptible to PSTVd, thus demonstrating that down-regulation of SlSGT1 was responsible for the viroid-hypersusceptibility phenotype. Our results highlight the role of sterol glycosyltransferases in proper plant development and indicate that the imbalance of sterol glycosylation levels favors viroid infection, most likely by facilitating viroid movement.
Collapse
Affiliation(s)
- Adriana E Cisneros
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas–Universitat Politècnica de València), 46022 Valencia, Spain
| | - Purificación Lisón
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas–Universitat Politècnica de València), 46022 Valencia, Spain
| | - Laura Campos
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas–Universitat Politècnica de València), 46022 Valencia, Spain
| | - Joan Manel López-Tubau
- Centre for Research in Agricultural Genomics (CSIC-IRTA-IAB-UB), Bellaterra, Barcelona, Spain
| | - Teresa Altabella
- Centre for Research in Agricultural Genomics (CSIC-IRTA-IAB-UB), Bellaterra, Barcelona, Spain
- Department of Biology, Healthcare and the Environment, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
| | - Albert Ferrer
- Centre for Research in Agricultural Genomics (CSIC-IRTA-IAB-UB), Bellaterra, Barcelona, Spain
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
| | - José-Antonio Daròs
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas–Universitat Politècnica de València), 46022 Valencia, Spain
| | | |
Collapse
|
4
|
Ortolá B, Daròs JA. Viroids: Non-Coding Circular RNAs Able to Autonomously Replicate and Infect Higher Plants. BIOLOGY 2023; 12:172. [PMID: 36829451 PMCID: PMC9952643 DOI: 10.3390/biology12020172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/24/2023]
Abstract
Viroids are a unique type of infectious agent, exclusively composed of a relatively small (246-430 nt), highly base-paired, circular, non-coding RNA. Despite the small size and non-coding nature, the more-than-thirty currently known viroid species infectious of higher plants are able to autonomously replicate and move systemically through the host, thereby inducing disease in some plants. After recalling viroid discovery back in the late 60s and early 70s of last century and discussing current hypotheses about their evolutionary origin, this article reviews our current knowledge about these peculiar infectious agents. We describe the highly base-paired viroid molecules that fold in rod-like or branched structures and viroid taxonomic classification in two families, Pospiviroidae and Avsunviroidae, likely gathering nuclear and chloroplastic viroids, respectively. We review current knowledge about viroid replication through RNA-to-RNA rolling-circle mechanisms in which host factors, notably RNA transporters, RNA polymerases, RNases, and RNA ligases, are involved. Systemic movement through the infected plant, plant-to-plant transmission and host range are also discussed. Finally, we focus on the mechanisms of viroid pathogenesis, in which RNA silencing has acquired remarkable importance, and also for the initiation of potential biotechnological applications of viroid molecules.
Collapse
Affiliation(s)
| | - José-Antonio Daròs
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València), 46022 Valencia, Spain
| |
Collapse
|
5
|
Di Serio F, Owens RA, Navarro B, Serra P, Martínez de Alba ÁE, Delgado S, Carbonell A, Gago-Zachert S. Role of RNA silencing in plant-viroid interactions and in viroid pathogenesis. Virus Res 2023; 323:198964. [PMID: 36223861 PMCID: PMC10194176 DOI: 10.1016/j.virusres.2022.198964] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 10/04/2022] [Accepted: 10/07/2022] [Indexed: 11/05/2022]
Abstract
Viroids are small, single-stranded, non-protein coding and circular RNAs able to infect host plants in the absence of any helper virus. They may elicit symptoms in their hosts, but the underlying molecular pathways are only partially known. Here we address the role of post-transcriptional RNA silencing in plant-viroid-interplay, with major emphasis on the involvement of this sequence-specific RNA degradation mechanism in both plant antiviroid defence and viroid pathogenesis. This review is a tribute to the memory of Dr. Ricardo Flores, who largely contributed to elucidate this and other molecular mechanisms involved in plant-viroid interactions.
Collapse
Affiliation(s)
- Francesco Di Serio
- Institute for Sustainable Plant Protection, National Research Council, Bari 70122, Italy.
| | - Robert A Owens
- Molecular Plant Pathology Laboratory, US Department of Agriculture, Agricultural Research Service, Beltsville, MD 20705, USA
| | - Beatriz Navarro
- Institute for Sustainable Plant Protection, National Research Council, Bari 70122, Italy
| | - Pedro Serra
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València), Valencia 46022, Spain
| | - Ángel Emilio Martínez de Alba
- Institute for Agribiotechnology Research (CIALE), Department of Microbiology and Genetics, University of Salamanca, Villamayor 37185, Salamanca, Spain
| | - Sonia Delgado
- Instituto Agroforestal Mediterráneo (IAM-UPV), Camino de Vera, s/n 46022, Valencia, Spain
| | - Alberto Carbonell
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València), Valencia 46022, Spain
| | - Selma Gago-Zachert
- Institute of Biochemistry and Biotechnology, Section Microbial Biotechnology, Martin Luther University Halle-Wittenberg, Halle/Saale 06120, Germany
| |
Collapse
|
6
|
Advances in RNA-Silencing-Related Resistance against Viruses in Potato. Genes (Basel) 2022; 13:genes13050731. [PMID: 35627117 PMCID: PMC9141481 DOI: 10.3390/genes13050731] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/20/2022] [Accepted: 04/20/2022] [Indexed: 12/16/2022] Open
Abstract
Potato is a major food crop that has the potential to feed the increasing global population. Potato is the fourth most important crop and a staple food for many people worldwide. The traditional breeding of potato poses many challenges because of its autotetraploid nature and its tendency toward inbreeding depression. Moreover, potato crops suffer considerable production losses because of infections caused by plant viruses. In this context, RNA silencing technology has been successfully applied in model and crop species. In this review, we describe the RNA interference (RNAi) mechanisms, including small-interfering RNA, microRNA, and artificial microRNA, which may be used to engineer resistance against potato viruses. We also explore the latest advances in the development of antiviral strategies to enhance resistance against potato virus X, potato virus Y, potato virus A, potato leafroll virus, and potato spindle tuber viroid. Furthermore, the challenges in RNAi that need to be overcome are described in this review. Altogether, this report would be insightful for the researchers attempting to understand the RNAi-mediated resistance against viruses in potato.
Collapse
|
7
|
Carbonell A. RNAi tools for controlling viroid diseases. Virus Res 2022; 313:198729. [DOI: 10.1016/j.virusres.2022.198729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/02/2022] [Accepted: 03/05/2022] [Indexed: 12/01/2022]
|
8
|
In Memoriam of Ricardo Flores: The Career, Achievements, and Legacy of an inspirational plant virologist. Virus Res 2022. [DOI: 10.1016/j.virusres.2022.198718] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
9
|
Adkar-Purushothama CR, Iyer PS, Sano T, Perreault JP. sRNA Profiler: A User-Focused Interface for Small RNA Mapping and Profiling. Cells 2021; 10:cells10071771. [PMID: 34359940 PMCID: PMC8303536 DOI: 10.3390/cells10071771] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 07/06/2021] [Accepted: 07/09/2021] [Indexed: 11/16/2022] Open
Abstract
Viroids are circular, highly structured, single-stranded, non-coding RNA pathogens known to infect and cause disease in several plant species. They are known to trigger the host plant’s RNA silencing machinery. The detection of viroid-derived small RNAs (vd-sRNA) in viroid-infected host plants opened a new avenue of study in host–viroid pathogenicity. Since then, several viroid research groups have studied the vd-sRNA retrieved from different host–viroid combinations. Such studies require the segregation of 21- to 24-nucleotide long small RNAs (sRNA) from a deep-sequencing databank, followed by separating the vd-sRNA from any sRNA within this group that showed sequence similarity with either the genomic or the antigenomic strands of the viroid. Such mapped vd-sRNAs are then profiled on both the viroid’s genomic and antigenomic strands for visualization. Although several commercial interfaces are currently available for this purpose, they are all programmed for linear RNA molecules. Hence, viroid researchers must develop a computer program that accommodates the sRNAs derived from the circular viroid genome. This is a laborious process, and consequently, it often creates a bottleneck for biologists. In order to overcome this constraint, and to help the research community in general, in this study, a python-based pattern matching interface was developed so as to be able to both profile and map sRNAs on a circular genome. A “matching tolerance” feature has been included in the program, thus permitting the mapping of the sRNAs derived from the quasi-species. Additionally, the “topology” feature allows the researcher to profile sRNA derived from both linear and circular RNA molecules. The efficiency of the program was tested using previously reported deep-sequencing data obtained from two independent studies. Clearly, this novel software should be a key tool with which to both evaluate the production of sRNA and to profile them on their target RNA species, irrespective of the topology of the target RNA molecule.
Collapse
Affiliation(s)
- Charith Raj Adkar-Purushothama
- RNA Group/Groupe ARN, Département de Biochimie, Faculté de Médecine des Sciences de la Santé, Pavillon de Recherche Appliquée au Cancer, Université de Sherbrooke, 3201 Rue Jean-Mignault, Sherbrooke, QC J1E 4K8, Canada
- Correspondence: (C.R.A.-P.); (J.-P.P.)
| | - Pavithran Sridharan Iyer
- Département de Physique, Université de Sherbrooke, 2500 Boul. Université, Sherbrooke, QC J1K 2R1, Canada;
| | - Teruo Sano
- Faculty of Agriculture and Life Science, Hirosaki University, Bunkyo-cho 3, Hirosaki 036-8561, Japan;
| | - Jean-Pierre Perreault
- RNA Group/Groupe ARN, Département de Biochimie, Faculté de Médecine des Sciences de la Santé, Pavillon de Recherche Appliquée au Cancer, Université de Sherbrooke, 3201 Rue Jean-Mignault, Sherbrooke, QC J1E 4K8, Canada
- Correspondence: (C.R.A.-P.); (J.-P.P.)
| |
Collapse
|
10
|
Identification and Molecular Mechanisms of Key Nucleotides Causing Attenuation in Pathogenicity of Dahlia Isolate of Potato Spindle Tuber Viroid. Int J Mol Sci 2020; 21:ijms21197352. [PMID: 33027943 PMCID: PMC7583970 DOI: 10.3390/ijms21197352] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 09/18/2020] [Accepted: 10/01/2020] [Indexed: 12/12/2022] Open
Abstract
While the potato spindle tuber viroid (PSTVd) variant, PSTVd-Dahlia (PSTVd-D or PSTVd-Dwt) induces very mild symptoms in tomato cultivar 'Rutgers', PSTVd-Intermediate (PSTVd-I or PSTVd-Iwt) induces severe symptoms. These two variants differ by nine nucleotides, of which six mutations are located in the terminal left (TL) to the pathogenicity (P) domains. To evaluate the importance of mutations located in the TL to the P domains, ten types of point mutants were created by swapping the nucleotides between the two viroid variants. Bioassay in tomato plants demonstrated that two mutants created on PSTVd-Iwt at positions 42 and 64 resulted in symptom attenuation. Phenotypic and RT-qPCR analysis revealed that mutation at position 42 of PSTVd-Iwt significantly reduced disease severity and accumulation of the viroid, whereas mutation at position 64 showed a significant reduction in stunting when compared to the PSTVd-Iwt infected plant. RT-qPCR analysis on pathogenesis-related protein 1b1 and chalcone synthase genes showed a direct correlation with symptom severity whereas the expansin genes were down-regulated irrespective of the symptom severity. These results indicate that the nucleotides at positions 42 and 64 are in concert with the ones at positions 43, 310, and 311/312, which determines the slower and stable accumulation of PSTVd-D without eliciting excessive host defense responses thus contributing in the attenuation of disease symptom.
Collapse
|
11
|
Adkar-Purushothama CR, Perreault JP. Impact of Nucleic Acid Sequencing on Viroid Biology. Int J Mol Sci 2020; 21:ijms21155532. [PMID: 32752288 PMCID: PMC7432327 DOI: 10.3390/ijms21155532] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 07/29/2020] [Accepted: 07/30/2020] [Indexed: 12/26/2022] Open
Abstract
The early 1970s marked two breakthroughs in the field of biology: (i) The development of nucleotide sequencing technology; and, (ii) the discovery of the viroids. The first DNA sequences were obtained by two-dimensional chromatography which was later replaced by sequencing using electrophoresis technique. The subsequent development of fluorescence-based sequencing method which made DNA sequencing not only easier, but many orders of magnitude faster. The knowledge of DNA sequences has become an indispensable tool for both basic and applied research. It has shed light biology of viroids, the highly structured, circular, single-stranded non-coding RNA molecules that infect numerous economically important plants. Our understanding of viroid molecular biology and biochemistry has been intimately associated with the evolution of nucleic acid sequencing technologies. With the development of the next-generation sequence method, viroid research exponentially progressed, notably in the areas of the molecular mechanisms of viroids and viroid diseases, viroid pathogenesis, viroid quasi-species, viroid adaptability, and viroid–host interactions, to name a few examples. In this review, the progress in the understanding of viroid biology in conjunction with the improvements in nucleotide sequencing technology is summarized. The future of viroid research with respect to the use of third-generation sequencing technology is also briefly envisaged.
Collapse
|
12
|
Adkar-Purushothama CR, Bolduc F, Bru P, Perreault JP. Insights Into Potato Spindle Tuber Viroid Quasi-Species From Infection to Disease. Front Microbiol 2020; 11:1235. [PMID: 32719659 PMCID: PMC7349936 DOI: 10.3389/fmicb.2020.01235] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 05/14/2020] [Indexed: 12/31/2022] Open
Abstract
Viroids are non-coding RNA plant pathogens that are characterized by their possession of a high mutation level. Although the sequence heterogeneity in viroid infected plants is well understood, shifts in viroid population dynamics due to mutations over the course of infection remain poorly understood. In this study, the ten most abundant sequence variants of potato spindle tuber viroid RG1 (PSTVd) expressed at different time intervals in PSTVd infected tomato plants were identified by high-throughput sequencing. The sequence variants, forming a quasi-species, were subjected to both the identification of the regions favoring mutations and the effect of the mutations on viroid secondary structure and viroid derived small RNAs (vd-sRNA). At week 1 of PSTVd infection, 25% of the sequence variants were similar to the "master" sequence (i.e., the sequence used for inoculation). The frequency of the master sequence within the population increased to 70% at week 2 after PSTVd infection, and then stabilized for the rest of the disease cycle (i.e., weeks 3 and 4). While some sequence variants were abundant at week 1 after PSTVd infection, they tended to decrease in frequency over time. For example, the variants with insertions at positions 253 or 254, positions that could affect the Loop E as well as the metastable hairpin I structure that has been shown important during replication and viroid infectivity, resulted in decreased frequency. Data obtained by in silico analysis of the viroid derived small RNAs (vd-sRNA) was also analyzed. A few mutants had the potential of positively affecting the viroid's accumulation by inducing the RNA silencing of the host's defense related genes. Variants with mutations that could negatively affect viroid abundance were also identified because their derived vd-sRNA were no longer capable of targeting any host mRNA or of changing its target sequence from a host defense gene to some other non-important host gene. Together, these findings open avenues into understanding the biological role of sequence variants, this viroid's interaction with host components, stable and metastable structures generated by mutants during the course of infection, and the influence of sequence variants on stabilizing viroid population dynamics.
Collapse
Affiliation(s)
- Charith Raj Adkar-Purushothama
- RNA Group/Groupe ARN, Département de Biochimie, Faculté de Médecine des Sciences de la Santé, Pavillon de Recherche Appliquée au Cancer, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - François Bolduc
- RNA Group/Groupe ARN, Département de Biochimie, Faculté de Médecine des Sciences de la Santé, Pavillon de Recherche Appliquée au Cancer, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Pierrick Bru
- RNA Group/Groupe ARN, Département de Biochimie, Faculté de Médecine des Sciences de la Santé, Pavillon de Recherche Appliquée au Cancer, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Jean-Pierre Perreault
- RNA Group/Groupe ARN, Département de Biochimie, Faculté de Médecine des Sciences de la Santé, Pavillon de Recherche Appliquée au Cancer, Université de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
13
|
Bao S, Owens RA, Sun Q, Song H, Liu Y, Eamens AL, Feng H, Tian H, Wang MB, Zhang R. Silencing of transcription factor encoding gene StTCP23 by small RNAs derived from the virulence modulating region of potato spindle tuber viroid is associated with symptom development in potato. PLoS Pathog 2019; 15:e1008110. [PMID: 31790500 PMCID: PMC6907872 DOI: 10.1371/journal.ppat.1008110] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 12/12/2019] [Accepted: 09/25/2019] [Indexed: 11/18/2022] Open
Abstract
Viroids are small, non-protein-coding RNAs which can induce disease symptoms in a variety of plant species. Potato (Solanum tuberosum L.) is the natural host of Potato spindle tuber viroid (PSTVd) where infection results in stunting, distortion of leaves and tubers and yield loss. Replication of PSTVd is accompanied by the accumulation of viroid-derived small RNAs (sRNAs) proposed to play a central role in disease symptom development. Here we report that PSTVd sRNAs direct RNA silencing in potato against StTCP23, a member of the TCP (teosinte branched1/Cycloidea/Proliferating cell factor) transcription factor family genes that play an important role in plant growth and development as well as hormonal regulation, especially in responses to gibberellic acid (GA). The StTCP23 transcript has 21-nucleotide sequence complementarity in its 3ʹ untranslated region with the virulence-modulating region (VMR) of PSTVd strain RG1, and was downregulated in PSTVd-infected potato plants. Analysis using 3ʹ RNA ligase-mediated rapid amplification of cDNA ends (3ʹ RLM RACE) confirmed cleavage of StTCP23 transcript at the expected sites within the complementarity with VMR-derived sRNAs. Expression of these VMR sRNA sequences as artificial miRNAs (amiRNAs) in transgenic potato plants resulted in phenotypes reminiscent of PSTVd-RG1-infected plants. Furthermore, the severity of the phenotypes displayed was correlated with the level of amiRNA accumulation and the degree of amiRNA-directed down-regulation of StTCP23. In addition, virus-induced gene silencing (VIGS) of StTCP23 in potato also resulted in PSTVd-like phenotypes. Consistent with the function of TCP family genes, amiRNA lines in which StTCP23 expression was silenced showed a decrease in GA levels as well as alterations to the expression of GA biosynthesis and signaling genes previously implicated in tuber development. Application of GA to the amiRNA plants minimized the PSTVd-like phenotypes. Taken together, our results indicate that sRNAs derived from the VMR of PSTVd-RG1 direct silencing of StTCP23 expression, thereby disrupting the signaling pathways regulating GA metabolism and leading to plant stunting and formation of small and spindle-shaped tubers. Potato spindle tuber viroid (PSTVd) is a small RNA pathogen that causes severe pandemic diseases in potato. How this non-protein-coding RNA induces disease symptom development in potato is unknown, thereby hindering the development of effective control measures. Here we report the first evidence that PSTVd disease is caused by the silencing of StTCP23, a potato transcription factor encoding gene, by PSTVd-derived small-interfering RNA (siRNAs). Specifically, we demonstrate that 3ʹ untranslated region (UTR) region of StTCP23 mRNA contains a 21-nt sequence that is complementary to the virulence-modulating region (VMR) of PSTVd. Furthermore, we show that StTCP23 expression is repressed in PSTVd-infected potato, and this repression is accompanied by StTCP23 transcript cleavage within the identified region of complementary. In planta expression of VMR sequences as 21-nt artificial microRNAs (amiRNAs) or infection of potato plants with a virus-induced gene silencing vector containing a portion the StTCP23 coding sequence, results in reduced StTCP23 transcript abundance and the expression of PSTVd-like disease symptoms. Consistent with the predicted functional role of StTCP23 in regulating the gibberellic acid (GA) biosynthesis and signaling pathways, GA levels were reduced both in PSTVd-infected and amiRNA-expressing plants. Our results provide compelling evidence that StTCP23 positively regulates potato sprouting and tuber development via a GA-related mechanism, and that the disease symptoms that develop upon PSTVd infection result from silencing of StTCP23 by VMR-derived siRNAs.
Collapse
Affiliation(s)
- Sarina Bao
- School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Robert A. Owens
- Molecular Plant Pathology Laboratory, USDA/ARS, Beltsville, Maryland, United States of America
| | - Qinghua Sun
- School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Hui Song
- School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Yanan Liu
- School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Andrew Leigh Eamens
- Centre for Plant Science, School of Environmental and Life Sciences, Faculty of Science, University of Newcastle, Australia
| | - Hao Feng
- School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Hongzhi Tian
- School of Life Sciences, Inner Mongolia University, Hohhot, China
| | | | - Ruofang Zhang
- School of Life Sciences, Inner Mongolia University, Hohhot, China
- * E-mail:
| |
Collapse
|
14
|
Adkar-Purushothama CR, Perreault JP. Current overview on viroid-host interactions. WILEY INTERDISCIPLINARY REVIEWS-RNA 2019; 11:e1570. [PMID: 31642206 DOI: 10.1002/wrna.1570] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 09/12/2019] [Accepted: 09/17/2019] [Indexed: 01/03/2023]
Abstract
Viroids are one of the most enigmatic highly structured, circular, single-stranded RNA phytopathogens. Although they are not known to code for any peptide, viroids induce visible symptoms in susceptible host plants that resemble those associated with many plant viruses. It is known that viroids induce disease symptoms by direct interaction with host factors; however, the precise mechanism by which this occurs remains poorly understood. Studies on the host's responses to viroid infection, host susceptibility and nonhost resistance have been underway for several years, but much remains to be done in order to fully understand the complex nature of viroid-host interactions. Recent progress using molecular biology techniques combined with computational algorithms, in particular evidence of the role of viroid-derived small RNAs in the RNA silencing pathways of a disease network, has widened the knowledge of viroid pathogenicity. The complexity of viroid-host interactions has been revealed in the past decades to include, but not be limited to, the involvement of host factors, viroid structural complexity, and viroid-induced ribosomal stress, which is further boosted by the discovery of long noncoding RNAs (lncRNAs). In this review, the current understanding of the viroid-host interaction has been summarized with the goal of simplifying the complexity of viroid biology for future research. This article is categorized under: RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- Charith Raj Adkar-Purushothama
- MYM Nutraceuticals Inc, Vancouver, British Columbia, Canada.,RNA Group/Groupe ARN, Département de Biochimie, Faculté de médecine des sciences de la santé, Pavillon de Recherche Appliquée au Cancer, Université de Sherbrooke, Québec, Canada
| | - Jean-Pierre Perreault
- RNA Group/Groupe ARN, Département de Biochimie, Faculté de médecine des sciences de la santé, Pavillon de Recherche Appliquée au Cancer, Université de Sherbrooke, Québec, Canada
| |
Collapse
|
15
|
Suzuki T, Ikeda S, Kasai A, Taneda A, Fujibayashi M, Sugawara K, Okuta M, Maeda H, Sano T. RNAi-Mediated Down-Regulation of Dicer-Like 2 and 4 Changes the Response of 'Moneymaker' Tomato to Potato Spindle Tuber Viroid Infection from Tolerance to Lethal Systemic Necrosis, Accompanied by Up-Regulation of miR398, 398a-3p and Production of Excessive Amount of Reactive Oxygen Species. Viruses 2019; 11:v11040344. [PMID: 31013904 PMCID: PMC6521110 DOI: 10.3390/v11040344] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/08/2019] [Accepted: 04/10/2019] [Indexed: 12/14/2022] Open
Abstract
To examine the role of RNA silencing in plant defenses against viroids, a Dicer-like 2 and 4 (DCL2&4)–double knockdown transgenic tomato plant line, 72E, was created. The expression of endogenous SlDCL2s and SlDCL4 in line 72E decreased to about a half that of the empty cassette line, EC. When challenged with potato spindle tuber viroid (PSTVd), line 72E showed significantly higher levels of PSTVd accumulation early in the course of the infection and lethal systemic necrosis late in the infection. The size distribution of PSTVd-derived small RNAs was significantly different with the number of RNAs of 21 and 22 nucleotides (nt) in line 72E, at approximately 66.7% and 5% of those in line EC, respectively. Conversely, the numbers of 24 nt species increased by 1100%. Furthermore, expression of the stress-responsive microRNA species miR398 and miR398a-3p increased 770% and 868% in the PSTVd-infected line 72E compared with the PSTVd-infected EC. At the same time, the expression of cytosolic and chloroplast-localized Cu/Zn-superoxide dismutase 1 and 2 (SOD1 and SOD2) and the copper chaperon for SOD (CCS1) mRNAs, potential targets of miR398 or 398a-3p, decreased significantly in the PSTVd-infected line 72E leaves, showing necrosis. In concert with miR398 and 398a-3p, SODs control the detoxification of reactive oxygen species (ROS) generated in cells. Since high levels of ROS production were observed in PSTVd-infected line 72E plants, it is likely that the lack of full dicer-likes (DCL) activity in these plants made them unable to control excessive ROS production after PSTVd infection, as disruption in the ability of miR398 and miR398a-3p to regulate SODs resulted in the development of lethal systemic necrosis.
Collapse
Affiliation(s)
- Takahiro Suzuki
- Faculty of Agriculture and Life Science, Hirosaki University, Bunkyo-cho 3, Hirosaki 036-8561, Japan.
- Union Graduate School of Agricultural Sciences, Iwate University, 3-18-8 Ueda, Morioka, Iwate 020-8550, Japan.
| | - Sho Ikeda
- Faculty of Agriculture and Life Science, Hirosaki University, Bunkyo-cho 3, Hirosaki 036-8561, Japan.
| | - Atsushi Kasai
- Faculty of Agriculture and Life Science, Hirosaki University, Bunkyo-cho 3, Hirosaki 036-8561, Japan.
| | - Akito Taneda
- Graduate School of Science and Technology, Hirosaki University, Bunkyo-cho 3, Hirosaki 036-8561, Japan.
| | - Misato Fujibayashi
- Faculty of Agriculture and Life Science, Hirosaki University, Bunkyo-cho 3, Hirosaki 036-8561, Japan.
| | - Kohei Sugawara
- Faculty of Agriculture and Life Science, Hirosaki University, Bunkyo-cho 3, Hirosaki 036-8561, Japan.
| | - Maki Okuta
- Faculty of Agriculture and Life Science, Hirosaki University, Bunkyo-cho 3, Hirosaki 036-8561, Japan.
| | - Hayato Maeda
- Faculty of Agriculture and Life Science, Hirosaki University, Bunkyo-cho 3, Hirosaki 036-8561, Japan.
| | - Teruo Sano
- Faculty of Agriculture and Life Science, Hirosaki University, Bunkyo-cho 3, Hirosaki 036-8561, Japan.
| |
Collapse
|
16
|
Sharma S, Kumar G, Dasgupta I. Simultaneous resistance against the two viruses causing rice tungro disease using RNA interference. Virus Res 2018; 255:157-164. [PMID: 30031045 DOI: 10.1016/j.virusres.2018.07.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 07/14/2018] [Accepted: 07/17/2018] [Indexed: 02/09/2023]
Abstract
Rice tungro is the most important viral disease affecting rice in South and Southeast Asia, caused by two viruses rice tungro bacilliform virus (RTBV) and rice tungro spherical virus (RTSV). Transgenic resistance using RNA-interference (RNAi) has been reported individually against RTBV and RTSV earlier. Here we report the development of transgenic rice plants expressing RNAi against both RTBV and RTSV simultaneously. A DNA construct carrying 300 bp of RTBV DNA and 300 bp of RTSV cDNA were cloned as the two arms in hairpin orientation in a binary plasmid background to generate RNAi against both viruses simultaneously. Transgenic rice plants were raised using the above construct and their resistance against RTBV and RTSV was quantified at the T1 plants. Levels of both the viral nucleic acids showed a fall of 100- to 500-fold in the above plants, compared with the non-transgenic controls, coupled with the amelioration of stunting. The transgenic plants also retained higher chlorophyll levels than the control non-transgenic plants after infection with RTBV and RTSV. Small RNA analysis of virus inoculated transgenic plants indicated the presence of 21 nt and 22 nt siRNAs specific to RTBV and RTSV. The evidence points towards an active RNAi mechanism leading to resistance against the tungro viruses in the plants analysed.
Collapse
Affiliation(s)
- Shweta Sharma
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India
| | - Gaurav Kumar
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India
| | - Indranil Dasgupta
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India.
| |
Collapse
|
17
|
Adkar-Purushothama CR, Perreault JP. Alterations of the viroid regions that interact with the host defense genes attenuate viroid infection in host plant. RNA Biol 2018; 15:955-966. [PMID: 29683389 DOI: 10.1080/15476286.2018.1462653] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
Abstract
Understanding in intimate details how the viroid interaction with host's defense genes is a cornerstone for developing viroid resistant plants. In this present study, small RNAs (sRNA) derived from Potato spindle tuber viroid (PSTVd) were studied in silico in order to detect any interactions with the serine threonine kinase receptor, a transmembrane protein that plays a role in disease resistance in plants. Using molecular biology techniques, it was determined that PSTVd infection negatively affects at least three serine threonine kinase receptors as well as with three other genes that are known to be involved in the overall development of the tomato plants. The transient expression of these putative PSTVd-sRNAs, using the microRNA sequence as a backbone, in tomato plants induced phenotypes similar to viroid infection. Mutants created by altering the sequence of PSTVd in these regions failed to infect the tomato plant. The data presented here illustrates the importance of these regions in viroid survival, and suggests a possible avenue of exploration for the development of viroid resistant plants.
Collapse
Affiliation(s)
- Charith Raj Adkar-Purushothama
- a RNA Group/Groupe ARN, Département de Biochimie, Faculté de médecine des sciences de la santé, Pavillon de Recherche Appliquée au Cancer , Université de Sherbrooke , 3201 rue Jean-Mignault, Sherbrooke , Québec , Canada
| | - Jean-Pierre Perreault
- a RNA Group/Groupe ARN, Département de Biochimie, Faculté de médecine des sciences de la santé, Pavillon de Recherche Appliquée au Cancer , Université de Sherbrooke , 3201 rue Jean-Mignault, Sherbrooke , Québec , Canada
| |
Collapse
|
18
|
Adkar-Purushothama CR, Iyer PS, Perreault JP. Potato spindle tuber viroid infection triggers degradation of chloride channel protein CLC-b-like and Ribosomal protein S3a-like mRNAs in tomato plants. Sci Rep 2017; 7:8341. [PMID: 28827569 PMCID: PMC5566334 DOI: 10.1038/s41598-017-08823-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 07/14/2017] [Indexed: 11/29/2022] Open
Abstract
It is well established that viroid derived small RNA (vd-sRNA) induces RNA silencing of endogenous mRNA. However, it remains not clear how exactly viroid infections can lead to severe symptom induction given the fact that fewer vd-sRNAs binding the specific target mRNAs were recovered from the infected plants. To answer this question, the two least expressed (+) and (−) strand vd-sRNAs of potato spindle tuber viroid (PSTVd) binding to both the 3′ UTR and the coding region of tomato mRNAs were analyzed by infecting tomato plants with two variants of PSTVd. As products of these putative target mRNAs are involved in plant phenotype, the effect of this viroid on these genes were analyzed by infecting tomato plants with two variants of PSTVd. The direct interaction between the vd-sRNAs and putative mRNAs was validated by artificial microRNA experiments in a transient expression system and by RNA ligase-mediated rapid amplification of cDNA ends. Parallel analysis of RNA ends of viroid infected plants revealed the widespread cleavage of the target mRNAs in locations other than the vd-sRNA binding site during the viroid infection implying the viroid-infection induced vd-sRNA independent degradation of endogenous mRNAs during viroid infection.
Collapse
Affiliation(s)
- Charith Raj Adkar-Purushothama
- Département de Biochimie, RNA Group/Groupe ARN, Faculté de médecine des sciences de la santé, Pavillon de Recherche Appliquée au Cancer, Université de Sherbrooke, 3201 rue Jean-Mignault, Sherbrooke, Québec, J1E 4K8, Canada.
| | - Pavithran Sridharan Iyer
- Département de Physique, Université de Sherbrooke, 2500 Boulevard de l'Université Sherbrooke, Québec, J1K 2R1, Canada
| | - Jean-Pierre Perreault
- Département de Biochimie, RNA Group/Groupe ARN, Faculté de médecine des sciences de la santé, Pavillon de Recherche Appliquée au Cancer, Université de Sherbrooke, 3201 rue Jean-Mignault, Sherbrooke, Québec, J1E 4K8, Canada.
| |
Collapse
|
19
|
Pooggin MM. RNAi-mediated resistance to viruses: a critical assessment of methodologies. Curr Opin Virol 2017; 26:28-35. [PMID: 28753441 DOI: 10.1016/j.coviro.2017.07.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Revised: 07/05/2017] [Accepted: 07/11/2017] [Indexed: 01/07/2023]
Abstract
In plants, RNA interference (RNAi)-based antiviral defense is mediated by multigenic families of Dicer-like enzymes generating small interfering (si)RNAs from double-stranded RNA (dsRNA) produced during replication and/or transcription of RNA and DNA viruses, and Argonaute enzymes binding viral siRNAs and targeting viral RNA and DNA for siRNA-directed posttranscriptional and transcriptional silencing. Successful viruses are able to suppress or evade the production or action of viral siRNAs. In antiviral biotech approaches based on RNAi, transgenic expression or non-transgenic delivery of dsRNA cognate to a target virus pre-activates or boosts the natural plant antiviral defenses. Design of more effective antiviral RNAi strategies requires better understanding of viral siRNA biogenesis and viral anti-silencing strategies in virus-infected plants.
Collapse
|
20
|
Flores R, Navarro B, Kovalskaya N, Hammond RW, Di Serio F. Engineering resistance against viroids. Curr Opin Virol 2017; 26:1-7. [PMID: 28738223 DOI: 10.1016/j.coviro.2017.07.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 06/28/2017] [Accepted: 07/05/2017] [Indexed: 01/19/2023]
Abstract
Viroids, the smallest infectious agents endowed with autonomous replication, are tiny single-stranded circular RNAs (∼250 to 400nt) without protein-coding ability that, despite their simplicity, infect and often cause disease in herbaceous and woody plants of economic relevance. To mitigate the resulting losses, several strategies have been developed, the most effective of which include: firstly, search for naturally resistant cultivars and breeding for resistance, secondly, induced resistance by pre-infection with mild strains, thirdly, ribonucleases targeting double-stranded RNAs and catalytic antibodies endowed with intrinsic ribonuclease activity, fourthly, antisense, and sense, RNAs, fifthly, catalytic antisense RNAs derived from hammerhead ribozymes, and sixthly, hairpin RNAs and artificial small RNAs for RNA interference. The mechanisms underpinning these strategies, most of which have been implemented via genetic transformation, together with their present results and future potential, are the subject of this review.
Collapse
Affiliation(s)
- Ricardo Flores
- Instituto de Biología Molecular y Celular de Plantas (UPV-CSIC), Universidad Politécnica de Valencia, Valencia 46022, Spain.
| | - Beatriz Navarro
- Istituto per la Protezione Sostenibile delle Piante, Consiglio Nazionale delle Ricerche, 70126 Bari, Italy
| | - Natalia Kovalskaya
- Molecular Plant Pathology Laboratory, USDA-ARS-BARC, Beltsville, MD 20705, USA
| | - Rosemarie W Hammond
- Molecular Plant Pathology Laboratory, USDA-ARS-BARC, Beltsville, MD 20705, USA
| | - Francesco Di Serio
- Istituto per la Protezione Sostenibile delle Piante, Consiglio Nazionale delle Ricerche, 70126 Bari, Italy
| |
Collapse
|
21
|
Carbonell A, Daròs J. Artificial microRNAs and synthetic trans-acting small interfering RNAs interfere with viroid infection. MOLECULAR PLANT PATHOLOGY 2017; 18:746-753. [PMID: 28026103 PMCID: PMC6638287 DOI: 10.1111/mpp.12529] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 12/14/2016] [Accepted: 12/17/2016] [Indexed: 05/18/2023]
Abstract
Artificial microRNAs (amiRNAs) and synthetic trans-acting small interfering RNAs (syn-tasiRNAs) are two classes of artificial small RNAs (sRNAs) engineered to silence endogenous transcripts as well as viral RNAs in plants. Here, we explore the possibility of using amiRNAs and syn-tasiRNAs to specifically interfere with infections by viroids, small (250-400-nucleotide) non-coding circular RNAs with compact secondary structure infecting a wide range of plant species. The combined use of recent high-throughput methods for artificial sRNA construct generation and the Potato spindle tuber viroid (PSTVd)-Nicotiana benthamiana pathosystem allowed for the simple and time-effective screening of multiple artificial sRNAs targeting sites distributed along PSTVd RNAs of (+) or (-) polarity. The majority of amiRNAs were highly active in agroinfiltrated leaves when co-expressed with an infectious PSTVd transcript, as were syn-tasiRNAs derived from a construct including the five most effective amiRNA sequences. A comparative analysis showed that the effects of the most effective amiRNA and of the syn-tasiRNAs were similar in agroinfiltrated leaves, as well as in upper non-agroinfiltrated leaves in which PSTVd accumulation was significantly delayed. These results suggest that amiRNAs and syn-tasiRNAs can be used effectively to control viroid infections in plants.
Collapse
Affiliation(s)
- Alberto Carbonell
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas‐Universidad Politécnica de Valencia)Valencia46022Spain
| | - José‐Antonio Daròs
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas‐Universidad Politécnica de Valencia)Valencia46022Spain
| |
Collapse
|
22
|
Alazem M, Lin NS. Antiviral Roles of Abscisic Acid in Plants. FRONTIERS IN PLANT SCIENCE 2017; 8:1760. [PMID: 29075279 PMCID: PMC5641568 DOI: 10.3389/fpls.2017.01760] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 09/26/2017] [Indexed: 05/18/2023]
Abstract
Abscisic acid (ABA) is a key hormone involved in tuning responses to several abiotic stresses and also has remarkable impacts on plant defense against various pathogens. The roles of ABA in plant defense against bacteria and fungi are multifaceted, inducing or reducing defense responses depending on its time of action. However, ABA induces different resistance mechanisms to viruses regardless of the induction time. Recent studies have linked ABA to the antiviral silencing pathway, which interferes with virus accumulation, and the micro RNA (miRNA) pathway through which ABA affects the maturation and stability of miRNAs. ABA also induces callose deposition at plasmodesmata, a mechanism that limits viral cell-to-cell movement. Bamboo mosaic virus (BaMV) is a member of the potexvirus group and is one of the most studied viruses in terms of the effects of ABA on its accumulation and resistance. In this review, we summarize how ABA interferes with the accumulation and movement of BaMV and other viruses. We also highlight aspects of ABA that may have an effect on other types of resistance and that require further investigation.
Collapse
|