1
|
Amitrano MJ, Cho M, Coughlin EM, Palecek SP, Murphy WL. Synthetic hydrogels support robust and reproducible cardiomyocyte differentiation. Biomater Sci 2025; 13:2142-2151. [PMID: 40091790 DOI: 10.1039/d4bm01636j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Cardiomyocyte manufacturing from human pluripotent stem cells is limited by the variability of differentiation efficiencies, partly attributed to the widespread use of the tumor-derived substrate Matrigel. Here, we describe a screening approach to identify fully-defined synthetic PEG hydrogels that support iPSC-derived cardiac progenitor cell (iPSC-CPC) adhesion, survival, and differentiation into iPSC-derived cardiomyocytes (iPSC-CMs). Our PEG hydrogels supported superior iPSC-CM differentiation efficiency, with a 24% increase in cTnT expression, and greater reproducibility when compared to cells cultured on Matrigel. By combining our 5-level, 3-variable full factorial screening approach with multi-variate analysis, we showed that all substrate variables manipulated here (adhesion ligand type/concentration, stiffness) had a significant influence on iPSC-CPC confluency and that iPSC-CM differentiation was significantly influenced by adhesion ligands. These results highlight the benefit of synthetic, tunable cell culture substrates and multi-variate screening studies to identify substrate formulations for a targeted cell behavior.
Collapse
Affiliation(s)
- Margot J Amitrano
- Department of Biomedical Engineering, University of Wisconsin-Madison, 1111 Highland Avenue Room 5405, 53705, Madison, WI, USA.
| | - Mina Cho
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Eva M Coughlin
- Department of Biomedical Engineering, University of Wisconsin-Madison, 1111 Highland Avenue Room 5405, 53705, Madison, WI, USA.
| | - Sean P Palecek
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - William L Murphy
- Department of Biomedical Engineering, University of Wisconsin-Madison, 1111 Highland Avenue Room 5405, 53705, Madison, WI, USA.
- Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
2
|
Hamze J, Broadwin M, Stone C, Muir KC, Sellke FW, Abid MR. Developments in Extracellular Matrix-Based Angiogenesis Therapy for Ischemic Heart Disease: A Review of Current Strategies, Methodologies and Future Directions. BIOTECH 2025; 14:23. [PMID: 40227326 PMCID: PMC11940646 DOI: 10.3390/biotech14010023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/17/2025] [Accepted: 03/18/2025] [Indexed: 04/15/2025] Open
Abstract
Ischemic heart disease (IHD) is the leading cause of mortality worldwide, underscoring the urgent need for innovative therapeutic strategies. The cardiac extracellular matrix (ECM) undergoes extreme transformations during IHD, adversely influencing the heart's structure, mechanics, and cellular signaling. Researchers investigating the regenerative capacity of the diseased heart have turned their attention to exploring the modulation of ECM to improve therapeutic outcomes. In this review, we thoroughly examine the current state of knowledge regarding the cardiac ECM and its therapeutic potential in the ischemic myocardium. We begin by providing an overview of the fundamentals of cardiac ECM, focusing on the structural, functional, and regulatory mechanisms that drive its modulation. Subsequently, we examine the ECM's interactions within both chronically ischemic and acutely infarcted myocardium, emphasizing key ECM components and their roles in modulating angiogenesis. Finally, we discuss recent ECM-based approaches in biomedical engineering, focusing on different types of scaffolds as delivery tools and their compositions, and conclude with future directions for therapeutic research. By harnessing the potential of these emerging ECM-based therapies, we aim to contribute to the development of novel therapeutic modalities for IHD.
Collapse
Affiliation(s)
| | | | | | | | | | - M. Ruhul Abid
- Division of Cardiothoracic Surgery, Cardiovascular Research Center, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI 02903, USA
| |
Collapse
|
3
|
Lane K, Dow LP, Castillo EA, Boros R, Feinstein SD, Pardon G, Pruitt BL. Cell Architecture and Dynamics of Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes (hiPSC-CMs) on Hydrogels with Spatially Patterned Laminin and N-Cadherin. ACS APPLIED MATERIALS & INTERFACES 2025; 17:174-186. [PMID: 39680735 PMCID: PMC11783353 DOI: 10.1021/acsami.4c11934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 11/25/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024]
Abstract
Controlling cellular shape with micropatterning extracellular matrix (ECM) proteins on hydrogels has been shown to improve the reproducibility of the cell structure, enhancing our ability to collect statistics on single-cell behaviors. Patterning methods have advanced efforts in developing human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) as a promising human model for studies of the heart structure, function, and disease. Patterned single hiPSC-CMs have exhibited phenotypes closer to mature, primary CMs across several metrics, including sarcomere alignment and contractility, area and aspect ratio, and force production. Micropatterning of hiPSC-CM pairs has shown further improvement of hiPSC-CM contractility compared to patterning single cells, suggesting that CM-CM interactions improve hiPSC-CM function. However, whether patterning single hiPSC-CMs on a protein associated with CM-CM adhesion, like N-cadherin, can drive similar enhancement of the hiPSC-CM structure and function has not been tested. To address this, we developed a novel dual-protein patterning process featuring covalent binding of proteins at the hydrogel surface to ensure robust force transfer and force sensing. The patterns comprised rectangular laminin islands for attachment across the majority of the cell area, with N-cadherin "end caps" to imitate CM-CM adherens junctions. We used this method to geometrically control single-cell CMs on deformable hydrogels suitable for traction force microscopy (TFM) to observe cellular dynamics. We seeded α-actinin::GFP-tagged hiPSC-CMs on dual-protein patterned hydrogels and verified the interaction between hiPSC-CMs and N-cadherin end caps via immunofluorescent staining. We found that hiPSC-CMs on dual-protein patterns exhibited higher cell area and contractility in the direction of sarcomere organization than those on laminin-only patterns but no difference in sarcomere organization or total force production. This work demonstrates a method for covalent patterning of multiple proteins on polyacrylamide hydrogels for mechanobiological studies. However, we conclude that N-cadherin only modestly improves single-cell patterned hiPSC-CM models and is not sufficient to elicit increases in contractility observed in hiPSC-CM pairs.
Collapse
Affiliation(s)
- Kerry
V. Lane
- Department
of Mechanical Engineering, University of
California, Santa Barbara, Santa
Barbara, California 93106, United States
| | - Liam P. Dow
- Biomolecular
Science and Engineering Program, University
of California, Santa Barbara, Santa
Barbara, California 93106, United States
| | - Erica A. Castillo
- Department
of Mechanical Engineering, University of
California, Santa Barbara, Santa
Barbara, California 93106, United States
- Department
of Mechanical Engineering, Stanford University, Stanford, California 94305, United States
| | - Rémi Boros
- Department
of Physics, University of California, Santa
Barbara, Santa Barbara, California 93106, United States
| | - Samuel D. Feinstein
- Department
of Mechanical Engineering, University of
California, Santa Barbara, Santa
Barbara, California 93106, United States
- Department
of Bioengineering, University of California,
Santa Barbara, Santa Barbara, California 93106, United States
| | - Gaspard Pardon
- AGORA Cancer
Research Center, Swiss Federal Institute
of Technology of Lausanne, Lausanne CH-1011, Switzerland
| | - Beth L. Pruitt
- Department
of Mechanical Engineering, University of
California, Santa Barbara, Santa
Barbara, California 93106, United States
- Biomolecular
Science and Engineering Program, University
of California, Santa Barbara, Santa
Barbara, California 93106, United States
- Department
of Bioengineering, University of California,
Santa Barbara, Santa Barbara, California 93106, United States
| |
Collapse
|
4
|
Desa DE, Amitrano MJ, Murphy WL, Skala MC. Optical redox imaging to screen synthetic hydrogels for stem cell-derived cardiomyocyte differentiation and maturation. BIOPHOTONICS DISCOVERY 2024; 1:015002. [PMID: 39036366 PMCID: PMC11258857 DOI: 10.1117/1.bios.1.1.015002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Significance Heart disease is the leading cause of death in the United States, yet research is limited by the inability to culture primary cardiac cells. Cardiomyocytes (CMs) derived from human induced pluripotent stem cells (iPSCs) are a promising solution for drug screening and disease modeling. Aim Induced pluripotent stem cell-derived CM (iPSC-CM) differentiation and maturation studies typically use heterogeneous substrates for growth and destructive verification methods. Reproducible, tunable substrates and touch-free monitoring are needed to identify ideal conditions to produce homogenous, functional CMs. Approach We generated synthetic polyethylene glycol-based hydrogels for iPSC-CM differentiation and maturation. Peptide concentrations, combinations, and gel stiffness were tuned independently. Label-free optical redox imaging (ORI) was performed on a widefield microscope in a 96-well screen of gel formulations. We performed live-cell imaging throughout differentiation and early to late maturation to identify key metabolic shifts. Results Label-free ORI confirmed the expected metabolic shifts toward oxidative phosphorylation throughout the differentiation and maturation processes of iPSC-CMs on synthetic hydrogels. Furthermore, ORI distinguished high and low differentiation efficiency cell batches in the cardiac progenitor stage. Conclusions We established a workflow for medium throughput screening of synthetic hydrogel conditions with the ability to perform repeated live-cell measurements and confirm expected metabolic shifts. These methods have implications for reproducible iPSC-CM generation in biomanufacturing.
Collapse
Affiliation(s)
- Danielle E. Desa
- Morgridge Institute for Research, Madison, Wisconsin, United States
| | - Margot J. Amitrano
- University of Wisconsin-Madison, Department of Biomedical Engineering, Madison, Wisconsin, United States
| | - William L. Murphy
- University of Wisconsin-Madison, Department of Biomedical Engineering, Madison, Wisconsin, United States
- University of Wisconsin-Madison, Department of Orthopedics and Rehabilitation, Madison, Wisconsin, United States
| | - Melissa C. Skala
- Morgridge Institute for Research, Madison, Wisconsin, United States
- University of Wisconsin-Madison, Department of Biomedical Engineering, Madison, Wisconsin, United States
| |
Collapse
|
5
|
Cui T, Wang P, Li J, Su Y, Liu N, Hong M. Effects of temperature, pH, and salinity on the growth kinetics of Pseudomonas sp. NB-1, a newly isolated cold-tolerant, alkali-resistant, and high-efficiency nitrobenzene-degrading bacterium. ENVIRONMENTAL TECHNOLOGY 2023; 44:2171-2183. [PMID: 35019831 DOI: 10.1080/09593330.2021.2024886] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 12/11/2021] [Indexed: 05/30/2023]
Abstract
ABSTRACTStrain NB-1, which can efficiently degrade nitrobenzene, was identified as Pseudomonas frederiksbergensis. NB-1 was resistant to cold and alkali with the widest temperature (4-35 °C) and pH (5-11) adaptive range, compared with other reported nitrobenzene-degrading microorganisms. Based on the Haldane-Andrews model, the real maximum specific growth rate μm', specific affinity aA, and inhibition coefficient Ki were used in response surface methodology (RSM) simultaneously for the first time to guide NB-1 to treat nitrobenzene wastewater. According to the RSM model, the environmental factors (temperature, pH, salinity) corresponding to the optimal values of μm', aA, and Ki were determined. By comparing the specific growth rates corresponding to the optimal values of μm', aA, and Ki, respectively, the optimum growth conditions of NB-1 were determined under different nitrobenzene concentrations. The study of μm', aA, and Ki by RSM provided a new approach for a more accurate optimization of biological wastewater treatment conditions.
Collapse
Affiliation(s)
- Tingchen Cui
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, College of Environment and Resources, Jilin University, Changchun, People's Republic of China
| | - Peng Wang
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, College of Environment and Resources, Jilin University, Changchun, People's Republic of China
| | - Jialu Li
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, College of Environment and Resources, Jilin University, Changchun, People's Republic of China
| | - YaoMing Su
- South China Institute of Environmental Sciences, MEP, People's Republic of China
| | - Na Liu
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, College of Environment and Resources, Jilin University, Changchun, People's Republic of China
- Institute of Groundwater and Earth Science, Jinan University, Guangzhou City, People's Republic of China
| | - Mei Hong
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, College of Environment and Resources, Jilin University, Changchun, People's Republic of China
| |
Collapse
|
6
|
Dalmao-Fernandez A, Aizenshtadt A, Bakke HG, Krauss S, Rustan AC, Thoresen GH, Kase ET. Development of three-dimensional primary human myospheres as culture model of skeletal muscle cells for metabolic studies. Front Bioeng Biotechnol 2023; 11:1130693. [PMID: 37034250 PMCID: PMC10076718 DOI: 10.3389/fbioe.2023.1130693] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 03/14/2023] [Indexed: 04/11/2023] Open
Abstract
Introduction: Skeletal muscle is a major contributor to whole-body energy homeostasis and the utilization of fatty acids and glucose. At present, 2D cell models have been the most used cellular models to study skeletal muscle energy metabolism. However, the transferability of the results to in vivo might be limited. This project aimed to develop and characterize a skeletal muscle 3D cell model (myospheres) as an easy and low-cost tool to study molecular mechanisms of energy metabolism. Methods and results: We demonstrated that human primary myoblasts form myospheres without external matrix support and carry structural and molecular characteristics of mature skeletal muscle after 10 days of differentiation. We found significant metabolic differences between the 2D myotubes model and myospheres. In particular, myospheres showed increased lipid oxidative metabolism than the 2D myotubes model, which oxidized relatively more glucose and accumulated more oleic acid. Discussion and conclusion: These analyses demonstrate model differences that can have an impact and should be taken into consideration for studying energy metabolism and metabolic disorders in skeletal muscle.
Collapse
Affiliation(s)
- Andrea Dalmao-Fernandez
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway
- *Correspondence: Andrea Dalmao-Fernandez,
| | - Aleksandra Aizenshtadt
- Hybrid Technology Hub Centre of Excellence, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Hege G. Bakke
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Stefan Krauss
- Hybrid Technology Hub Centre of Excellence, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Arild C. Rustan
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway
| | - G. Hege Thoresen
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway
- Department of Pharmacology, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Eili Tranheim Kase
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway
| |
Collapse
|
7
|
Lin WH, Zhu Z, Ravikumar V, Sharma V, Tolkacheva EG, McAlpine MC, Ogle BM. A Bionic Testbed for Cardiac Ablation Tools. Int J Mol Sci 2022; 23:ijms232214444. [PMID: 36430922 PMCID: PMC9692733 DOI: 10.3390/ijms232214444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/03/2022] [Accepted: 11/09/2022] [Indexed: 11/22/2022] Open
Abstract
Bionic-engineered tissues have been proposed for testing the performance of cardiovascular medical devices and predicting clinical outcomes ex vivo. Progress has been made in the development of compliant electronics that are capable of monitoring treatment parameters and being coupled to engineered tissues; however, the scale of most engineered tissues is too small to accommodate the size of clinical-grade medical devices. Here, we show substantial progress toward bionic tissues for evaluating cardiac ablation tools by generating a centimeter-scale human cardiac disk and coupling it to a hydrogel-based soft-pressure sensor. The cardiac tissue with contiguous electromechanical function was made possible by our recently established method to 3D bioprint human pluripotent stem cells in an extracellular matrix-based bioink that allows for in situ cell expansion prior to cardiac differentiation. The pressure sensor described here utilized electrical impedance tomography to enable the real-time spatiotemporal mapping of pressure distribution. A cryoablation tip catheter was applied to the composite bionic tissues with varied pressure. We found a close correlation between the cell response to ablation and the applied pressure. Under some conditions, cardiomyocytes could survive in the ablated region with more rounded morphology compared to the unablated controls, and connectivity was disrupted. This is the first known functional characterization of living human cardiomyocytes following an ablation procedure that suggests several mechanisms by which arrhythmia might redevelop following an ablation. Thus, bionic-engineered testbeds of this type can be indicators of tissue health and function and provide unique insight into human cell responses to ablative interventions.
Collapse
Affiliation(s)
- Wei-Han Lin
- Department of Biomedical Engineering, University of Minnesota—Twin Cities, Minneapolis, MN 55455, USA
- Stem Cell Institute, University of Minnesota—Twin Cities, Minneapolis, MN 55455, USA
| | - Zhijie Zhu
- Department of Mechanical Engineering, University of Minnesota—Twin Cities, Minneapolis, MN 55455, USA
| | - Vasanth Ravikumar
- Department of Electrical Engineering, University of Minnesota—Twin Cities, Minneapolis, MN 55455, USA
| | - Vinod Sharma
- Cardiac Rhythm and Heart Failure Division, Medtronic Inc., Minneapolis, MN 55432, USA
| | - Elena G. Tolkacheva
- Department of Biomedical Engineering, University of Minnesota—Twin Cities, Minneapolis, MN 55455, USA
- Lillehei Heart Institute, University of Minnesota—Twin Cities, Minneapolis, MN 55455, USA
- Institute for Engineering in Medicine, University of Minnesota—Twin Cities, Minneapolis, MN 55455, USA
| | - Michael C. McAlpine
- Department of Mechanical Engineering, University of Minnesota—Twin Cities, Minneapolis, MN 55455, USA
- Institute for Engineering in Medicine, University of Minnesota—Twin Cities, Minneapolis, MN 55455, USA
- Correspondence: (M.C.M.); (B.M.O.)
| | - Brenda M. Ogle
- Department of Biomedical Engineering, University of Minnesota—Twin Cities, Minneapolis, MN 55455, USA
- Stem Cell Institute, University of Minnesota—Twin Cities, Minneapolis, MN 55455, USA
- Lillehei Heart Institute, University of Minnesota—Twin Cities, Minneapolis, MN 55455, USA
- Institute for Engineering in Medicine, University of Minnesota—Twin Cities, Minneapolis, MN 55455, USA
- Masonic Cancer Center, University of Minnesota—Twin Cities, Minneapolis, MN 55455, USA
- Correspondence: (M.C.M.); (B.M.O.)
| |
Collapse
|
8
|
Nourany M, Rahimi‐Darestani Y, Nayebi M, Kiany P. The Impact of Soft Segment Crystallization and Cross‐Link Density on the Shape Memory Performance of the PCL‐PTMG/Graphene‐ Based Polyurethane Nanocomposites. ChemistrySelect 2022. [DOI: 10.1002/slct.202202649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Mohammad Nourany
- Amirkabir University of Technology Polymer Engineering and Color Technology Tehran Iran
| | | | - Milad Nayebi
- Amirkabir University of Technology Chemical Engineering Department Tehran Iran
| | - Parvin Kiany
- Amirkabir University of Technology Polymer Engineering and Color Technology Tehran Iran
| |
Collapse
|
9
|
Afzal J, Liu Y, Du W, Suhail Y, Zong P, Feng J, Ajeti V, Sayyad WA, Nikolaus J, Yankova M, Deymier AC, Yue L, Kshitiz. Cardiac ultrastructure inspired matrix induces advanced metabolic and functional maturation of differentiated human cardiomyocytes. Cell Rep 2022; 40:111146. [PMID: 35905711 DOI: 10.1016/j.celrep.2022.111146] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/26/2022] [Accepted: 07/07/2022] [Indexed: 12/21/2022] Open
Abstract
The vast potential of human induced pluripotent stem-cell-derived cardiomyocytes (hiPSC-CMs) in preclinical models of cardiac pathologies, precision medicine, and drug screening remains to be fully realized because hiPSC-CMs are immature without adult-like characteristics. Here, we present a method to accelerate hiPSC-CM maturation on a substrate, cardiac mimetic matrix (CMM), mimicking adult human heart matrix ligand chemistry, rigidity, and submicron ultrastructure, which synergistically mature hiPSC-CMs rapidly within 30 days. hiPSC-CMs matured on CMM exhibit systemic transcriptomic maturation toward an adult heart state, are aligned with high strain energy, metabolically rely on oxidative phosphorylation and fatty acid oxidation, and display enhanced redox handling capability, efficient calcium handling, and electrophysiological features of ventricular myocytes. Endothelin-1-induced pathological hypertrophy is mitigated on CMM, highlighting the role of a native cardiac microenvironment in withstanding hypertrophy progression. CMM is a convenient model for accelerated development of ventricular myocytes manifesting highly specialized cardiac-specific functions.
Collapse
Affiliation(s)
- Junaid Afzal
- Department of Medicine, Division of Cardiology, University of California, San Francisco, San Francisco, CA 94158, USA.
| | - Yamin Liu
- Department of Biomedical Engineering, University of Connecticut Health, Farmington, CT 06032, USA
| | - Wenqiang Du
- Department of Biomedical Engineering, University of Connecticut Health, Farmington, CT 06032, USA
| | - Yasir Suhail
- Department of Biomedical Engineering, University of Connecticut Health, Farmington, CT 06032, USA; Center for Cellular Analysis and Modeling, University of Connecticut Health, Farmington, CT 06032, USA
| | - Pengyu Zong
- Department of Cell Biology, University of Connecticut Health, Farmington, CT 06032, USA; Calhoun Cardiology Center, University of Connecticut Health, Farmington, CT 06032, USA
| | - Jianlin Feng
- Department of Cell Biology, University of Connecticut Health, Farmington, CT 06032, USA; Calhoun Cardiology Center, University of Connecticut Health, Farmington, CT 06032, USA
| | - Visar Ajeti
- Department of Biomedical Engineering, University of Connecticut Health, Farmington, CT 06032, USA; Center for Cellular Analysis and Modeling, University of Connecticut Health, Farmington, CT 06032, USA
| | - Wasim A Sayyad
- Department of Cell Biology, Yale University, New Haven, CT 06510, USA
| | - Joerg Nikolaus
- West Campus Imaging Core, Yale University, New Haven, CT 06477, USA
| | - Maya Yankova
- Electron Microscopy Core, University of Connecticut Health, Farmington, CT 06032, USA
| | - Alix C Deymier
- Department of Biomedical Engineering, University of Connecticut Health, Farmington, CT 06032, USA
| | - Lixia Yue
- Department of Cell Biology, University of Connecticut Health, Farmington, CT 06032, USA; Calhoun Cardiology Center, University of Connecticut Health, Farmington, CT 06032, USA
| | - Kshitiz
- Department of Biomedical Engineering, University of Connecticut Health, Farmington, CT 06032, USA; Center for Cellular Analysis and Modeling, University of Connecticut Health, Farmington, CT 06032, USA; Department of Cell Biology, University of Connecticut Health, Farmington, CT 06032, USA.
| |
Collapse
|
10
|
Wang S, Ong PJ, Liu S, Thitsartarn W, Tan MJBH, Suwardi A, Zhu Q, Loh XJ. Recent advances in host-guest supramolecular hydrogels for biomedical applications. Chem Asian J 2022; 17:e202200608. [PMID: 35866560 DOI: 10.1002/asia.202200608] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/18/2022] [Indexed: 11/09/2022]
Abstract
The recognition-directed host-guest interaction is recognized as a valuable tool for creating supramolecular polymers. Functional hydrogels constructed through the dynamic and reversible host-guest complexation are endowed with a great many appealing features, such as superior self-healing, injectability, flexibility, stimuli-responsiveness and biocompatibility, which are crucial for biological and medicinal applications. With numerous topological structures and host-guest combinations established previously, recent breakthroughs in this area mostly focus on further improvement and fine-tuning of various properties for practical utilizations. The current contribution provides a comprehensive overview of the latest developments in host-guest supramolecular hydrogels, with a particular emphasis on the innovative molecular-level design strategies and hydrogel formation methodologies targeting at a wide range of active biomedical domains, including drug delivery, 3D printing, wound healing, tissue engineering, artificial actuators, biosensors, etc. Furthermore, a brief conclusion and discussion on the steps forward to bring these smart hydrogels to clinical practice is also presented.
Collapse
Affiliation(s)
- Suxi Wang
- Institute of Materials Research and Engineering, Institute of Materials Research and Engineering, SINGAPORE
| | - Pin Jin Ong
- Institute of Materials Research and Engineering, Institute of Materials Research and Engineering, SINGAPORE
| | - Songlin Liu
- Institute of Materials Research and Engineering, Institute of Materials Research and Engineering, SINGAPORE
| | - Warintorn Thitsartarn
- Institute of Materials Research and Engineering, Institute of Materials Research and Engineering, SINGAPORE
| | | | - Ady Suwardi
- Institute of Materials Research and Engineering, Institute of Materials Research and Engineering, SINGAPORE
| | - Qiang Zhu
- Institute of Materials Research and Engineering, Institute of Materials Research and Engineering, 2 Fusionopolis Way, 138634, Singapore, SINGAPORE
| | - Xian Jun Loh
- Institute of Materials Research and Engineering, Institute of Materials Research and Engineering, SINGAPORE
| |
Collapse
|
11
|
Zhang J, Gregorich ZR, Tao R, Kim GC, Lalit PA, Carvalho JL, Markandeya Y, Mosher DF, Palecek SP, Kamp TJ. Cardiac differentiation of human pluripotent stem cells using defined extracellular matrix proteins reveals essential role of fibronectin. eLife 2022; 11:e69028. [PMID: 35758861 PMCID: PMC9236614 DOI: 10.7554/elife.69028] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 06/05/2022] [Indexed: 11/13/2022] Open
Abstract
Research and therapeutic applications using human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) require robust differentiation strategies. Efforts to improve hPSC-CM differentiation have largely overlooked the role of extracellular matrix (ECM). The present study investigates the ability of defined ECM proteins to promote hPSC cardiac differentiation. Fibronectin (FN), laminin-111, and laminin-521 enabled hPSCs to attach and expand. However, only addition of FN promoted cardiac differentiation in response to growth factors Activin A, BMP4, and bFGF in contrast to the inhibition produced by laminin-111 or laminin-521. hPSCs in culture produced endogenous FN which accumulated in the ECM to a critical level necessary for effective cardiac differentiation. Inducible shRNA knockdown of FN prevented Brachyury+ mesoderm formation and subsequent hPSC-CM generation. Antibodies blocking FN binding integrins α4β1 or αVβ1, but not α5β1, inhibited cardiac differentiation. Furthermore, inhibition of integrin-linked kinase led to a decrease in phosphorylated AKT, which was associated with increased apoptosis and inhibition of cardiac differentiation. These results provide new insights into defined matrices for culture of hPSCs that enable production of FN-enriched ECM which is essential for mesoderm formation and efficient cardiac differentiation.
Collapse
Affiliation(s)
- Jianhua Zhang
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin - MadisonMadisonUnited States
- Stem Cell and Regenerative Medicine Center, University of Wisconsin - MadisonMadisonUnited States
| | - Zachery R Gregorich
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin - MadisonMadisonUnited States
| | - Ran Tao
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin - MadisonMadisonUnited States
| | - Gina C Kim
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin - MadisonMadisonUnited States
| | - Pratik A Lalit
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin - MadisonMadisonUnited States
| | - Juliana L Carvalho
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin - MadisonMadisonUnited States
- Department of Genomic Sciences and Biotechnology, University of BrasíliaBrasíliaBrazil
| | - Yogananda Markandeya
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin - MadisonMadisonUnited States
| | - Deane F Mosher
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin - MadisonMadisonUnited States
- Morgridge Institute for ResearchMadisonUnited States
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin-MadisonMadisonUnited States
| | - Sean P Palecek
- Stem Cell and Regenerative Medicine Center, University of Wisconsin - MadisonMadisonUnited States
- Department of Chemical and Biological Engineering, College of Engineering, University of WisconsinMadisonUnited States
| | - Timothy J Kamp
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin - MadisonMadisonUnited States
- Stem Cell and Regenerative Medicine Center, University of Wisconsin - MadisonMadisonUnited States
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin - MadisonMadisonUnited States
| |
Collapse
|
12
|
Toppo AL, Dhagat S, Eswari Jujjavarapu S. Comparative study of response surface methodology and artificial neural network for optimization of process parameters for synthesis of gold nanoparticles by Desmostachya bipinnata extract. Prep Biochem Biotechnol 2022; 53:195-206. [PMID: 35442160 DOI: 10.1080/10826068.2022.2062773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Green synthesis of nanoparticles has gained attention due to its eco-friendly and sustainable approach to synthesize nanoparticles at a reduced cost. Artificial neural network (ANN) and response surface model (RSM) are important to reduce experimental efforts in nanoparticle synthesis. In this work, optimization of gold nanoparticle synthesis by Desmostachya bipinnata extract was performed using the volume of plant extract, concentration of auric chloride, reaction time, pH, and temperature as process parameters, and the output was absorbance. The experimental design was obtained from RSM and the model was optimized further using ANN. Thirty-two experimental runs generated by RSM were performed and the results obtained experimentally were compared with those generated by RSM and ANN. Different algorithms of ANN were tested to obtain the best one. The optimization studies resulted in a maximum response for 20th run with 15 ml, 2.5 mM, 45 min, 7, and 40 °C as parameters. Optimized input parameters obtained by RSM were 10 ml, 2 mM, 30 min, 6, and 30 °C. The formation of gold nanoparticles was confirmed by UV spectroscopy, XRD, and SEM. Different algorithms of ANN, such as leven marquardt, scaled conjugate gradient, and bayesian network were used. Leven marquardt algorithm was found to be the most suitable algorithm for the current study.
Collapse
Affiliation(s)
| | - Swasti Dhagat
- Department of Biotechnology, National Institute of Technology Raipur, Raipur, India
| | | |
Collapse
|
13
|
Hall ML, Givens S, Santosh N, Iacovino M, Kyba M, Ogle BM. Laminin 411 mediates endothelial specification via multiple signaling axes that converge on β-catenin. Stem Cell Reports 2022; 17:569-583. [PMID: 35120622 PMCID: PMC9039757 DOI: 10.1016/j.stemcr.2022.01.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 01/06/2022] [Accepted: 01/07/2022] [Indexed: 11/24/2022] Open
Abstract
The extracellular matrix (ECM) provides essential cues to promote endothelial specification during tissue development in vivo; correspondingly, ECM is considered essential for endothelial differentiation outside of the body. However, systematic studies to assess the precise contribution of individual ECM proteins to endothelial differentiation have not been conducted. Further, the multi-component nature of differentiation protocols makes it challenging to study the underlying mechanisms by which the ECM contributes to cell fate. In this study, we determined that Laminin 411 alone increases endothelial differentiation of induced pluripotent stem cells over collagen I or Matrigel. The effect of ECM was shown to be independent of vascular endothelial growth factor (VEGF) binding capacity. We also show that ECM-guided endothelial differentiation is dependent on activation of focal adhesion kinase (FAK), integrin-linked kinase (ILK), Notch, and β-catenin pathways. Our results indicate that ECM contributes to endothelial differentiation through multiple avenues, which converge at the expression of active β-catenin.
Collapse
Affiliation(s)
- Mikayla L Hall
- Department of Biomedical Engineering, University of Minnesota, Twin Cities, 7-130 Nils Hasselmo Hall, 312 Church St. SE, Minneapolis, MN 55455, USA; Stem Cell Institute, University of Minnesota, Twin Cities, Minneapolis, MN 55455, USA
| | - Sophie Givens
- Department of Biomedical Engineering, University of Minnesota, Twin Cities, 7-130 Nils Hasselmo Hall, 312 Church St. SE, Minneapolis, MN 55455, USA; Stem Cell Institute, University of Minnesota, Twin Cities, Minneapolis, MN 55455, USA
| | - Natasha Santosh
- Stem Cell Institute, University of Minnesota, Twin Cities, Minneapolis, MN 55455, USA; Department of Pediatrics, University of Minnesota, Twin Cities, Minneapolis, MN 55455, USA
| | - Michelina Iacovino
- Stem Cell Institute, University of Minnesota, Twin Cities, Minneapolis, MN 55455, USA; Department of Pediatrics, University of Minnesota, Twin Cities, Minneapolis, MN 55455, USA
| | - Michael Kyba
- Stem Cell Institute, University of Minnesota, Twin Cities, Minneapolis, MN 55455, USA; Department of Pediatrics, University of Minnesota, Twin Cities, Minneapolis, MN 55455, USA; Lillehei Heart Institute, University of Minnesota, Twin Cities, Minneapolis, MN 55455, USA
| | - Brenda M Ogle
- Department of Biomedical Engineering, University of Minnesota, Twin Cities, 7-130 Nils Hasselmo Hall, 312 Church St. SE, Minneapolis, MN 55455, USA; Stem Cell Institute, University of Minnesota, Twin Cities, Minneapolis, MN 55455, USA; Department of Pediatrics, University of Minnesota, Twin Cities, Minneapolis, MN 55455, USA; Lillehei Heart Institute, University of Minnesota, Twin Cities, Minneapolis, MN 55455, USA; Institute for Engineering in Medicine, University of Minnesota, Twin Cities, Minneapolis, MN 55455, USA; Masonic Cancer Center, University of Minnesota, Twin Cities, Minneapolis, MN 55455, USA.
| |
Collapse
|
14
|
Esmaeili H, Patino-Guerrero A, Hasany M, Ansari MO, Memic A, Dolatshahi-Pirouz A, Nikkhah M. Electroconductive biomaterials for cardiac tissue engineering. Acta Biomater 2022; 139:118-140. [PMID: 34455109 PMCID: PMC8935982 DOI: 10.1016/j.actbio.2021.08.031] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 08/13/2021] [Accepted: 08/19/2021] [Indexed: 12/19/2022]
Abstract
Myocardial infarction (MI) is still the leading cause of mortality worldwide. The success of cell-based therapies and tissue engineering strategies for treatment of injured myocardium have been notably hindered due to the limitations associated with the selection of a proper cell source, lack of engraftment of engineered tissues and biomaterials with the host myocardium, limited vascularity, as well as immaturity of the injected cells. The first-generation approaches in cardiac tissue engineering (cTE) have mainly relied on the use of desired cells (e.g., stem cells) along with non-conductive natural or synthetic biomaterials for in vitro construction and maturation of functional cardiac tissues, followed by testing the efficacy of the engineered tissues in vivo. However, to better recapitulate the native characteristics and conductivity of the cardiac muscle, recent approaches have utilized electroconductive biomaterials or nanomaterial components within engineered cardiac tissues. This review article will cover the recent advancements in the use of electrically conductive biomaterials in cTE. The specific emphasis will be placed on the use of different types of nanomaterials such as gold nanoparticles (GNPs), silicon-derived nanomaterials, carbon-based nanomaterials (CBNs), as well as electroconductive polymers (ECPs) for engineering of functional and electrically conductive cardiac tissues. We will also cover the recent progress in the use of engineered electroconductive tissues for in vivo cardiac regeneration applications. We will discuss the opportunities and challenges of each approach and provide our perspectives on potential avenues for enhanced cTE. STATEMENT OF SIGNIFICANCE: Myocardial infarction (MI) is still the primary cause of death worldwide. Over the past decade, electroconductive biomaterials have increasingly been applied in the field of cardiac tissue engineering. This review article provides the readers with the leading advances in the in vitro applications of electroconductive biomaterials for cTE along with an in-depth discussion of injectable/transplantable electroconductive biomaterials and their delivery methods for in vivo MI treatment. The article also discusses the knowledge gaps in the field and offers possible novel avenues for improved cardiac tissue engineering.
Collapse
Affiliation(s)
- Hamid Esmaeili
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA
| | | | - Masoud Hasany
- Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | | | - Adnan Memic
- Center of Nanotechnology, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Alireza Dolatshahi-Pirouz
- Department of Health Technology, Technical University of Denmark, 2800 Kgs, Lyngby, Denmark; Department of Health Technology, Technical University of Denmark, Center for Intestinal Absorption and Transport of Biopharmaceuticals, 2800 Kgs, Lyngby, Denmark
| | - Mehdi Nikkhah
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA; Biodesign Virginia G. Piper Center for Personalized Diagnostics, Arizona State University, Tempe, AZ, USA.
| |
Collapse
|
15
|
Streeter BW, Brown ME, Shakya P, Park HJ, Qiu J, Xia Y, Davis ME. Using computational methods to design patient-specific electrospun cardiac patches for pediatric heart failure. Biomaterials 2022; 283:121421. [DOI: 10.1016/j.biomaterials.2022.121421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 01/12/2022] [Accepted: 02/17/2022] [Indexed: 12/15/2022]
|
16
|
Clever Experimental Designs: Shortcuts for Better iPSC Differentiation. Cells 2021; 10:cells10123540. [PMID: 34944048 PMCID: PMC8700474 DOI: 10.3390/cells10123540] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/10/2021] [Accepted: 12/11/2021] [Indexed: 12/18/2022] Open
Abstract
For practical use of pluripotent stem cells (PSCs) for disease modelling, drug screening, and regenerative medicine, the cell differentiation process needs to be properly refined to generate end products with consistent and high quality. To construct and optimize a robust cell-induction process, a myriad of cell culture conditions should be considered. In contrast to inefficient brute-force screening, statistical design of experiments (DOE) approaches, such as factorial design, orthogonal array design, response surface methodology (RSM), definitive screening design (DSD), and mixture design, enable efficient and strategic screening of conditions in smaller experimental runs through multifactorial screening and/or quantitative modeling. Although DOE has become routinely utilized in the bioengineering and pharmaceutical fields, the imminent need of more detailed cell-lineage specification, complex organoid construction, and a stable supply of qualified cell-derived material requires expedition of DOE utilization in stem cell bioprocessing. This review summarizes DOE-based cell culture optimizations of PSCs, mesenchymal stem cells (MSCs), hematopoietic stem cells (HSCs), and Chinese hamster ovary (CHO) cells, which guide effective research and development of PSC-derived materials for academic and industrial applications.
Collapse
|
17
|
Khanna A, Zamani M, Huang NF. Extracellular Matrix-Based Biomaterials for Cardiovascular Tissue Engineering. J Cardiovasc Dev Dis 2021; 8:137. [PMID: 34821690 PMCID: PMC8622600 DOI: 10.3390/jcdd8110137] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/10/2021] [Accepted: 10/19/2021] [Indexed: 12/12/2022] Open
Abstract
Regenerative medicine and tissue engineering strategies have made remarkable progress in remodeling, replacing, and regenerating damaged cardiovascular tissues. The design of three-dimensional (3D) scaffolds with appropriate biochemical and mechanical characteristics is critical for engineering tissue-engineered replacements. The extracellular matrix (ECM) is a dynamic scaffolding structure characterized by tissue-specific biochemical, biophysical, and mechanical properties that modulates cellular behavior and activates highly regulated signaling pathways. In light of technological advancements, biomaterial-based scaffolds have been developed that better mimic physiological ECM properties, provide signaling cues that modulate cellular behavior, and form functional tissues and organs. In this review, we summarize the in vitro, pre-clinical, and clinical research models that have been employed in the design of ECM-based biomaterials for cardiovascular regenerative medicine. We highlight the research advancements in the incorporation of ECM components into biomaterial-based scaffolds, the engineering of increasingly complex structures using biofabrication and spatial patterning techniques, the regulation of ECMs on vascular differentiation and function, and the translation of ECM-based scaffolds for vascular graft applications. Finally, we discuss the challenges, future perspectives, and directions in the design of next-generation ECM-based biomaterials for cardiovascular tissue engineering and clinical translation.
Collapse
Affiliation(s)
| | - Maedeh Zamani
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA 94305, USA;
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA 94305, USA
| | - Ngan F. Huang
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA 94305, USA;
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA 94305, USA
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304, USA
| |
Collapse
|
18
|
Kinases of the Focal Adhesion Complex Contribute to Cardiomyocyte Specification. Int J Mol Sci 2021; 22:ijms221910430. [PMID: 34638793 PMCID: PMC8508671 DOI: 10.3390/ijms221910430] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/03/2021] [Accepted: 09/22/2021] [Indexed: 11/17/2022] Open
Abstract
Differentiation of pluripotent stem cells to cardiomyocytes is influenced by culture conditions including the extracellular matrices or similar synthetic scaffolds on which they are grown. However, the molecular mechanisms that link the scaffold with differentiation outcomes are not fully known. Here, we determined by immunofluorescence staining and mass spectrometry approaches that extracellular matrix (ECM) engagement by mouse pluripotent stem cells activates critical components of canonical wingless/integrated (Wnt) signaling pathways via kinases of the focal adhesion to drive cardiomyogenesis. These kinases were found to be differentially activated depending on type of ECM engaged. These outcomes begin to explain how varied ECM composition of in vivo tissues with development and in vitro model systems gives rise to different mature cell types, having broad practical applicability for the design of engineered tissues.
Collapse
|
19
|
Cho S, Lee C, Skylar-Scott MA, Heilshorn SC, Wu JC. Reconstructing the heart using iPSCs: Engineering strategies and applications. J Mol Cell Cardiol 2021; 157:56-65. [PMID: 33895197 DOI: 10.1016/j.yjmcc.2021.04.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/07/2021] [Accepted: 04/19/2021] [Indexed: 12/14/2022]
Abstract
Induced pluripotent stem cells (iPSCs) have emerged as a key component of cardiac tissue engineering, enabling studies of cardiovascular disease mechanisms, drug responses, and developmental processes in human 3D tissue models assembled from isogenic cells. Since the very first engineered heart tissues were introduced more than two decades ago, a wide array of iPSC-derived cardiac spheroids, organoids, and heart-on-a-chip models have been developed incorporating the latest available technologies and materials. In this review, we will first outline the fundamental biological building blocks required to form a functional unit of cardiac muscle, including iPSC-derived cells differentiated by soluble factors (e.g., small molecules), extracellular matrix scaffolds, and exogenous biophysical maturation cues. We will then summarize the different fabrication approaches and strategies employed to reconstruct the heart in vitro at varying scales and geometries. Finally, we will discuss how these platforms, with continued improvements in scalability and tissue maturity, can contribute to both basic cardiovascular research and clinical applications in the future.
Collapse
Affiliation(s)
- Sangkyun Cho
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94025, USA; Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94025, USA
| | - Chelsea Lee
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94025, USA; Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94025, USA
| | - Mark A Skylar-Scott
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94025, USA; Betty Irene Moore Children's Heart Center, Stanford Children's Health, Stanford, CA 94025, USA
| | - Sarah C Heilshorn
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94025, USA; Department of Materials Science and Engineering, Stanford University, Stanford, CA 94025, USA
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94025, USA; Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94025, USA.
| |
Collapse
|
20
|
Lee JH, Chen Z, He S, Zhou JK, Tsai A, Truskey GA, Leong KW. Emulating Early Atherosclerosis in a Vascular Microphysiological System Using Branched Tissue-Engineered Blood Vessels. Adv Biol (Weinh) 2021; 5:e2000428. [PMID: 33852179 PMCID: PMC9951769 DOI: 10.1002/adbi.202000428] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 01/26/2021] [Indexed: 02/04/2023]
Abstract
Atherosclerosis begins with the accumulation of cholesterol-carrying lipoproteins on blood vessel walls and progresses to endothelial cell dysfunction, monocyte adhesion, and foam cell formation. Endothelialized tissue-engineered blood vessels (TEBVs) have previously been fabricated to recapitulate artery functionalities, including vasoconstriction, vasodilation, and endothelium activation. Here, the initiation of atherosclerosis is emulated by designing branched TEBVs (brTEBVs) of various geometries treated with enzyme-modified low-density-lipoprotein (eLDL) and TNF-α to induce endothelial cell dysfunction and adhesion of perfused human monocytes. Locations of monocyte adhesion under pulsatile flow are identified, and the hemodynamics in the brTEBVs are characterized using particle image velocimetry (PIV) and computational fluid dynamics (CFD). Monocyte adhesion is greater at the side outlets than at the main outlets or inlets, and is greatest at larger side outlet branching angles (60° or 80° vs 45°). In PIV experiments, the branched side outlets are identified as atherosclerosis-prone areas where fluorescent particles show a transient swirling motion following flow pulses; in CFD simulations, side outlets with larger branching angles show higher vorticity magnitude and greater flow disturbance than other areas. These results suggest that the branched TEBVs with eLDL/TNF-α treatment provide a physiologically relevant model of early atherosclerosis for preclinical studies.
Collapse
Affiliation(s)
- Jounghyun H. Lee
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Zaozao Chen
- School of Biological Sciences and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Siyu He
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Joyce K. Zhou
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Alexander Tsai
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - George A. Truskey
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Kam W. Leong
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| |
Collapse
|
21
|
Kale AJ, Chaurasiya R, Dixit A. Inorganic Lead‐Free Cs
2
AuBiCl
6
Perovskite Absorber and Cu
2
O Hole Transport Material Based Single‐Junction Solar Cells with 22.18% Power Conversion Efficiency. ADVANCED THEORY AND SIMULATIONS 2021. [DOI: 10.1002/adts.202000224] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Abhijeet J. Kale
- Department of Physics Indian Institute of Technology Jodhpur Jodhpur 342037 India
| | - Rajneesh Chaurasiya
- Department of Physics Indian Institute of Technology Jodhpur Jodhpur 342037 India
| | - Ambesh Dixit
- Department of Physics Indian Institute of Technology Jodhpur Jodhpur 342037 India
| |
Collapse
|
22
|
Yasui R, Sekine K, Yamaguchi K, Furukawa Y, Taniguchi H. Robust parameter design of human induced pluripotent stem cell differentiation protocols defines lineage-specific induction of anterior-posterior gut tube endodermal cells. Stem Cells 2021; 39:429-442. [PMID: 33400835 DOI: 10.1002/stem.3326] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 12/07/2020] [Indexed: 12/29/2022]
Abstract
Tissues and cells derived from pluripotent stem cells (PSC) are likely to become widely used in disease modeling, drug screening, and regenerative medicine. For these applications, the in vitro PSC differentiation process must be elaborately investigated and controlled to reliably obtain the desired end products. However, because traditional experimental methods, such as one factor at a time or brute-force approaches, are impractical for detailed screening of complex PSC cultivation conditions, more strategic and effective screening based on statistical design of experiments (DOE) ought to be indispensable. Among various DOE approaches, we regard robust parameter design (RPD) as particularly suited for differentiation protocol optimization due to its suitability for multifactorial screening. We confirmed the adaptability of RPD for investigating human induced PSC lineage specification toward anterior-posterior gut tube endodermal cells and clarified both the contribution of each cell signaling pathway and the effect of cell signaling condition alteration on marker RNA expression levels, while increasing the efficiency of the screening in 243-fold (18 vs 4374) compared with that of a brute-force approach. Specific induction of anterior foregut, hepatic, pancreatic, or mid-hindgut cells was achieved using seven iPSC strains with the optimal culture protocols established on the basis of RPD analysis. RPD has the potential to enable efficient construction and optimization of PSC differentiation protocols, and its use is recommended from fundamental research to mass production of PSC-derived products.
Collapse
Affiliation(s)
- Ryota Yasui
- Department of Regenerative Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan.,Fundamental Research Laboratory, Eiken Chemical Co., Ltd., Nogi, Tochigi, Japan
| | - Keisuke Sekine
- Department of Regenerative Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan.,Division of Regenerative Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.,Laboratory of Cancer Cell Systems, National Cancer Center Research Institute, Tokyo, Japan
| | - Kiyoshi Yamaguchi
- Division of Clinical Genome Research, Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Yoichi Furukawa
- Division of Clinical Genome Research, Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Hideki Taniguchi
- Department of Regenerative Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan.,Division of Regenerative Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.,Advanced Medical Research Center, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| |
Collapse
|
23
|
Ibrahim S, Ahmad Z, Manzoor MZ, Mujahid M, Faheem Z, Adnan A. Optimization for biogenic microbial synthesis of silver nanoparticles through response surface methodology, characterization, their antimicrobial, antioxidant, and catalytic potential. Sci Rep 2021; 11:770. [PMID: 33436966 PMCID: PMC7804320 DOI: 10.1038/s41598-020-80805-0] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 12/23/2020] [Indexed: 01/29/2023] Open
Abstract
Silver is a poisonous but precious heavy metal that has widespread application in various biomedical and environmental divisions. Wide-ranging usage of the metal has twisted severe environmental apprehensions. Henceforth there is a cumulative call for the progress of modest, low-cost and, the ecological method for remediation of silver. In the present study, Bacillus cereus was isolated from contaminated soil. Various experimental factors like the amount of AgNO3, inoculum size, temperature, time, and pH were improved by using central composite design (CCD) grounded on response surface methodology (RSM). Optimized values for AgNO3 (1 mM) 10 ml, inoculum size (Bacillus cereus) 8.7 ml, temperature 48.5 °C, time 69 h, and pH 9 showed in the form of optimized ramps. The formed nanoparticles stayed characterized by UV-visible spectrophotometer, Scanning Electron Microscopy, Fourier transform infra-red spectrometry, particle size analyzer, and X-ray diffraction. The particle size ranges from 5 to 7.06 nm with spherical form. The antimicrobial effectiveness of synthesized nanoparticles was tested contrary to five multidrug resistant microbial strains, Staphylococcus epidermidis, Staphylococcus aureus, Escherichia coli, Salmonella enterica, Porteus mirabilis by disc diffusion method. The minimum inhibitory concentrations and minimum lethal concentrations were detected by the broth macro dilution method. 2,2-diphenyl-1-picrylhydrazyl-hydrate (DPPH) was used to check the free radical scavenging ability of biogenic silver nanoparticles. Similarly, anti-radical activity was checked by 2,2'-Azino-Bis-3-Ethylbenzothiazoline-6-Sulfonic Acid (ABTS) with varying time intervals. Catalytic potential of biosynthesized silver nanoparticles was also investigated.
Collapse
Affiliation(s)
- Saba Ibrahim
- Department of Chemistry, University of Engineering and Technology, Lahore, Pakistan.
- Department of Chemistry, Government College University, Lahore, Pakistan.
| | - Zahoor Ahmad
- Department of Chemistry, University of Engineering and Technology, Lahore, Pakistan
| | | | - Muhammad Mujahid
- Department of Chemistry, Government College University, Lahore, Pakistan
| | - Zahra Faheem
- Department of Chemistry, Government College University, Lahore, Pakistan
| | - Ahmad Adnan
- Department of Chemistry, Government College University, Lahore, Pakistan
| |
Collapse
|
24
|
Pagliarosi O, Picchio V, Chimenti I, Messina E, Gaetani R. Building an Artificial Cardiac Microenvironment: A Focus on the Extracellular Matrix. Front Cell Dev Biol 2020; 8:559032. [PMID: 33015056 PMCID: PMC7500153 DOI: 10.3389/fcell.2020.559032] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 08/18/2020] [Indexed: 12/20/2022] Open
Abstract
The increased knowledge in cell signals and stem cell differentiation, together with the development of new technologies, such as 3D bioprinting, has made the generation of artificial tissues more feasible for in vitro studies and in vivo applications. In the human body, cell fate, function, and survival are determined by the microenvironment, a rich and complex network composed of extracellular matrix (ECM), different cell types, and soluble factors. They all interconnect and communicate, receiving and sending signals, modulating and responding to cues. In the cardiovascular field, the culture of stem cells in vitro and their differentiation into cardiac phenotypes is well established, although differentiated cardiomyocytes often lack the functional maturation and structural organization typical of the adult myocardium. The recreation of an artificial microenvironment as similar as possible to the native tissue, though, has been shown to partly overcome these limitations, and can be obtained through the proper combination of ECM molecules, different cell types, bioavailability of growth factors (GFs), as well as appropriate mechanical and geometrical stimuli. This review will focus on the role of the ECM in the regulation of cardiac differentiation, will provide new insights on the role of supporting cells in the generation of 3D artificial tissues, and will also present a selection of the latest approaches to recreate a cardiac microenvironment in vitro through 3D bioprinting approaches.
Collapse
Affiliation(s)
- Olivia Pagliarosi
- Department of Molecular Medicine, Faculty of Pharmacy and Medicine, Sapienza University of Rome, Rome, Italy
| | - Vittorio Picchio
- Department of Medical and Surgical Sciences and Biotechnology, Faculty of Pharmacy and Medicine, Sapienza University of Rome, Rome, Italy
| | - Isotta Chimenti
- Department of Medical and Surgical Sciences and Biotechnology, Faculty of Pharmacy and Medicine, Sapienza University of Rome, Rome, Italy
- Mediterranea Cardiocentro, Naples, Italy
| | - Elisa Messina
- Department of Maternal, Infantile, and Urological Sciences, “Umberto I” Hospital, Rome, Italy
| | - Roberto Gaetani
- Department of Molecular Medicine, Faculty of Pharmacy and Medicine, Sapienza University of Rome, Rome, Italy
- Department of Bioengineering, Sanford Consortium for Regenerative Medicine, University of California, San Diego, San Diego, CA, United States
| |
Collapse
|
25
|
Gao N, Zhang J, Pan Z, Zhao X, Ma X, Zhang H. Biodegradation of Atrazine by Mixed Bacteria of Klebsiella variicola Strain FH-1 and Arthrobacter sp. NJ-1. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2020; 105:481-489. [PMID: 32914331 DOI: 10.1007/s00128-020-02966-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 08/13/2020] [Indexed: 06/11/2023]
Abstract
The purpose of this study is to enhance the biodegradability of atrazine with FH-1 and NJ-1 alone by selecting the mixing ratio, optimizing the culture medium and conditions. The results showed that FH-1 and NJ-1 have the best biodegradation effect on atrazine being mixed in a volume ratio of 3:2. In a single factor experiment, sucrose and NH4Cl provided carbon and nitrogen sources for the mixed bacteria. Subsequently, composition of fermentation medium was further optimized using Box-Behnken design of response surface methodology. Based on the results, growth of mixed bacteria and biodegradation of atrazine performed best effects with a biodegradation rate of 85.6% when sucrose and NH4Cl amounts were 35.30 g/L and 10.28 g/L. The optimal medium condition was 10% inoculum of mixed bacteria, with initial atrazine concentration of 50 mg/L, neutral or weakly alkaline pH value, 30°C. The biodegradation rate reached 97.4%, 11.8% higher than the unoptimized condition.
Collapse
Affiliation(s)
- Ning Gao
- College of Plant Protection, Jilin Agricultural University, Changchun, 130118, China
| | - Jinpeng Zhang
- College of Plant Protection, Jilin Agricultural University, Changchun, 130118, China
| | - Zequn Pan
- College of Plant Protection, Jilin Agricultural University, Changchun, 130118, China
| | - Xiaofeng Zhao
- College of Plant Protection, Jilin Agricultural University, Changchun, 130118, China
| | - Xiulan Ma
- College of Resource and Environment, Jilin Agricultural University, Changchun, 130118, China
| | - Hao Zhang
- College of Plant Protection, Jilin Agricultural University, Changchun, 130118, China.
| |
Collapse
|
26
|
Castillo EA, Lane KV, Pruitt BL. Micromechanobiology: Focusing on the Cardiac Cell-Substrate Interface. Annu Rev Biomed Eng 2020; 22:257-284. [PMID: 32501769 DOI: 10.1146/annurev-bioeng-092019-034950] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Engineered, in vitro cardiac cell and tissue systems provide test beds for the study of cardiac development, cellular disease processes, and drug responses in a dish. Much effort has focused on improving the structure and function of engineered cardiomyocytes and heart tissues. However, these parameters depend critically on signaling through the cellular microenvironment in terms of ligand composition, matrix stiffness, and substrate mechanical properties-that is, matrix micromechanobiology. To facilitate improvements to in vitro microenvironment design, we review how cardiomyocytes and their microenvironment change during development and disease in terms of integrin expression and extracellular matrix (ECM) composition. We also discuss strategies used to bind proteins to common mechanobiology platforms and describe important differences in binding strength to the substrate. Finally, we review example biomaterial approaches designed to support and probe cell-ECM interactions of cardiomyocytes in vitro, as well as open questions and challenges.
Collapse
Affiliation(s)
- Erica A Castillo
- Department of Mechanical Engineering, Stanford University, Stanford, California 94305, USA; .,Department of Mechanical Engineering, University of California, Santa Barbara, California 93106, USA;
| | - Kerry V Lane
- Department of Mechanical Engineering, University of California, Santa Barbara, California 93106, USA;
| | - Beth L Pruitt
- Department of Mechanical Engineering, University of California, Santa Barbara, California 93106, USA; .,Biomolecular Science and Engineering Program, University of California, Santa Barbara, California 93106, USA.,Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, California 93117, USA;
| |
Collapse
|
27
|
Gaetani R, Zizzi EA, Deriu MA, Morbiducci U, Pesce M, Messina E. When Stiffness Matters: Mechanosensing in Heart Development and Disease. Front Cell Dev Biol 2020; 8:334. [PMID: 32671058 PMCID: PMC7326078 DOI: 10.3389/fcell.2020.00334] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 04/16/2020] [Indexed: 12/20/2022] Open
Abstract
During embryonic morphogenesis, the heart undergoes a complex series of cellular phenotypic maturations (e.g., transition of myocytes from proliferative to quiescent or maturation of the contractile apparatus), and this involves stiffening of the extracellular matrix (ECM) acting in concert with morphogenetic signals. The maladaptive remodeling of the myocardium, one of the processes involved in determination of heart failure, also involves mechanical cues, with a progressive stiffening of the tissue that produces cellular mechanical damage, inflammation, and ultimately myocardial fibrosis. The assessment of the biomechanical dependence of the molecular machinery (in myocardial and non-myocardial cells) is therefore essential to contextualize the maturation of the cardiac tissue at early stages and understand its pathologic evolution in aging. Because systems to perform multiscale modeling of cellular and tissue mechanics have been developed, it appears particularly novel to design integrated mechano-molecular models of heart development and disease to be tested in ex vivo reconstituted cells/tissue-mimicking conditions. In the present contribution, we will discuss the latest implication of mechanosensing in heart development and pathology, describe the most recent models of cell/tissue mechanics, and delineate novel strategies to target the consequences of heart failure with personalized approaches based on tissue engineering and induced pluripotent stem cell (iPSC) technologies.
Collapse
Affiliation(s)
- Roberto Gaetani
- Department of Molecular Medicine, Faculty of Pharmacy and Medicine, Sapienza University of Rome, Rome, Italy.,Department of Bioengineering, Sanford Consortium for Regenerative Medicine, University of California, San Diego, San Diego, CA, United States
| | - Eric Adriano Zizzi
- PolitoBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Marco Agostino Deriu
- PolitoBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Umberto Morbiducci
- PolitoBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Maurizio Pesce
- Tissue Engineering Research Unit, "Centro Cardiologico Monzino," IRCCS, Milan, Italy
| | - Elisa Messina
- Department of Maternal, Infantile, and Urological Sciences, "Umberto I" Hospital, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
28
|
Kupfer ME, Lin WH, Ravikumar V, Qiu K, Wang L, Gao L, Bhuiyan DB, Lenz M, Ai J, Mahutga RR, Townsend D, Zhang J, McAlpine MC, Tolkacheva EG, Ogle BM. In Situ Expansion, Differentiation, and Electromechanical Coupling of Human Cardiac Muscle in a 3D Bioprinted, Chambered Organoid. Circ Res 2020; 127:207-224. [PMID: 32228120 DOI: 10.1161/circresaha.119.316155] [Citation(s) in RCA: 167] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
RATIONALE One goal of cardiac tissue engineering is the generation of a living, human pump in vitro that could replace animal models and eventually serve as an in vivo therapeutic. Models that replicate the geometrically complex structure of the heart, harboring chambers and large vessels with soft biomaterials, can be achieved using 3-dimensional bioprinting. Yet, inclusion of contiguous, living muscle to support pump function has not been achieved. This is largely due to the challenge of attaining high densities of cardiomyocytes-a notoriously nonproliferative cell type. An alternative strategy is to print with human induced pluripotent stem cells, which can proliferate to high densities and fill tissue spaces, and subsequently differentiate them into cardiomyocytes in situ. OBJECTIVE To develop a bioink capable of promoting human induced pluripotent stem cell proliferation and cardiomyocyte differentiation to 3-dimensionally print electromechanically functional, chambered organoids composed of contiguous cardiac muscle. METHODS AND RESULTS We optimized a photo-crosslinkable formulation of native ECM (extracellular matrix) proteins and used this bioink to 3-dimensionally print human induced pluripotent stem cell-laden structures with 2 chambers and a vessel inlet and outlet. After human induced pluripotent stem cells proliferated to a sufficient density, we differentiated the cells within the structure and demonstrated function of the resultant human chambered muscle pump. Human chambered muscle pumps demonstrated macroscale beating and continuous action potential propagation with responsiveness to drugs and pacing. The connected chambers allowed for perfusion and enabled replication of pressure/volume relationships fundamental to the study of heart function and remodeling with health and disease. CONCLUSIONS This advance represents a critical step toward generating macroscale tissues, akin to aggregate-based organoids, but with the critical advantage of harboring geometric structures essential to the pump function of cardiac muscle. Looking forward, human chambered organoids of this type might also serve as a test bed for cardiac medical devices and eventually lead to therapeutic tissue grafting.
Collapse
Affiliation(s)
- Molly E Kupfer
- From the Department of Biomedical Engineering (M.E.K., W.-H.L., D.B.B., M.L., J.A., R.R.M., E.G.T., B.M.O.), University of Minnesota-Twin Cities, Minneapolis.,Stem Cell Institute (M.E.K., W.-H.L., B.M.O.), University of Minnesota-Twin Cities, Minneapolis
| | - Wei-Han Lin
- From the Department of Biomedical Engineering (M.E.K., W.-H.L., D.B.B., M.L., J.A., R.R.M., E.G.T., B.M.O.), University of Minnesota-Twin Cities, Minneapolis.,Stem Cell Institute (M.E.K., W.-H.L., B.M.O.), University of Minnesota-Twin Cities, Minneapolis
| | - Vasanth Ravikumar
- Department of Electrical Engineering (V.R.), University of Minnesota-Twin Cities, Minneapolis
| | - Kaiyan Qiu
- Department of Mechanical Engineering (K.Q., M.C.M.), University of Minnesota-Twin Cities, Minneapolis
| | - Lu Wang
- Department of Biomedical Engineering, School of Medicine, School of Engineering, University of Alabama at Birmingham (L.W., L.G., J.Z.)
| | - Ling Gao
- Department of Biomedical Engineering, School of Medicine, School of Engineering, University of Alabama at Birmingham (L.W., L.G., J.Z.)
| | - Didarul B Bhuiyan
- From the Department of Biomedical Engineering (M.E.K., W.-H.L., D.B.B., M.L., J.A., R.R.M., E.G.T., B.M.O.), University of Minnesota-Twin Cities, Minneapolis
| | - Megan Lenz
- From the Department of Biomedical Engineering (M.E.K., W.-H.L., D.B.B., M.L., J.A., R.R.M., E.G.T., B.M.O.), University of Minnesota-Twin Cities, Minneapolis
| | - Jeffrey Ai
- From the Department of Biomedical Engineering (M.E.K., W.-H.L., D.B.B., M.L., J.A., R.R.M., E.G.T., B.M.O.), University of Minnesota-Twin Cities, Minneapolis
| | - Ryan R Mahutga
- From the Department of Biomedical Engineering (M.E.K., W.-H.L., D.B.B., M.L., J.A., R.R.M., E.G.T., B.M.O.), University of Minnesota-Twin Cities, Minneapolis
| | - DeWayne Townsend
- Lillehei Heart Institute (D.T., E.G.T., B.M.O.), University of Minnesota-Twin Cities, Minneapolis.,Department of Integrative Biology and Physiology (D.T.), University of Minnesota-Twin Cities, Minneapolis
| | - Jianyi Zhang
- Department of Biomedical Engineering, School of Medicine, School of Engineering, University of Alabama at Birmingham (L.W., L.G., J.Z.)
| | - Michael C McAlpine
- Department of Mechanical Engineering (K.Q., M.C.M.), University of Minnesota-Twin Cities, Minneapolis
| | - Elena G Tolkacheva
- From the Department of Biomedical Engineering (M.E.K., W.-H.L., D.B.B., M.L., J.A., R.R.M., E.G.T., B.M.O.), University of Minnesota-Twin Cities, Minneapolis.,Lillehei Heart Institute (D.T., E.G.T., B.M.O.), University of Minnesota-Twin Cities, Minneapolis.,Institute for Engineering in Medicine (E.G.T., B.M.O.), University of Minnesota-Twin Cities, Minneapolis
| | - Brenda M Ogle
- From the Department of Biomedical Engineering (M.E.K., W.-H.L., D.B.B., M.L., J.A., R.R.M., E.G.T., B.M.O.), University of Minnesota-Twin Cities, Minneapolis.,Stem Cell Institute (M.E.K., W.-H.L., B.M.O.), University of Minnesota-Twin Cities, Minneapolis.,Lillehei Heart Institute (D.T., E.G.T., B.M.O.), University of Minnesota-Twin Cities, Minneapolis.,Institute for Engineering in Medicine (E.G.T., B.M.O.), University of Minnesota-Twin Cities, Minneapolis.,Masonic Cancer Center (B.M.O.), University of Minnesota-Twin Cities, Minneapolis
| |
Collapse
|
29
|
|
30
|
Das S, Kim SW, Choi YJ, Lee S, Lee SH, Kong JS, Park HJ, Cho DW, Jang J. Decellularized extracellular matrix bioinks and the external stimuli to enhance cardiac tissue development in vitro. Acta Biomater 2019; 95:188-200. [PMID: 30986526 DOI: 10.1016/j.actbio.2019.04.026] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 04/09/2019] [Accepted: 04/10/2019] [Indexed: 01/02/2023]
Abstract
Engineered heart tissue (EHT) has ample potential as a model for in vitro tissue modeling or tissue regeneration. Using 3D cell printing technology, various hydrogels have been utilized as bioinks to fabricate EHT to date. However, its efficacy has remained limited due to poor functional properties of the cultured cardiomyocytes stemming from a lack of proper microenvironmental cues. Specifically, the surrounding matrix plays a key role in modulating cardiomyocyte differentiation and maturation. Recently, the use of heart tissue-derived extracellular matrix (hdECM) bioink has come to be seen as one of the most promising candidates due to its functional and structural similarities to native tissue. Here, we demonstrated a correlation between the synthesis of cardiomyocyte-specific proteins and the surrounding microenvironment irrespective of the similar material chemistry. Primary cardiomyocytes isolated from neonatal rats were encapsulated in different composition and concentration of bioinks (hdECM and collagen). The bioinks were sequentially printed using an extrusion-based 3D bioprinter and cultured either statically or dynamically. Qualitative and quantitative evaluation revealed enhanced maturation of cardiomyocytes in hdECM, unlike the collagen group under similar culture conditions. Specifically, 3D-printed EHT using a low concentration of hdECM promoted early differentiation of cardiomyocytes. Hence, the present study provides experimental insights regarding the establishment of a 3D-printed cardiac tissue model, highlighting that the matrix and the culture microenvironment can be decisive factors for cell-material interactions that affect cardiomyocyte maturation. STATEMENT OF SIGNIFICANCE: The regulation of signal transduction and responses to extracellular matrices (ECMs) is of particular relevance in tissue maturation. In particular, there is a clear need to understand the structural and phenotypical modulation in cardiomyocytes with respect to the surrounding microenvironment. Exploration of the key regulators, such as the compositional and the biophysical properties of bioinks associated directly with cell-cell and cell-matrix interactions would assist with the fabrication of cardiac tissue constructs with enhanced functionality. Hence, we documented the synergistic effects of surrounding matrices and culture conditions on the maturation of cardiomyocytes. Additionally, we highlighted the potential of using 3D bioprinting techniques to fabricate uniformly aligned cardiac constructs for mid- to high-throughput drug testing platforms that have great reproducibility and versatility.
Collapse
|
31
|
Belgodere JA, Zamin SA, Kalinoski RM, Astete CE, Penrod JC, Hamel KM, Lynn BC, Rudra JS, Shi J, Jung JP. Modulating Mechanical Properties of Collagen-Lignin Composites. ACS APPLIED BIO MATERIALS 2019; 2:3562-3572. [PMID: 35030742 DOI: 10.1021/acsabm.9b00444] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Three-dimensional matrices of collagen type I (Col I) are widely used in tissue engineering applications for its abundance in many tissues, bioactivity with many cell types, and excellent biocompatibility. Inspired by the structural role of lignin in a plant tissue, we found that sodium lignosulfonate (SLS) and an alkali-extracted lignin from switchgrass (SG) increased the stiffness of Col I gels. SLS and SG enhanced the stiffness of Col I gels from 52 to 670 Pa and 52 to 320 Pa, respectively, and attenuated shear-thinning properties, with the formulation of 1.8 mg/mL Col I and 5.0 mg/mL SLS or SG. In 2D cultures, the cytotoxicity of collagen-SLS to adipose-derived stromal cells was not observed and the cell viability was maintained over 7 days in 3D cultures. Collagen-SLS composites did not elicit immunogenicity when compared to SLS-only groups. Our collagen-SLS composites present a case that exploits lignins as an enhancer of mechanical properties of Col I without adverse cytotoxicity and immunogenicity for in vitro scaffolds or in vivo tissue repairs.
Collapse
Affiliation(s)
- Jorge A Belgodere
- Biological and Agricultural Engineering, Louisiana State University, 149 E.B. Doran Hall, Baton Rouge, Louisiana 70803, United States
| | - Syed A Zamin
- Biological and Agricultural Engineering, Louisiana State University, 149 E.B. Doran Hall, Baton Rouge, Louisiana 70803, United States
| | - Ryan M Kalinoski
- Biosystems and Agricultural Engineering, University of Kentucky, 128 C.E. Barnhart Building, Lexington, Kentucky 40546, United States
| | - Carlos E Astete
- Biological and Agricultural Engineering, Louisiana State University, 149 E.B. Doran Hall, Baton Rouge, Louisiana 70803, United States
| | - Joseph C Penrod
- Biological and Agricultural Engineering, Louisiana State University, 149 E.B. Doran Hall, Baton Rouge, Louisiana 70803, United States
| | - Katie M Hamel
- Biological and Agricultural Engineering, Louisiana State University, 149 E.B. Doran Hall, Baton Rouge, Louisiana 70803, United States
| | - Bert C Lynn
- Chemistry, University of Kentucky, 125 Chemistry/Physics Building, Lexington, Kentucky 40506, United States
| | - Jai S Rudra
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, 301 University Boulevard, Galveston, Texas 77555, United States
| | - Jian Shi
- Chemistry, University of Kentucky, 125 Chemistry/Physics Building, Lexington, Kentucky 40506, United States
| | - Jangwook P Jung
- Biosystems and Agricultural Engineering, University of Kentucky, 128 C.E. Barnhart Building, Lexington, Kentucky 40546, United States
| |
Collapse
|
32
|
Leitolis A, Robert AW, Pereira IT, Correa A, Stimamiglio MA. Cardiomyogenesis Modeling Using Pluripotent Stem Cells: The Role of Microenvironmental Signaling. Front Cell Dev Biol 2019; 7:164. [PMID: 31448277 PMCID: PMC6695570 DOI: 10.3389/fcell.2019.00164] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 07/29/2019] [Indexed: 12/20/2022] Open
Abstract
Pluripotent stem cells (PSC) can be used as a model to study cardiomyogenic differentiation. In vitro modeling can reproduce cardiac development through modulation of some key signaling pathways. Therefore, many studies make use of this strategy to better understand cardiomyogenesis complexity and to determine possible ways to modulate cell fate. However, challenges remain regarding efficiency of differentiation protocols, cardiomyocyte (CM) maturation and therapeutic applications. Considering that the extracellular milieu is crucial for cellular behavior control, cardiac niche studies, such as those identifying secreted molecules from adult or neonatal tissues, allow the identification of extracellular factors that may contribute to CM differentiation and maturation. This review will focus on cardiomyogenesis modeling using PSC and the elements involved in cardiac microenvironmental signaling (the secretome - extracellular vesicles, extracellular matrix and soluble factors) that may contribute to CM specification and maturation.
Collapse
Affiliation(s)
- Amanda Leitolis
- Stem Cell Basic Biology Laboratory, Carlos Chagas Institute, FIOCRUZ-PR, Curitiba, Brazil
| | - Anny W Robert
- Stem Cell Basic Biology Laboratory, Carlos Chagas Institute, FIOCRUZ-PR, Curitiba, Brazil
| | - Isabela T Pereira
- Stem Cell Basic Biology Laboratory, Carlos Chagas Institute, FIOCRUZ-PR, Curitiba, Brazil
| | - Alejandro Correa
- Stem Cell Basic Biology Laboratory, Carlos Chagas Institute, FIOCRUZ-PR, Curitiba, Brazil
| | - Marco A Stimamiglio
- Stem Cell Basic Biology Laboratory, Carlos Chagas Institute, FIOCRUZ-PR, Curitiba, Brazil
| |
Collapse
|
33
|
Ashraf N, Ahmad F, Jing Jie C, Tuo Di Z, Feng-Zhu Z, Yin DC. Optimization of Enterobacter cloacae mediated synthesis of extracellular silver nanoparticles by response surface methodology and their characterization. PARTICULATE SCIENCE AND TECHNOLOGY 2019. [DOI: 10.1080/02726351.2019.1636915] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Noreen Ashraf
- Key Laboratory for Space Bioscience & Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, P.R. China
| | - Fiaz Ahmad
- Key Laboratory for Space Bioscience & Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, P.R. China
| | - Chen Jing Jie
- Key Laboratory for Space Bioscience & Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, P.R. China
| | - Zhang Tuo Di
- Key Laboratory for Space Bioscience & Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, P.R. China
| | - Zhao Feng-Zhu
- Key Laboratory for Space Bioscience & Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, P.R. China
| | - Da-Chuan Yin
- Key Laboratory for Space Bioscience & Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, P.R. China
| |
Collapse
|
34
|
Wang D, Wang Y, Liu H, Tong C, Ying Q, Sachinidis A, Li L, Peng L. Laminin promotes differentiation of rat embryonic stem cells into cardiomyocytes by activating the integrin/FAK/PI3K p85 pathway. J Cell Mol Med 2019; 23:3629-3640. [PMID: 30907509 PMCID: PMC6484303 DOI: 10.1111/jcmm.14264] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 01/02/2019] [Accepted: 01/10/2019] [Indexed: 12/27/2022] Open
Abstract
The generation of germline competent rat embryonic stem cells (rESCs) allows the study of their lineage commitment. Here, we developed a highly efficient system for rESC-derived cardiomyocytes, and even the formation of three-dimensional (3D)-like cell clusters with cTNT and α-Actinin. We have validated that laminin can interact with membrane integrin to promote the phosphorylation of both phosphatidylinositol 3-kinase (PI3K) p85 and the focal adhesion kinase (FAK). In parallel, GATA4 was up-regulated. Upon inhibiting the integrin, laminin loses the effect on cardiomyocyte differentiation, accompanied with a down-regulation of phosphorylation level of PI3K p85 and FAK. Meanwhile, the expression of Gata4 was inhibited as well. Taken together, laminin is a crucial component in the differentiation of rESCs into cardiomyocytes through increasing their proliferation via interacting with integrin pathway. These results provide new insights into the pathways mediated by extracellular laminin involved in the fate of rESC-derived cardiomyocytes.
Collapse
Affiliation(s)
- Duo Wang
- Key Laboratory of Arrhythmias, Ministry of Education, Shanghai East HospitalTongji University School of MedicineShanghaiChina
- Research Center for Translational Medicine, Shanghai East HospitalTongji University School of MedicineShanghaiChina
- Department of Pathology and PathophysiologyTongji University School of MedicineShanghaiChina
| | - Yumei Wang
- Key Laboratory of Arrhythmias, Ministry of Education, Shanghai East HospitalTongji University School of MedicineShanghaiChina
- Research Center for Translational Medicine, Shanghai East HospitalTongji University School of MedicineShanghaiChina
- Department of Pathology and PathophysiologyTongji University School of MedicineShanghaiChina
| | - Huan Liu
- Key Laboratory of Arrhythmias, Ministry of Education, Shanghai East HospitalTongji University School of MedicineShanghaiChina
- Research Center for Translational Medicine, Shanghai East HospitalTongji University School of MedicineShanghaiChina
- Department of Pathology and PathophysiologyTongji University School of MedicineShanghaiChina
| | - Chang Tong
- Research Center for Translational Medicine, Shanghai East HospitalTongji University School of MedicineShanghaiChina
| | - Qilong Ying
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research at USC, Department of Stem Cell Biology and Regenerative Medicine, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCalifornia
| | - Agapios Sachinidis
- Institute of Neurophysiology and Center for Molecular MedicineUniversity of CologneCologneGermany
| | - Li Li
- Key Laboratory of Arrhythmias, Ministry of Education, Shanghai East HospitalTongji University School of MedicineShanghaiChina
- Research Center for Translational Medicine, Shanghai East HospitalTongji University School of MedicineShanghaiChina
- Department of Pathology and PathophysiologyTongji University School of MedicineShanghaiChina
| | - Luying Peng
- Key Laboratory of Arrhythmias, Ministry of Education, Shanghai East HospitalTongji University School of MedicineShanghaiChina
- Research Center for Translational Medicine, Shanghai East HospitalTongji University School of MedicineShanghaiChina
- Department of Pathology and PathophysiologyTongji University School of MedicineShanghaiChina
| |
Collapse
|
35
|
Current Challenges and Emergent Technologies for Manufacturing Artificial Right Ventricle to Pulmonary Artery (RV-PA) Cardiac Conduits. Cardiovasc Eng Technol 2019; 10:205-215. [DOI: 10.1007/s13239-019-00406-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 02/05/2019] [Indexed: 01/12/2023]
|
36
|
Hall ML, Ogle BM. Cardiac Extracellular Matrix Modification as a Therapeutic Approach. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1098:131-150. [PMID: 30238369 PMCID: PMC6584040 DOI: 10.1007/978-3-319-97421-7_7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The cardiac extracellular matrix (cECM) is comprised of proteins and polysaccharides secreted by cardiac cell types, which provide structural and biochemical support to cardiovascular tissue. The roles of cECM proteins and the associated family of cell surface receptor, integrins, have been explored in vivo via the generation of knockout experimental animal models. However, the complexity of tissues makes it difficult to isolate the effects of individual cECM proteins on a particular cell process or disease state. The desire to further dissect the role of cECM has led to the development of a variety of in vitro model systems, which are now being used not only for basic studies but also for testing drug efficacy and toxicity and for generating therapeutic scaffolds. These systems began with 2D coatings of cECM derived from tissue and have developed to include recombinant ECM proteins, ECM fragments, and ECM mimics. Most recently 3D model systems have emerged, made possible by several developing technologies including, and most notably, 3D bioprinting. This chapter will attempt to track the evolution of our understanding of the relationship between cECM and cell behavior from in vivo model to in vitro control systems. We end the chapter with a summary of how basic studies such as these have informed the use of cECM as a direct therapy.
Collapse
Affiliation(s)
- Mikayla L Hall
- Department of Biomedical Engineering, University of Minnesota - Twin Cities, Minneapolis, MN, USA
- Stem Cell Institute, University of Minnesota - Twin Cities, Minneapolis, MN, USA
| | - Brenda M Ogle
- Department of Biomedical Engineering, University of Minnesota - Twin Cities, Minneapolis, MN, USA.
- Stem Cell Institute, University of Minnesota - Twin Cities, Minneapolis, MN, USA.
- Masonic Cancer Center, University of Minnesota - Twin Cities, Minneapolis, MN, USA.
- Lillehei Heart Institute, University of Minnesota - Twin Cities, Minneapolis, MN, USA.
- Institute for Engineering in Medicine, University of Minnesota - Twin Cities, Minneapolis, MN, USA.
| |
Collapse
|
37
|
Kaiser NJ, Kant RJ, Minor AJ, Coulombe KLK. Optimizing Blended Collagen-Fibrin Hydrogels for Cardiac Tissue Engineering with Human iPSC-derived Cardiomyocytes. ACS Biomater Sci Eng 2018; 5:887-899. [PMID: 30775432 PMCID: PMC6372981 DOI: 10.1021/acsbiomaterials.8b01112] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 12/10/2018] [Indexed: 01/08/2023]
Abstract
![]()
Natural
polymer hydrogels are used ubiquitously as scaffold materials
for cardiac tissue engineering as well as for soft tissue engineering
more broadly because of FDA approval, minimal immunogenicity, and
well-defined physiological clearance pathways. However, the relationships
between natural polymer hydrogels and resident cell populations in
directing the development of engineered tissues are poorly defined.
This interaction is of particular concern for tissues prepared
with iPSC-derived cell populations, in which population purity and
batch-to-batch variability become additional critical factors to consider.
Herein, the design space for a blended fibrin and collagen scaffold
is characterized for applications in creating engineered myocardium
with human iPSC-derived cardiomyocytes. Stiffness values of the acellular
hydrogel formulations approach those of native myocardium in compression,
but deviate significantly in tension when compared to rat myocardium
in both transverse and longitudinal fiber orientations. A response
surface methodology approach to understanding the relationship between
collagen concentration, fibrin concentration, seeding density, and
cardiac purity found a statistically significant predictive model
across three repeated studies that confirms that all of these factors
contribute to tissue compaction. In these constructs, increased fibrin
concentration and seeding density were each associated with increased
compaction, while increased collagen concentration was associated
with decreased compaction. Both the lowest (24.4% cTnT+) and highest (60.2% cTnT+) cardiomyocyte purities evaluated
were associated with decreased compaction, whereas the greatest compaction
was predicted to occur in constructs prepared with a 40–50%
cTnT+ population. Constructs prepared with purified cardiomyocytes
(≥75.5% cTnT+) compacted and formed syncytia well,
although increased fibrin concentration in these groups was associated
with decreased compaction, a reversal of the trend observed in unpurified
cardiomyocytes. This study demonstrates an analytical approach to
understanding cell–scaffold interactions in engineered tissues
and provides a foundation for the development of more sophisticated
and customized scaffold platforms for human cardiac tissue engineering.
Collapse
Affiliation(s)
- Nicholas J Kaiser
- Center for Biomedical Engineering, Brown University, Providence, Rhode Island 02912, United States
| | - Rajeev J Kant
- Center for Biomedical Engineering, Brown University, Providence, Rhode Island 02912, United States
| | - Alicia J Minor
- Center for Biomedical Engineering, Brown University, Providence, Rhode Island 02912, United States
| | - Kareen L K Coulombe
- Center for Biomedical Engineering, Brown University, Providence, Rhode Island 02912, United States
| |
Collapse
|
38
|
Jung JP, Lin WH, Riddle MJ, Tolar J, Ogle BM. A 3D in vitro model of the dermoepidermal junction amenable to mechanical testing. J Biomed Mater Res A 2018; 106:3231-3238. [PMID: 30208260 PMCID: PMC6283247 DOI: 10.1002/jbm.a.36519] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 07/20/2018] [Accepted: 07/31/2018] [Indexed: 01/06/2023]
Abstract
Recessive dystrophic Epidermolysis Bullosa (RDEB) is caused by mutations in collagen‐type VII gene critical for the dermoepidermal junction (DEJ) formation. Neither tissues of animal models nor currently available in vitro models are amenable to the quantitative assessment of mechanical adhesion between dermal and epidermal layers. Here, we created a 3D in vitro DEJ model using extracellular matrix (ECM) proteins of the DEJ anchored to a poly(ethylene glycol)‐based slab (termed ECM composites) and seeded with human keratinocytes and dermal fibroblasts. Keratinocytes and fibroblasts of healthy individuals were well maintained in the ECM composite and showed the expression of collagen type VII over a 2‐week period. The ECM composites with healthy keratinocytes and fibroblasts exhibited yield stress associated with the separation of the model DEJ at 0.268 ± 0.057 kPa. When we benchmarked this measure of adhesive strength with that of the model DEJ fabricated with cells of individuals with RDEB, the yield stress was significantly lower (0.153 ± 0.064 kPa) consistent with our current mechanistic understanding of RDEB. In summary, a 3D in vitro model DEJ was developed for quantification of mechanical adhesion between epidermal‐ and dermal‐mimicking layers, which can be utilized for assessment of mechanical adhesion of the model DEJ applicable for Epidermolysis Bullosa‐associated therapeutics. © 2018 The Authors. Journal Of Biomedical Materials Research Part A Published By Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 3231–3238, 2018.
Collapse
Affiliation(s)
- Jangwook P Jung
- Department of Biomedical Engineering, University of Minnesota-Twin Cities, Minneapolis, Minnesota.,Stem Cell Institute, University of Minnesota-Twin Cities, Minneapolis, Minnesota.,Department of Biological Engineering, Louisiana State University, Baton Rouge, Louisiana
| | - Wei-Han Lin
- Department of Biomedical Engineering, University of Minnesota-Twin Cities, Minneapolis, Minnesota
| | - Megan J Riddle
- Department of Pediatrics, University of Minnesota-Twin Cities, Minneapolis, Minnesota
| | - Jakub Tolar
- Stem Cell Institute, University of Minnesota-Twin Cities, Minneapolis, Minnesota.,Department of Pediatrics, University of Minnesota-Twin Cities, Minneapolis, Minnesota.,Masonic Cancer Center, University of Minnesota-Twin Cities, Minneapolis, Minnesota
| | - Brenda M Ogle
- Department of Biomedical Engineering, University of Minnesota-Twin Cities, Minneapolis, Minnesota.,Stem Cell Institute, University of Minnesota-Twin Cities, Minneapolis, Minnesota.,Masonic Cancer Center, University of Minnesota-Twin Cities, Minneapolis, Minnesota.,Lillehei Heart Institute, University of Minnesota-Twin Cities, Minneapolis, Minnesota.,Institute for Engineering in Medicine, University of Minnesota-Twin Cities, Minneapolis, Minnesota
| |
Collapse
|
39
|
Cardiac differentiation of induced pluripotent stem cells on elastin-like protein-based hydrogels presenting a single-cell adhesion sequence. Polym J 2018. [DOI: 10.1038/s41428-018-0110-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
40
|
Ahmad F, Anwar S, Firdous S, Da-Chuan Y, Iqbal S. Biodegradation of bispyribac sodium by a novel bacterial consortium BDAM: Optimization of degradation conditions using response surface methodology. JOURNAL OF HAZARDOUS MATERIALS 2018; 349:272-281. [PMID: 29438823 DOI: 10.1016/j.jhazmat.2017.12.065] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 11/28/2017] [Accepted: 12/27/2017] [Indexed: 06/08/2023]
Abstract
Bispyribac sodium (BS), is a selective, systemic and post emergent herbicide used to eradicate grasses and broad leaf weeds. Extensive use of this herbicide has engendered serious environmental concerns. Hence it is important to develop strategies for bioremediation of BS in a cost effective and environment friendly way. In this study a bacterial consortium named BDAM, comprising three novel isolates Achromobacter xylosoxidans (BD1), Achromobacter pulmonis (BA2), and Ochrobactrum intermedium (BM2), was developed by virtue of its potential for degradation of BS. Different culture conditions (temperature, pH and inoculum size) were optimized for degradation of BS by the consortium BDAM and the mutual interactions of these parameters were analysed using a 23 full factorial central composite design (CCD) based on Response Surface Methodology (RSM). The optimal values for temperature, pH and inoculum size were found to be 40 °C, 8 and 0.4 g/L respectively to achieve maximum degradation of BS (85.6%). Moreover, the interactive effects of these parameters were investigated using three dimensional surface plots in terms of maximum fitness function. Importantly, it was concluded that the newly developed consortium is a potential candidate for biodegradation of BS in a safe, cost-effective and environmentally friendly manner.
Collapse
Affiliation(s)
- Fiaz Ahmad
- Key Laboratory for Space Bioscience & Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, PR China
| | - Samina Anwar
- Soil and Environmental Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), PO Box 577, Jhang Road, Faisalabad 38000, Pakistan
| | - Sadiqa Firdous
- Department of Microbiology, Women University Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Yin Da-Chuan
- Key Laboratory for Space Bioscience & Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, PR China
| | - Samina Iqbal
- Soil and Environmental Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), PO Box 577, Jhang Road, Faisalabad 38000, Pakistan.
| |
Collapse
|
41
|
Developmental Pathways Pervade Stem Cell Responses to Evolving Extracellular Matrices of 3D Bioprinted Microenvironments. Stem Cells Int 2018; 2018:4809673. [PMID: 29765414 PMCID: PMC5896227 DOI: 10.1155/2018/4809673] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 11/10/2017] [Accepted: 12/10/2017] [Indexed: 12/17/2022] Open
Abstract
Developmental studies and 3D in vitro model systems show that the production and engagement of extracellular matrix (ECM) often precede stem cell differentiation. Yet, unclear is how the ECM triggers signaling events in sequence to accommodate multistep process characteristic of differentiation. Here, we employ transcriptome profiling and advanced imaging to delineate the specificity of ECM engagement to particular differentiation pathways and to determine whether specificity in this context is a function of long-term ECM remodeling. To this end, human mesenchymal stem cells (hMSCs) were cultured in 3D bioprinted prisms created from ECM proteins and associated controls. We found that exogenous ECM provided in 3D microenvironments at early time points impacts on the composition of microenvironments at later time points and that each evolving 3D microenvironment is uniquely poised to promote stem cell differentiation. Moreover, 2D cultures undergo minimal ECM remodeling and are ill-equipped to stimulate pathways associated with development.
Collapse
|
42
|
Ogle BM, Bursac N, Domian I, Huang NF, Menasché P, Murry CE, Pruitt B, Radisic M, Wu JC, Wu SM, Zhang J, Zimmermann WH, Vunjak-Novakovic G. Distilling complexity to advance cardiac tissue engineering. Sci Transl Med 2017; 8:342ps13. [PMID: 27280684 DOI: 10.1126/scitranslmed.aad2304] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The promise of cardiac tissue engineering is in the ability to recapitulate in vitro the functional aspects of a healthy heart and disease pathology as well as to design replacement muscle for clinical therapy. Parts of this promise have been realized; others have not. In a meeting of scientists in this field, five central challenges or "big questions" were articulated that, if addressed, could substantially advance the current state of the art in modeling heart disease and realizing heart repair.
Collapse
Affiliation(s)
- Brenda M Ogle
- Department of Biomedical Engineering, Stem Cell Institute, Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Nenad Bursac
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Ibrahim Domian
- Harvard Medical School and Harvard Stem Cell Institute, Boston, MA 02114, USA
| | - Ngan F Huang
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA 94305, USA. Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304, USA
| | - Philippe Menasché
- Department of Cardiovascular Surgery, INSERM U 970, Hôpital Européen Georges Pompidou and University Paris Descartes, 75006 Paris, France
| | - Charles E Murry
- Center for Cardiovascular Biology, Institute for Stem Cell and Regenerative Medicine, Departments of Pathology, Bioengineering, and Medicine, University of Washington, Seattle, WA 98109, USA
| | - Beth Pruitt
- Departments of Mechanical Engineering and, by courtesy, Molecular and Cellular Physiology and Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Milica Radisic
- Institute of Biomaterials and Biomedical Engineering, Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3G9, Canada
| | - Joseph C Wu
- Stanford Cardiovascular Institute and Departments of Medicine and Radiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Sean M Wu
- Departments of Medicine and Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jianyi Zhang
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Wolfram-Hubertus Zimmermann
- Institute of Pharmacology and Toxicology, University Medical Center, Georg-August University Göttingen and DZHK (German Center for Cardiovascular Research), partner site Göttingen, 37075 Göttingen, Germany
| | - Gordana Vunjak-Novakovic
- Departments of Biomedical Engineering and Medicine, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
43
|
Weinberger F, Mannhardt I, Eschenhagen T. Engineering Cardiac Muscle Tissue: A Maturating Field of Research. Circ Res 2017; 120:1487-1500. [PMID: 28450366 DOI: 10.1161/circresaha.117.310738] [Citation(s) in RCA: 170] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Twenty years after the initial description of a tissue engineered construct, 3-dimensional human cardiac tissues of different kinds are now generated routinely in many laboratories. Advances in stem cell biology and engineering allow for the generation of constructs that come close to recapitulating the complex structure of heart muscle and might, therefore, be amenable to industrial (eg, drug screening) and clinical (eg, cardiac repair) applications. Whether the more physiological structure of 3-dimensional constructs provides a relevant advantage over standard 2-dimensional cell culture has yet to be shown in head-to-head-comparisons. The present article gives an overview on current strategies of cardiac tissue engineering with a focus on different hydrogel methods and discusses perspectives and challenges for necessary steps toward the real-life application of cardiac tissue engineering for disease modeling, drug development, and cardiac repair.
Collapse
Affiliation(s)
- Florian Weinberger
- From the Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg Eppendorf, Germany; and DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Germany
| | - Ingra Mannhardt
- From the Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg Eppendorf, Germany; and DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Germany
| | - Thomas Eschenhagen
- From the Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg Eppendorf, Germany; and DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Germany.
| |
Collapse
|
44
|
Zhao X, Wang L, Ma F, Bai S, Yang J, Qi S. Pseudomonas sp. ZXY-1, a newly isolated and highly efficient atrazine-degrading bacterium, and optimization of biodegradation using response surface methodology. J Environ Sci (China) 2017; 54:152-159. [PMID: 28391924 DOI: 10.1016/j.jes.2016.06.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 06/21/2016] [Accepted: 06/23/2016] [Indexed: 06/07/2023]
Abstract
Atrazine, a widely used herbicide, is increasing the agricultural production effectively, while also causing great environmental concern. Efficient atrazine-degrading bacterium is necessary to removal atrazine rapidly to keep a safe environment. In the present study, a new atrazine-degrading strain ZXY-1, identified as Pseudomonas, was isolated. This new isolated strain has a strong ability to biodegrade atrazine with a high efficiency of 9.09mg/L/hr. Temperature, pH, inoculum size and initial atrazine concentration were examined to further optimize the degradation of atrazine, and the synthetic effect of these factors were investigated by the response surface methodology. With a high quadratic polynomial mathematical model (R2=0.9821) being obtained, the highest biodegradation efficiency of 19.03mg/L/hr was reached compared to previous reports under the optimal conditions (30.71°C, pH7.14, 4.23% (V/V) inoculum size and 157.1mg/L initial atrazine concentration). Overall, this study provided an efficient bacterium and approach that could be potentially useful for the bioremediation of wastewater containing atrazine.
Collapse
Affiliation(s)
- Xinyue Zhao
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Li Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Fang Ma
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Shunwen Bai
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jixian Yang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Shanshan Qi
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
45
|
Borovjagin AV, Ogle BM, Berry JL, Zhang J. From Microscale Devices to 3D Printing: Advances in Fabrication of 3D Cardiovascular Tissues. Circ Res 2017; 120:150-165. [PMID: 28057791 PMCID: PMC5224928 DOI: 10.1161/circresaha.116.308538] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 10/03/2016] [Accepted: 10/19/2016] [Indexed: 01/14/2023]
Abstract
Current strategies for engineering cardiovascular cells and tissues have yielded a variety of sophisticated tools for studying disease mechanisms, for development of drug therapies, and for fabrication of tissue equivalents that may have application in future clinical use. These efforts are motivated by the need to extend traditional 2-dimensional (2D) cell culture systems into 3D to more accurately replicate in vivo cell and tissue function of cardiovascular structures. Developments in microscale devices and bioprinted 3D tissues are beginning to supplant traditional 2D cell cultures and preclinical animal studies that have historically been the standard for drug and tissue development. These new approaches lend themselves to patient-specific diagnostics, therapeutics, and tissue regeneration. The emergence of these technologies also carries technical challenges to be met before traditional cell culture and animal testing become obsolete. Successful development and validation of 3D human tissue constructs will provide powerful new paradigms for more cost effective and timely translation of cardiovascular tissue equivalents.
Collapse
Affiliation(s)
- Anton V Borovjagin
- From the Department of Biomedical Engineering, School of Medicine, School of Engineering, The University of Alabama at Birmingham (A.V.B., J.L.B., J.Z.); and Department of Biomedical Engineering, College of Science and Engineering, The University of Minnesota, Minneapolis (B.M.O.)
| | - Brenda M Ogle
- From the Department of Biomedical Engineering, School of Medicine, School of Engineering, The University of Alabama at Birmingham (A.V.B., J.L.B., J.Z.); and Department of Biomedical Engineering, College of Science and Engineering, The University of Minnesota, Minneapolis (B.M.O.)
| | - Joel L Berry
- From the Department of Biomedical Engineering, School of Medicine, School of Engineering, The University of Alabama at Birmingham (A.V.B., J.L.B., J.Z.); and Department of Biomedical Engineering, College of Science and Engineering, The University of Minnesota, Minneapolis (B.M.O.)
| | - Jianyi Zhang
- From the Department of Biomedical Engineering, School of Medicine, School of Engineering, The University of Alabama at Birmingham (A.V.B., J.L.B., J.Z.); and Department of Biomedical Engineering, College of Science and Engineering, The University of Minnesota, Minneapolis (B.M.O.).
| |
Collapse
|