1
|
Sabatelle RC, Colson YL, Sachdeva U, Grinstaff MW. Drug Delivery Opportunities in Esophageal Cancer: Current Treatments and Future Prospects. Mol Pharm 2024; 21:3103-3120. [PMID: 38888089 PMCID: PMC11331583 DOI: 10.1021/acs.molpharmaceut.4c00246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
With one of the highest mortality rates of all malignancies, the 5-year survival rate for esophageal cancer is under 20%. Depending on the stage and extent of the disease, the current standard of care treatment paradigm includes chemotherapy or chemoradiotherapy followed by surgical esophagogastrectomy, with consideration for adjuvant immunotherapy for residual disease. This regimen has high morbidity, due to anatomic changes inherent in surgery, the acuity of surgical complications, and off-target effects of systemic chemotherapy and immunotherapy. We begin with a review of current treatments, then discuss new and emerging targets for therapies and advanced drug delivery systems. Recent and ongoing preclinical and early clinical studies are evaluating traditional tumor targets (e.g., human epidermal growth factor receptor 2), as well as promising new targets such as Yes-associated protein 1 or mammalian target of rapamycin to develop new treatments for this disease. Due the function and location of the esophagus, opportunities also exist to pair these treatments with a drug delivery strategy to increase tumor targeting, bioavailability, and intratumor concentrations, with the two most common delivery platforms being stents and nanoparticles. Finally, early results with antibody drug conjugates and chimeric antigenic receptor T cells show promise as upcoming therapies. This review discusses these innovations in therapeutics and drug delivery in the context of their successes and failures, with the goal of identifying those solutions that demonstrate the most promise to shift the paradigm in treating this deadly disease.
Collapse
Affiliation(s)
- Robert C. Sabatelle
- Departments of Biomedical Engineering and Chemistry, Boston University, Boston, MA, 02215, USA
| | - Yolonda L. Colson
- Division of Thoracic Surgery, Department of Surgery, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Uma Sachdeva
- Division of Thoracic Surgery, Department of Surgery, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Mark W. Grinstaff
- Departments of Biomedical Engineering and Chemistry, Boston University, Boston, MA, 02215, USA
| |
Collapse
|
2
|
Gabriel EM, Bahr D, Rachamala HK, Madamsetty VS, Shreeder B, Bagaria S, Escobedo AL, Reid JM, Mukhopadhyay D. Liposomal Phenylephrine Nanoparticles Enhance the Antitumor Activity of Intratumoral Chemotherapy in a Preclinical Model of Melanoma. ACS Biomater Sci Eng 2024; 10:3412-3424. [PMID: 38613483 PMCID: PMC11301277 DOI: 10.1021/acsbiomaterials.4c00078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2024]
Abstract
Intratumoral injection of anticancer agents has limited efficacy and is not routinely used for most cancers. In this study, we aimed to improve the efficacy of intratumoral chemotherapy using a novel approach comprising peri-tumoral injection of sustained-release liposomal nanoparticles containing phenylephrine, which is a potent vasoconstrictor. Using a preclinical model of melanoma, we have previously shown that systemically administered (intravenous) phenylephrine could transiently shunt blood flow to the tumor at the time of drug delivery, which in turn improved antitumor responses. This approach was called dynamic control of tumor-associated vessels. Herein, we used liposomal phenylephrine nanoparticles as a "local" dynamic control strategy for the B16 melanoma. Local dynamic control was shown to increase the retention and exposure time of tumors to intratumorally injected chemotherapy (melphalan). C57BL/6 mice bearing B16 tumors were treated with intratumoral melphalan and peri-tumoral injection of sustained-release liposomal phenylephrine nanoparticles (i.e., the local dynamic control protocol). These mice had statistically significantly improved antitumor responses compared to melphalan alone (p = 0.0011), whereby 58.3% obtained long-term complete clinical response. Our novel approach of local dynamic control demonstrated significantly enhanced antitumor efficacy and is the subject of future clinical trials being designed by our group.
Collapse
Affiliation(s)
- Emmanuel M. Gabriel
- Department of Surgery, Division of Surgical Oncology, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Deborah Bahr
- Department of Molecular Biology, Mayo Clinic, Jacksonville, FL, 32224, USA
| | | | | | - Barath Shreeder
- Department of Immunology, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Sanjay Bagaria
- Department of Surgery, Division of Surgical Oncology, Mayo Clinic, Jacksonville, FL, 32224, USA
| | | | - Joel M. Reid
- Department of Pharmacology, Mayo Clinic, Rochester, MN, 55902, USA
| | | |
Collapse
|
3
|
Dai W, Chen Y, Xue Y, Wan M, Mao C, Zhang K. Progress in the Treatment of Peritoneal Metastatic Cancer and the Application of Therapeutic Nanoagents. ACS APPLIED BIO MATERIALS 2023; 6:4518-4548. [PMID: 37916787 DOI: 10.1021/acsabm.3c00662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Peritoneal metastatic cancer is a cancer caused by the direct growth of cancer cells from the primary site through the bloodstream, lymph, or peritoneum, which is a difficult part of current clinical treatment. In the abdominal cavity of patients with metastatic peritoneal cancer, there are usually nodules of various sizes and malignant ascites. Among them, nodules of different sizes can obstruct intestinal movement and form intestinal obstruction, while malignant ascites can cause abdominal distension and discomfort, and even cause patients to have difficulty in breathing. The pathology and physiology of peritoneal metastatic cancer are complex and not fully understood. The main hypothesis is "seed" and "soil"; i.e., cells from the primary tumor are shed and implanted in the peritoneal cavity (peritoneal metastasis). In the last two decades, the main treatment modalities used clinically are cytoreductive surgery (CRS), systemic chemotherapy, intraperitoneal chemotherapy, and combined treatment, all of which help to improve patient survival and quality of life (QOL). However, the small-molecule chemotherapeutic drugs used clinically still have problems such as rapid drug metabolism and systemic toxicity. With the rapid development of nanotechnology in recent years, therapeutic nanoagents for the treatment of peritoneal metastatic cancer have been gradually developed, which has improved the therapeutic effect and reduced the systemic toxicity of small-molecule chemotherapeutic drugs to a certain extent. In addition, nanomaterials have been developed not only as therapeutic agents but also as imaging agents to guide peritoneal tumor CRS. In this review, we describe the etiology and pathological features of peritoneal metastatic cancer, discuss in detail the clinical treatments that have been used for peritoneal metastatic cancer, and analyze the advantages and disadvantages of the different clinical treatments and the QOL of the treated patients, followed by a discussion focusing on the progress, obstacles, and challenges in the use of therapeutic nanoagents in peritoneal metastatic cancer. Finally, therapeutic nanoagents and therapeutic tools that may be used in the future for the treatment of peritoneal metastatic cancer are prospected.
Collapse
Affiliation(s)
- Wenjun Dai
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Yidan Chen
- Department of Radiation Oncology, Affiliated Hangzhou Cancer Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Yunxin Xue
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Mimi Wan
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Chun Mao
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Ke Zhang
- Department of Radiation Oncology, Affiliated Hangzhou Cancer Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| |
Collapse
|
4
|
Chen Y, Pal S, Hu Q. Cell-based Relay Delivery Strategy in Biomedical Applications. Adv Drug Deliv Rev 2023; 198:114871. [PMID: 37196699 DOI: 10.1016/j.addr.2023.114871] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/14/2023] [Accepted: 05/11/2023] [Indexed: 05/19/2023]
Abstract
The relay delivery strategy is a two-step targeting approach based on two distinct modules in which the first step with an initiator is to artificially create a target/environment which can be targeted by the follow-up effector. This relay delivery concept creates opportunities to amplify existing or create new targeted signals through deploying initiators to enhance the accumulation efficiency of the following effector at the disease site. As the "live" medicines, cell-based therapeutics possess inherent tissue/cell homing abilities and favorable feasibility of biological and chemical modifications, endowing them the great potential in specifically interacting with diverse biological environments. All these unique capabilities make cellular products great candidates that can serve as either initiators or effectors for relay delivery strategies. In this review, we survey recent advances in relay delivery strategies with a specific focus on the roles of various cells in developing relay delivery systems.
Collapse
Affiliation(s)
- Yu Chen
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, United States; Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, United States; Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, United States
| | - Samira Pal
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, United States
| | - Quanyin Hu
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, United States; Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, United States; Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, United States.
| |
Collapse
|
5
|
Colby AH, Kirsch J, Patwa AN, Liu R, Hollister B, McCulloch W, Burdette JE, Pearce CJ, Oberliels NH, Colson YL, Liu K, Grinstaff MW. Radiolabeled Biodistribution of Expansile Nanoparticles: Intraperitoneal Administration Results in Tumor Specific Accumulation. ACS NANO 2023; 17:2212-2221. [PMID: 36701244 PMCID: PMC9933882 DOI: 10.1021/acsnano.2c08451] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 01/23/2023] [Indexed: 05/18/2023]
Abstract
Nanoparticle biodistribution in vivo is an essential component to the success of nanoparticle-based drug delivery systems. Previous studies with fluorescently labeled expansile nanoparticles, or "eNPs", demonstrated a high specificity of eNPs to tumors that is achieved through a materials-based targeting strategy. However, fluorescent labeling techniques are primarily qualitative in nature and the gold-standard for quantitative evaluation of biodistribution is through radiolabeling. In this manuscript, we synthesize 14C-labeled eNPs to quantitatively evaluate the biodistribution of these particles in a murine model of intraperitoneal mesothelioma via liquid scintillation counting. The results demonstrate a strong specificity of eNPs for tumors that lasts one to 2 weeks postinjection with an overall delivery efficiency to the tumor tissue of 30% of the injected dose which is congruent with prior reports of preclinical efficacy of the technology. Importantly, the route of administration is essential to the eNP's material-based targeting strategy with intraperitoneal administration leading to tumoral accumulation while, in contrast, intravenous administration leads to rapid clearance via the reticuloendothelial system and low tumoral accumulation. A comparison against nanoparticle delivery systems published over the past decade shows that the 30% tumoral delivery efficiency of the eNP is significantly higher than the 0.7% median delivery efficiency of other systems with sufficient quantitative data to define this metric. These results lay a foundation for targeting intraperitoneal tumors and encourage efforts to explore alternative, nonintravenous routes, of delivery to accelerate the translation of nanoparticle therapies to the clinic.
Collapse
Affiliation(s)
- Aaron H. Colby
- Boston
University, Boston, Massachusetts 02215, United States
- Ionic
Pharmaceuticals, LLC, Watertown, Massachusetts 02472, United States
| | - Jack Kirsch
- Boston
University, Boston, Massachusetts 02215, United States
| | - Amit N. Patwa
- Boston
University, Boston, Massachusetts 02215, United States
- Navrachana
University, Vadodara 391410, India
| | - Rong Liu
- Massachusetts
General Hospital, Boston, Massachusetts 02114, United States
| | - Beth Hollister
- HighRock
Consulting, Oxford, North Carolina 27565, United States
| | - William McCulloch
- Alba BioPharm
Advisors, Inc., Raleigh, North Carolina 27614, United States
| | - Joanna E. Burdette
- University
of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Cedric J. Pearce
- Mycosynthetix,
Inc., Hillsborough, North Carolina 27278, United States
| | - Nicholas H. Oberliels
- Ionic
Pharmaceuticals, LLC, Watertown, Massachusetts 02472, United States
- University
of North Carolina at Greensboro, Greensboro, North Carolina 27412, United States
| | - Yolonda L. Colson
- Massachusetts
General Hospital, Boston, Massachusetts 02114, United States
| | - Kebin Liu
- Augusta
University, Augusta, Georgia 30912, United States
| | - Mark W. Grinstaff
- Boston
University, Boston, Massachusetts 02215, United States
- Ionic
Pharmaceuticals, LLC, Watertown, Massachusetts 02472, United States
| |
Collapse
|
6
|
Altinbasak I, Kocak S, Colby AH, Alp Y, Sanyal R, Grinstaff MW, Sanyal A. pH-Responsive nanofiber buttresses as local drug delivery devices. Biomater Sci 2023; 11:813-821. [PMID: 36408890 PMCID: PMC9930888 DOI: 10.1039/d2bm01199a] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Electrospun nanofibers are a 3D scaffold of choice for many drug delivery devices due to their high surface area, significant capacity for drug payload, ease of in situ placement, and scalable manufacture. Herein, we report the synthesis of polymeric, pH-responsive nanofiber buttresses via electrospinning. The homopolymer is comprised of an acrylic backbone with acid-sensitive, hydrolyzable, trimethoxybenzaldehyde-protected side chains that lead to buttress transformation from a hydrophobic to a hydrophilic state under physiologically relevant pH conditions (e.g., extracellular tumor environment with pH = 6.5). Hydrolysis of the side chains leads to an increase in fiber diameter from approximately 350 to 900 nm and the release of the encapsulated drug cargo. In vitro drug release profiles demonstrate that significantly more drug is released at pH 5.5 compared to pH 7.4, thereby limiting the release to the target site, with docetaxel releasing over 20 days and doxorubicin over 7 days. Drug burst release, defined as >50% within 24 hours, does not occur at either pH or with either drug. Drug-loaded buttresses preserve drug activity and are cytotoxic to multiple human cancer lines, including breast and lung. Important to their potential application in surgical applications, the tensile strength of the buttresses is 6.3 kPa and, though weaker than commercially available buttresses, they provide sufficient flexibility and mechanical integrity to serve as buttressing materials via the application with a conventional surgical cutting stapler.
Collapse
Affiliation(s)
- Ismail Altinbasak
- Department of Chemistry, Bogazici University, Bebek, Istanbul 34342, Turkey.
| | - Salli Kocak
- Department of Chemistry, Bogazici University, Bebek, Istanbul 34342, Turkey.
| | - Aaron H Colby
- Boston University, Department of Biomedical Engineering, Boston, MA, USA.
| | - Yasin Alp
- Department of Chemistry, Bogazici University, Bebek, Istanbul 34342, Turkey.
| | - Rana Sanyal
- Department of Chemistry, Bogazici University, Bebek, Istanbul 34342, Turkey.
- Center for Life Sciences and Technologies, Bogazici University, Bebek, Istanbul 34342, Turkey
| | - Mark W Grinstaff
- Boston University, Department of Biomedical Engineering, Boston, MA, USA.
- Boston University, Department of Chemistry, Boston, MA, USA
| | - Amitav Sanyal
- Department of Chemistry, Bogazici University, Bebek, Istanbul 34342, Turkey.
- Center for Life Sciences and Technologies, Bogazici University, Bebek, Istanbul 34342, Turkey
| |
Collapse
|
7
|
Gabriel EM, Sukniam K, Popp K, Bagaria SP. Human intravital microscopy in the study of sarcomas: an early trial of feasibility. Front Oncol 2023; 13:1151255. [PMID: 37124504 PMCID: PMC10130404 DOI: 10.3389/fonc.2023.1151255] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 03/30/2023] [Indexed: 05/02/2023] Open
Abstract
Sarcomas comprise a vast and heterogenous group of rare tumors. Because of their diversity, it is challenging to study sarcomas as a whole with regard to their biological and molecular characteristics. This diverse set of tumors may also possess differences related to their tumor-associated vasculature, which in turn may impact the ability to deliver systemic therapies (e.g., chemotherapy, targeted therapies, and immunotherapy). Consequently, response to systemic treatment may also be variable as these depend on the ability of the therapy to reach the tumor target via the tumor-associated vasculature. There is a paucity of data regarding sarcoma-related tumor vessels, likely in part to the rarity and heterogeneity of this cancer as well as the previously limited ability to image tumor-associated vessels in real time. Our group has previously utilized confocal fluorescent imaging technology to observe and characterize tumor-associated vessels in real time during surgical resection of tumors, including cutaneous melanoma and carcinomatosis implants derived from gastrointestinal, gynecological, or primary peritoneal (e.g., mesothelioma) tumors. Our prior studies have demonstrated the feasibility of real-time, human intravital microscopy in the study of these tumor types, leading to early but important new data regarding tumor vessel characteristics and their potential implications on drug delivery and efficacy. In this brief report, we present our latest descriptive findings in a cohort of patients with sarcoma who underwent surgical resection and real-time, intravital microscopy of their tumors. Overall, intravital imaging was feasible during the surgical resection of large sarcomas. Clinical trial registrations ClinicalTrials.gov, identifier NCT03517852; ClinicalTrials.gov, identifier NCT03823144.
Collapse
Affiliation(s)
- Emmanuel M. Gabriel
- Department of General Surgery, Division of Surgical Oncology, Mayo Clinic, Jacksonville, FL, United States
- *Correspondence: Emmanuel M. Gabriel,
| | - Kulkaew Sukniam
- Department of General Surgery, Philadelphia College of Osteopathic Medicine, Suwanee, GA, United States
| | - Kyle Popp
- Florida State University, Tallahassee, FL, United States
| | - Sanjay P. Bagaria
- Department of General Surgery, Division of Surgical Oncology, Mayo Clinic, Jacksonville, FL, United States
| |
Collapse
|
8
|
Sgouros AP, Revelas CJ, Lakkas AT, Theodorou DN. Solvation Free Energy of Dilute Grafted (Nano)Particles in Polymer Melts via the Self-Consistent Field Theory. J Phys Chem B 2022; 126:7454-7474. [DOI: 10.1021/acs.jpcb.2c05306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Aristotelis P. Sgouros
- School of Chemical Engineering, National Technical University of Athens (NTUA), GR-15780 Athens, Greece
| | - Constantinos J. Revelas
- School of Chemical Engineering, National Technical University of Athens (NTUA), GR-15780 Athens, Greece
| | - Apostolos T. Lakkas
- School of Chemical Engineering, National Technical University of Athens (NTUA), GR-15780 Athens, Greece
| | - Doros N. Theodorou
- School of Chemical Engineering, National Technical University of Athens (NTUA), GR-15780 Athens, Greece
| |
Collapse
|
9
|
Colby AH, Liu R, Doyle RP, Merting A, Zhang H, Savage N, Chu NQ, Hollister BA, McCulloch W, Burdette JE, Pearce CJ, Liu K, Oberlies NH, Colson YL, Grinstaff MW. Pilot-scale production of expansile nanoparticles: Practical methods for clinical scale-up. J Control Release 2021; 337:144-154. [PMID: 34280414 PMCID: PMC8489532 DOI: 10.1016/j.jconrel.2021.07.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 07/09/2021] [Accepted: 07/10/2021] [Indexed: 11/26/2022]
Abstract
One of the foremost challenges in translating nanoparticle technologies to the clinic is the requirement to produce materials on a large-scale. Scaling nanoparticle production methods is often non-trivial, and the success of these endeavors is frequently governed by whether or not an intermediate level of production, i.e., "pilot-scale" production, can be achieved. Pilot-scale production at the one-liter scale serves as a proof-of-concept that large-scale production will be possible. Here, we describe the pilot-scale production of the expansile nanoparticle (eNP) technology including verification of activity and efficacy following scaleup. We describe the challenges of sonication-based emulsification procedures and how these were overcome by use of a Microfluidizer technology. We also describe the problem-solving process that led to pre-polymerization of the nanoparticle polymer-a fundamental change from the lab-scale and previously published methods. Furthermore, we demonstrate good control over particle diameter, polydispersity and drug loading and the ability to sterilize the particles via filtration using this method. To facilitate long-term storage of these larger quantities of particles, we investigated six lyoprotectants and determined that sucrose is the most compatible with the current system. Lastly, we demonstrate that these changes to the manufacturing method do not adversely affect the swelling functionality of the particles, their highly specific localization to tumors, their non-toxicity in vivo or their efficacy in treating established intraperitoneal mesothelioma xenografts.
Collapse
Affiliation(s)
- Aaron H Colby
- Boston University, Department of Biomedical Engineering, Boston, MA, United States of America; Ionic Pharmaceuticals, LLC, Brookline, MA, United States of America.
| | - Rong Liu
- Massachusetts General Hospital, Boston, MA, United States of America
| | - Robert P Doyle
- PCI Synthesis, Newburyport, MA, United States of America
| | - Alyssa Merting
- Augusta University, Augusta, GA, United States of America
| | - Heng Zhang
- Boston University, Department of Chemistry, Boston, MA, United States of America
| | - Natasha Savage
- Augusta University, Augusta, GA, United States of America
| | - Ngoc-Quynh Chu
- Massachusetts General Hospital, Boston, MA, United States of America
| | | | | | - Joanna E Burdette
- University of Illinois at Chicago, College of Pharmacy, Chicago, IL, United States of America
| | - Cedric J Pearce
- Mycosynthetix, Inc., Hillsborough, NC, United States of America
| | - Kebin Liu
- Augusta University, Augusta, GA, United States of America
| | - Nicholas H Oberlies
- University of North Carolina at Greensboro, Department of Chemistry and Biochemistry, Greensboro, NC, United States of America
| | - Yolonda L Colson
- Massachusetts General Hospital, Boston, MA, United States of America
| | - Mark W Grinstaff
- Boston University, Department of Biomedical Engineering, Boston, MA, United States of America; Ionic Pharmaceuticals, LLC, Brookline, MA, United States of America; Boston University, Department of Chemistry, Boston, MA, United States of America
| |
Collapse
|
10
|
Chen S, Song Z, Feng R. Recent Development of Copolymeric Nano-Drug Delivery System for Paclitaxel. Anticancer Agents Med Chem 2020; 20:2169-2189. [PMID: 32682385 DOI: 10.2174/1871520620666200719001038] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/25/2020] [Accepted: 06/25/2020] [Indexed: 11/22/2022]
Abstract
Background:
Paclitaxel (PTX) has been clinically used for several years due to its good therapeutic
effect against cancers. Its poor water-solubility, non-selectivity, high cytotoxicity to normal tissue and worse
pharmacokinetic property limit its clinical application.
Objective:
To review the recent progress on the PTX delivery systems.
Methods:
In recent years, the copolymeric nano-drug delivery systems for PTX are broadly studied. It mainly
includes micelles, nanoparticles, liposomes, complexes, prodrugs and hydrogels, etc. They were developed or
further modified with target molecules to investigate the release behavior, targeting to tissues, pharmacokinetic
property, anticancer activities and bio-safety of PTX. In the review, we will describe and discuss the recent
progress on the nano-drug delivery system for PTX since 2011.
Results:
The water-solubility, selective delivery to cancers, tissue toxicity, controlled release and pharmacokinetic
property of PTX are improved by its encapsulation into the nano-drug delivery systems. In addition, its
activities against cancer are also comparable or high when compared with the commercial formulation.
Conclusion:
Encapsulating PTX into nano-drug carriers should be helpful to reduce its toxicity to human, keeping
or enhancing its activity and improving its pharmacokinetic property.
Collapse
Affiliation(s)
- Shiyu Chen
- School of Biological Science and Technology, University of Jinan, No. 336 West Road of Nanxinzhuang, Jinan 250022, Shandong Province, China
| | - Zhimei Song
- School of Biological Science and Technology, University of Jinan, No. 336 West Road of Nanxinzhuang, Jinan 250022, Shandong Province, China
| | - Runliang Feng
- School of Biological Science and Technology, University of Jinan, No. 336 West Road of Nanxinzhuang, Jinan 250022, Shandong Province, China
| |
Collapse
|
11
|
Mahvi DA, Liu R, Grinstaff MW, Colson YL, Raut CP. Local Cancer Recurrence: The Realities, Challenges, and Opportunities for New Therapies. CA Cancer J Clin 2018; 68:488-505. [PMID: 30328620 PMCID: PMC6239861 DOI: 10.3322/caac.21498] [Citation(s) in RCA: 206] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 08/20/2018] [Accepted: 08/27/2018] [Indexed: 12/20/2022] Open
Abstract
Locoregional recurrence negatively impacts both long-term survival and quality of life for several malignancies. For appropriate-risk patients with an isolated, resectable, local recurrence, surgery represents the only potentially curative therapy. However, oncologic outcomes remain inferior for patients with locally recurrent disease even after macroscopically complete resection. Unfortunately, these operations are often extensive, with significant perioperative morbidity and mortality. This review highlights selected malignancies (mesothelioma, sarcoma, lung cancer, breast cancer, rectal cancer, and peritoneal surface malignancies) in which surgical resection is a key treatment modality and local recurrence plays a significant role in overall oncologic outcome with regard to survival and quality of life. For each type of cancer, the current, state-of-the-art treatment strategies and their outcomes are assessed. The need for additional therapeutic options is presented given the limitations of the current standard therapies. New and emerging treatment modalities, including polymer films and nanoparticles, are highlighted as potential future solutions for both prevention and treatment of locally recurrent cancers. Finally, the authors identify additional clinical and research opportunities and propose future research strategies based on the various patterns of local recurrence among the different cancers.
Collapse
Affiliation(s)
- David A Mahvi
- Postdoctoral Research Fellow, Division of Surgical Oncology, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Rong Liu
- Instructor in Surgery, Division of Thoracic Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Mark W Grinstaff
- Professor of Translational Research, Biomedical Engineering, Chemistry, Materials Science and Engineering, and Medicine, Department of Chemistry, Boston University, Boston, MA
| | - Yolonda L Colson
- Michael A. Bell Family Distinguished Chair in Healthcare Innovation and Professor of Surgery, Division of Thoracic Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Chandrajit P Raut
- Associate Professor of Surgery, Division of Surgical Oncology, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
12
|
Yang J, Lv Q, Wei W, Yang Z, Dong J, Zhang R, Kan Q, He Z, Xu Y. Bioresponsive albumin-conjugated paclitaxel prodrugs for cancer therapy. Drug Deliv 2018; 25:807-814. [PMID: 29553858 PMCID: PMC6058529 DOI: 10.1080/10717544.2018.1451935] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The efficacy of traditional chemotherapy often suffers from rapid clearance and off-target toxicity. Drug delivery systems and controlled release are applied to improve the therapeutic efficiencies of small-molecule drugs. In this work, two novel oxidative/reductive (Ox/Re) -sensitive and one non-sensitive Paclitaxel (PTX) prodrugs were synthesized with a maleimide group, which rapidly conjugates with albumin in vivo. Albumin serves as a good vehicle to deliver more prodrug to tumors due to the enhanced permeation and retention (EPR) effect. PTX was then released from the prodrugs in glutathione(GSH)/ reactive oxygen species(ROS)-rich tumor microenvironments. This bioresponsive prodrug strategy demonstrates potent chemotherapeutic efficiency in vivo and may be utilized in clinical cancer therapy.
Collapse
Affiliation(s)
- Jincheng Yang
- a School of Pharmaceutical Engineering, and Key Laboratory of Structure-Based Drug Design & Discovery (Ministry of Education) , Shenyang Pharmaceutical University , Shenyang , P. R. China
| | - Qingzhi Lv
- b Department of Pharmaceutics, Wuya College of Innovation , Shenyang Pharmaceutical University , Shenyang , P. R. China
| | - Wei Wei
- b Department of Pharmaceutics, Wuya College of Innovation , Shenyang Pharmaceutical University , Shenyang , P. R. China
| | - Zhengtao Yang
- a School of Pharmaceutical Engineering, and Key Laboratory of Structure-Based Drug Design & Discovery (Ministry of Education) , Shenyang Pharmaceutical University , Shenyang , P. R. China
| | - Jiajun Dong
- a School of Pharmaceutical Engineering, and Key Laboratory of Structure-Based Drug Design & Discovery (Ministry of Education) , Shenyang Pharmaceutical University , Shenyang , P. R. China
| | - Ruoshi Zhang
- b Department of Pharmaceutics, Wuya College of Innovation , Shenyang Pharmaceutical University , Shenyang , P. R. China
| | - Qiming Kan
- b Department of Pharmaceutics, Wuya College of Innovation , Shenyang Pharmaceutical University , Shenyang , P. R. China
| | - Zhonggui He
- b Department of Pharmaceutics, Wuya College of Innovation , Shenyang Pharmaceutical University , Shenyang , P. R. China
| | - Youjun Xu
- a School of Pharmaceutical Engineering, and Key Laboratory of Structure-Based Drug Design & Discovery (Ministry of Education) , Shenyang Pharmaceutical University , Shenyang , P. R. China
| |
Collapse
|
13
|
Nanoformulation-based sequential combination cancer therapy. Adv Drug Deliv Rev 2017; 115:57-81. [PMID: 28412324 DOI: 10.1016/j.addr.2017.04.003] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 04/06/2017] [Accepted: 04/10/2017] [Indexed: 01/07/2023]
Abstract
Although combining two or more treatments is regarded as an indispensable approach for effectively treating cancer, the traditional cocktail-based combination therapies are seriously limited by coordination issues that fail to account for differences in the pharmacokinetics and action sites of each drug. The careful manipulation of dosing regimens, such as by the sequential application of combination treatments, may satisfy the temporal and spatial needs of each drug and achieve successful combination antitumor therapy. Nanotechnology-based carriers might be the best tools for sequential combination therapy, as they can be loaded with multiple cargos and may provide targeted and sustained delivery to target tumor cells. Single nanoformulations capable of sequentially releasing drugs have shown synergistic anticancer activity, such as by sensitizing tumor cells through cascaded drug delivery or remodeling the tumor vasculature and microenvironment to enhance the tumor distribution of nanotherapeutics. This review highlights the use of nanotechnology-based multistage drug delivery for cancer treatment, focusing on the ability of such formulations to enhance antitumor efficacy by applying sequential treatment and modulating dosing regimens, which are challenges currently being faced in the clinic.
Collapse
|
14
|
Koyanagi T, Cao KJ, Leriche G, Onofrei D, Holland GP, Mayer M, Sept D, Yang J. Hybrid Lipids Inspired by Extremophiles and Eukaryotes Afford Serum‐Stable Membranes with Low Leakage. Chemistry 2017; 23:6757-6762. [DOI: 10.1002/chem.201701378] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Indexed: 12/26/2022]
Affiliation(s)
- Takaoki Koyanagi
- Department of Chemistry and Biochemistry University of California San Diego La Jolla California 92093-0358 USA
| | - Kevin J. Cao
- Department of Chemistry and Biochemistry University of California San Diego La Jolla California 92093-0358 USA
| | - Geoffray Leriche
- Department of Chemistry and Biochemistry University of California San Diego La Jolla California 92093-0358 USA
| | - David Onofrei
- Department of Chemistry and Biochemistry San Diego State University San Diego California 92182-1030 USA
| | - Gregory P. Holland
- Department of Chemistry and Biochemistry San Diego State University San Diego California 92182-1030 USA
| | - Michael Mayer
- Adolphe Merkle Institute University of Fribourg Chemin des Verdiers 4 1700 Fribourg Switzerland
| | - David Sept
- Department of Biomedical Engineering University of Michigan Ann Arbor Michigan 48109-2110 USA
| | - Jerry Yang
- Department of Chemistry and Biochemistry University of California San Diego La Jolla California 92093-0358 USA
| |
Collapse
|
15
|
Zhang D, Zou Z, Ren W, Qian H, Cheng Q, Ji L, Liu B, Liu Q. Gambogic acid-loaded PEG–PCL nanoparticles act as an effective antitumor agent against gastric cancer. Pharm Dev Technol 2017; 23:33-40. [PMID: 29069711 DOI: 10.1080/10837450.2017.1295068] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Dinghu Zhang
- The Comprehensive Cancer Centre of Drum Tower Hospital, Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhengyun Zou
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing, China
| | - Wei Ren
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing, China
| | - Hanqing Qian
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing, China
| | - Qianfeng Cheng
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing, China
| | - Liulian Ji
- The Comprehensive Cancer Centre of Drum Tower Hospital, Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Baorui Liu
- The Comprehensive Cancer Centre of Drum Tower Hospital, Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing, China
| | - Qin Liu
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing, China
| |
Collapse
|
16
|
Colby AH, Berry SM, Moran AM, Pasion KA, Liu R, Colson YL, Ruiz-Opazo N, Grinstaff MW, Herrera VLM. Highly Specific and Sensitive Fluorescent Nanoprobes for Image-Guided Resection of Sub-Millimeter Peritoneal Tumors. ACS NANO 2017; 11:1466-1477. [PMID: 28099801 PMCID: PMC5725964 DOI: 10.1021/acsnano.6b06777] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
A current challenge in the treatment of peritoneal carcinomatosis is the inability to detect, visualize, and resect small or microscopic tumors of pancreatic, ovarian, or mesothelial origin. In these diseases, the completeness of primary tumor resection is directly correlated with patient survival, and hence, identifying small sub-millimeter tumors (i.e., disseminated disease) is critical. Thus, new imaging techniques and probes are needed to improve cytoreductive surgery and patient outcomes. Highly fluorescent rhodamine-labeled expansile nanoparticles (HFR-eNPs) are described for use as a visual aid during cytoreductive surgery of pancreatic carcinomatosis. The covalent incorporation of rhodamine into ∼30 nm eNPs increases the fluorescent signal compared to free rhodamine, thereby affording a brighter and more effective probe than would be achieved by a single rhodamine molecule. Using the intraperitoneal route of administration, HFR-eNPs localize to regions of large (∼1 cm), sub-centimeter, and sub-millimeter intraperitoneal tumor in three different animal models, including pancreatic, mesothelioma, and ovarian carcinoma. Tumoral localization of the HFR-eNPs depends on both the material property (i.e., eNP polymer) as well as the surface chemistry (anionic surfactant vs PEGylated noncharged surfactant). In a rat model of pancreatic carcinomatosis, HFR-eNP identification of tumor is validated against gold-standard histopathological analysis to reveal that HFR-eNPs possess high specificity (99%) and sensitivity (92%) for tumors, in particular, sub-centimeter and microscopic sub-millimeter tumors, with an overall accuracy of 95%. Finally, as a proof-of-concept, HFR-eNPs are used to guide the resection of pancreatic tumors in a rat model of peritoneal carcinomatosis.
Collapse
Affiliation(s)
- Aaron H. Colby
- Departments of Biomedical Engineering and Chemistry, Boston University, Boston, Massachusetts 02215, United States
- Division of Thoracic Surgery, Department of Surgery, Brigham and Women’s Hospital, Boston, Massachusetts 02115, United States
| | - Samantha M. Berry
- Departments of Biomedical Engineering and Chemistry, Boston University, Boston, Massachusetts 02215, United States
| | - Ann M. Moran
- Department of Medicine and Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts 02118, United States
| | - Kristine Amber Pasion
- Department of Medicine and Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts 02118, United States
| | - Rong Liu
- Division of Thoracic Surgery, Department of Surgery, Brigham and Women’s Hospital, Boston, Massachusetts 02115, United States
| | - Yolonda L. Colson
- Division of Thoracic Surgery, Department of Surgery, Brigham and Women’s Hospital, Boston, Massachusetts 02115, United States
| | - Nelson Ruiz-Opazo
- Department of Medicine and Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts 02118, United States
| | - Mark W. Grinstaff
- Departments of Biomedical Engineering and Chemistry, Boston University, Boston, Massachusetts 02215, United States
- Department of Medicine and Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts 02118, United States
- Corresponding Authors: ,
| | - Victoria L. M. Herrera
- Department of Medicine and Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts 02118, United States
- Corresponding Authors: ,
| |
Collapse
|
17
|
Colby AH, Oberlies NH, Pearce CJ, Herrera VLM, Colson YL, Grinstaff MW. Nanoparticle drug-delivery systems for peritoneal cancers: a case study of the design, characterization and development of the expansile nanoparticle. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2017; 9. [PMID: 28185434 DOI: 10.1002/wnan.1451] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 11/30/2016] [Accepted: 12/17/2016] [Indexed: 12/24/2022]
Abstract
Nanoparticle (NP)-based drug-delivery systems are frequently employed to improve the intravenous administration of chemotherapy; however, few reports explore their application as an intraperitoneal therapy. We developed a pH-responsive expansile nanoparticle (eNP) specifically designed to leverage the intraperitoneal route of administration to treat intraperitoneal malignancies, such as mesothelioma, ovarian, and pancreatic carcinomatoses. This review describes the design, evaluation, and evolution of the eNP technology and, specifically, a Materials-Based Targeting paradigm that is unique among the many active- and passive-targeting strategies currently employed by NP-delivery systems. pH-responsive eNP swelling is responsible for the extended residence at the target tumor site as well as the subsequent improvement in tumoral drug delivery and efficacy observed with paclitaxel-loaded eNPs (PTX-eNPs) compared to the standard clinical formulation of paclitaxel, Taxol®. Superior PTX-eNP efficacy is demonstrated in two different orthotopic models of peritoneal cancer-mesothelioma and ovarian cancer; in a third model-of pancreatic cancer-PTX-eNPs demonstrated comparable efficacy to Taxol with reduced toxicity. Furthermore, the unique structural and responsive characteristics of eNPs enable them to be used in three additional treatment paradigms, including: treatment of lymphatic metastases in breast cancer; use as a highly fluorescent probe to visually guide the resection of peritoneal implants; and, in a two-step delivery paradigm for concentrating separately administered NP and drug at a target site. This case study serves as an important example of using the targeted disease-state's pathophysiology to inform the NP design as well as the method of use of the delivery system. WIREs Nanomed Nanobiotechnol 2017, 9:e1451. doi: 10.1002/wnan.1451 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Aaron H Colby
- Departments of Biomedical Engineering and Chemistry, Boston University, Boston, MA, USA.,Division of Thoracic Surgery, Department of Surgery, Brigham and Women's Hospital, Boston, MA, USA
| | - Nicholas H Oberlies
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC, USA
| | | | - Victoria L M Herrera
- Department of Medicine and Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, USA
| | - Yolonda L Colson
- Division of Thoracic Surgery, Department of Surgery, Brigham and Women's Hospital, Boston, MA, USA
| | - Mark W Grinstaff
- Departments of Biomedical Engineering, Chemistry, and Medicine, Boston University, Boston, MA, USA
| |
Collapse
|
18
|
Liu R, Colby AH, Gilmore D, Schulz M, Zeng J, Padera RF, Shirihai O, Grinstaff MW, Colson YL. Nanoparticle tumor localization, disruption of autophagosomal trafficking, and prolonged drug delivery improve survival in peritoneal mesothelioma. Biomaterials 2016; 102:175-86. [PMID: 27343465 DOI: 10.1016/j.biomaterials.2016.06.031] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 06/11/2016] [Accepted: 06/13/2016] [Indexed: 02/07/2023]
Abstract
The treatment outcomes for malignant peritoneal mesothelioma are poor and associated with high co-morbidities due to suboptimal drug delivery. Thus, there is an unmet need for new approaches that concentrate drug at the tumor for a prolonged period of time yielding enhanced antitumor efficacy and improved metrics of treatment success. A paclitaxel-loaded pH-responsive expansile nanoparticle (PTX-eNP) system is described that addresses two unique challenges to improve the outcomes for peritoneal mesothelioma. First, following intraperitoneal administration, eNPs rapidly and specifically localize to tumors. The rate of eNP uptake by tumors is an order of magnitude faster than the rate of uptake in non-malignant cells; and, subsequent accumulation in autophagosomes and disruption of autophagosomal trafficking leads to prolonged intracellular retention of eNPs. The net effect of these combined mechanisms manifests as rapid localization to intraperitoneal tumors within 4 h of injection and persistent intratumoral retention for >14 days. Second, the high tumor-specificity of PTX-eNPs leads to delivery of greater than 100 times higher concentrations of drug in tumors compared to PTX alone and this is maintained for at least seven days following administration. As a result, overall survival of animals with established mesothelioma more than doubled when animals were treated with multiple doses of PTX-eNPs compared to equivalent dosing with PTX or non-responsive PTX-loaded nanoparticles.
Collapse
Affiliation(s)
- Rong Liu
- Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Aaron H Colby
- Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Departments of Biomedical Engineering and Chemistry, Boston University, Boston, MA, USA
| | - Denis Gilmore
- Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Morgan Schulz
- Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jialiu Zeng
- Departments of Biomedical Engineering and Chemistry, Boston University, Boston, MA, USA
| | - Robert F Padera
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Orian Shirihai
- Department of Medicine, Obesity and Nutrition Section, Evans Biomedical Research Center, Boston University School of Medicine, Boston, MA, USA; Department of Clinical Biochemistry, School of Medicine, Ben Gurion University, Beer-Sheva, Israel
| | - Mark W Grinstaff
- Departments of Biomedical Engineering and Chemistry, Boston University, Boston, MA, USA.
| | - Yolonda L Colson
- Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
19
|
Herrera VL, Colby AH, Tan GA, Moran AM, O'Brien MJ, Colson YL, Ruiz-Opazo N, Grinstaff MW. Evaluation of expansile nanoparticle tumor localization and efficacy in a cancer stem cell-derived model of pancreatic peritoneal carcinomatosis. Nanomedicine (Lond) 2016; 11:1001-15. [PMID: 27078118 DOI: 10.2217/nnm-2015-0023] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
AIM To evaluate the tumor localization and efficacy pH-responsive expansile nanoparticles (eNPs) as a drug delivery system for pancreatic peritoneal carcinomatosis (PPC) modeled in nude rats. METHODS & MATERIALS A Panc-1-cancer stem cell xeno1graft model of PPC was validated in vitro and in vivo. Tumor localization was tracked via in situ imaging of fluorescent eNPs. Survival of animals treated with paclitaxel-loaded eNPs (PTX-eNPs) was evaluated in vivo. RESULTS The Panc-1-cancer stem cell xenograft model recapitulates significant features of PPC. Rhodamine-labeled eNPs demonstrate tumor-specific, dose- and time-dependent localization to macro- and microscopic tumors following intraperitoneal injection. PTX-eNPs are as effective as free PTX in treating established PPC; but, PTX-eNPs result in fewer side effects. CONCLUSION eNPs are a promising tool for the detection and treatment of PPC.
Collapse
Affiliation(s)
- Victoria Lm Herrera
- Department of Medicine & Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA 02118, USA
| | - Aaron H Colby
- Departments of Biomedical Engineering & Chemistry, Boston University, Boston, MA 02215, USA
| | - Glaiza Al Tan
- Department of Medicine & Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA 02118, USA
| | - Ann M Moran
- Department of Medicine & Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA 02118, USA
| | - Michael J O'Brien
- Department of Pathology & Laboratory Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Yolonda L Colson
- Division of Thoracic Surgery, Department of Surgery, Brigham & Women's Hospital, Boston, MA 02115, USA
| | - Nelson Ruiz-Opazo
- Department of Medicine & Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA 02118, USA
| | - Mark W Grinstaff
- Department of Medicine & Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA 02118, USA.,Departments of Biomedical Engineering & Chemistry, Boston University, Boston, MA 02215, USA
| |
Collapse
|