1
|
Fan Z, Yu C, Gao CZ, Xu X, Zhang C, Wu B, Liu J, Wang P, Zhu S. Electron-proton relaxation in hot-dense plasmas with a screened quantum statistical potential. Phys Rev E 2024; 110:025202. [PMID: 39295003 DOI: 10.1103/physreve.110.025202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 07/17/2024] [Indexed: 09/21/2024]
Abstract
Modeling the nonequilibrium process between ions and electrons is of great importance in laboratory fusion ignition, laser-plasma interaction, and astrophysics. For hot and dense plasmas, theoretical descriptions of Coulomb collisions remain complicated due to quantum effect at short distances and screening effect at long distances. In this paper, we propose an analytical screened quantum statistical potential that takes into account both the short-range quantum diffraction effect and the long-range screening effect. By implementing the newly developed potential into the binary scattering framework, the electron-proton temperature relaxation in hot-dense hydrogen plasmas is investigated. In both the classical and quantum limits, analytical expressions for the Coulomb logarithm have been obtained, which are generally embedded in an asymptotic matching formula. Quantitative comparisons with molecular dynamics simulations and recent OMEGA experiments demonstrate that the present modeling is well suited to describe the temperature relaxation process between electrons and ions in hot-dense plasmas.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jie Liu
- HEDPS, Center for Applied Physics and Technology, and College of Engineering, Peking University, Beijing 100871, China
- Graduate School of China Academy of Engineering Physics, Beijing 100193, China
| | | | | |
Collapse
|
2
|
Moldabekov Z, Gawne TD, Schwalbe S, Preston TR, Vorberger J, Dornheim T. Ultrafast Heating-Induced Suppression of d-Band Dominance in the Electronic Excitation Spectrum of Cuprum. ACS OMEGA 2024; 9:25239-25250. [PMID: 38882083 PMCID: PMC11170750 DOI: 10.1021/acsomega.4c02920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/08/2024] [Accepted: 05/20/2024] [Indexed: 06/18/2024]
Abstract
The combination of isochoric heating of solids by free-electron lasers (FELs) and in situ diagnostics by X-ray Thomson scattering (XRTS) allows for measurements of material properties at warm dense matter (WDM) conditions relevant for astrophysics, inertial confinement fusion, and materials science. In the case of metals, the FEL beam pumps energy directly into electrons with the lattice structure of ions being nearly unaffected. This leads to a unique transient state that gives rise to a set of interesting physical effects, which can serve as a reliable testing platform for WDM theories. In this work, we present extensive linear-response time-dependent density functional theory (TDDFT) results for the electronic dynamic structure factor of isochorically heated copper with a face-centered cubic lattice. At ambient conditions, the plasmon is heavily damped due to the presence of d-band excitations, and its position is independent of the wavenumber. In contrast, the plasmon feature starts to dominate the excitation spectrum and has a Bohm-Gross-type plasmon dispersion for temperatures T ≥ 4 eV, where the quasi-free electrons in the interstitial region are in the WDM regime. In addition, we analyze the thermal changes in the d-band excitations and outline the possibility to use future XRTS measurements of isochorically heated copper as a controlled testbed for WDM theories.
Collapse
Affiliation(s)
- Zhandos Moldabekov
- Center for Advanced Systems Understanding (CASUS), D-02826 Görlitz, Germany
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), D-01328 Dresden, Germany
| | - Thomas D Gawne
- Center for Advanced Systems Understanding (CASUS), D-02826 Görlitz, Germany
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), D-01328 Dresden, Germany
| | - Sebastian Schwalbe
- Center for Advanced Systems Understanding (CASUS), D-02826 Görlitz, Germany
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), D-01328 Dresden, Germany
| | | | - Jan Vorberger
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), D-01328 Dresden, Germany
| | - Tobias Dornheim
- Center for Advanced Systems Understanding (CASUS), D-02826 Görlitz, Germany
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), D-01328 Dresden, Germany
| |
Collapse
|
3
|
Harmand M, Cammarata M, Chollet M, Krygier AG, Lemke HT, Zhu D. Single-shot X-ray absorption spectroscopy at X-ray free electron lasers. Sci Rep 2023; 13:18203. [PMID: 37875533 PMCID: PMC10598033 DOI: 10.1038/s41598-023-44196-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 10/04/2023] [Indexed: 10/26/2023] Open
Abstract
X-ray Absorption Spectroscopy (XAS) is a widely used X-ray diagnostic method for studying electronic and structural properties of matter. At first glance, the relatively narrow bandwidth and the highly fluctuating spectral structure of X-ray Free Electron Lasers (XFEL) sources seem to require accumulation over many shots to achieve high data quality. To date the best approach to implementing XAS at XFEL facilities has been using monochromators to scan the photon energy across the desired spectral range. While this is possible for easily reproducible samples such as liquids, it is incompatible with many important systems. Here, we demonstrate collection of single-shot XAS spectra over 10s of eV using an XFEL source, with error bars of only a few percent. We additionally show how to extend this technique over wider spectral ranges towards Extended X-ray Absorption Fine Structure measurements, by concatenating a few tens of single-shot measurements. Our results pave the way for future XAS studies at XFELs, in particular those in the femtosecond regime. This advance is envisioned to be especially important for many transient processes that can only be initiated at lower repetition rates, for difficult to reproduce excitation conditions, or for rare samples, such as those encountered in high-energy density physics.
Collapse
Affiliation(s)
- Marion Harmand
- IMPMC, Sorbonne Université, UMR CNRS 7590, MNHN, 75005, Paris, France.
| | - Marco Cammarata
- Institut de Physique de Rennes, UMR UR1-CNRS 6251, Université de Rennes 1, 35042, Rennes, France
- European Synchrotron Radiation Facility, Grenoble, France
| | - Matthieu Chollet
- LCLS, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Andrew G Krygier
- IMPMC, Sorbonne Université, UMR CNRS 7590, MNHN, 75005, Paris, France
- Lawrence Livermore National Laboratory, 7000 East Ave, Livermore, CA, 94550, USA
| | - Henrik T Lemke
- LCLS, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
- SwissFEL, Paul Scherrer Institut, Villigen, 5232, Switzerland
| | - Diling Zhu
- LCLS, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| |
Collapse
|
4
|
Dorchies F, Ta Phuoc K, Lecherbourg L. Nonequilibrium warm dense matter investigated with laser-plasma-based XANES down to the femtosecond. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2023; 10:054301. [PMID: 37720412 PMCID: PMC10505070 DOI: 10.1063/4.0000202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 08/30/2023] [Indexed: 09/19/2023]
Abstract
The use of laser-plasma-based x-ray sources is discussed, with a view to carrying out time-resolved x-ray absorption spectroscopy measurements, down to the femtosecond timescale. A review of recent experiments performed by our team is presented. They concern the study of the nonequilibrium transition of metals from solid to the warm dense regime, which imposes specific constraints (the sample being destroyed after each shot). Particular attention is paid to the description of experimental devices and methodologies. Two main types of x-ray sources are compared, respectively, based on the emission of a hot plasma, and on the betatron radiation from relativistic electrons accelerated by laser.
Collapse
Affiliation(s)
- F. Dorchies
- Université, Bordeaux, CNRS, CEA, CELIA, UMR 5107, F-33400 Talence, France
| | - K. Ta Phuoc
- LOA, ENSTA, CNRS, Ecole Polytechnique, UMR 7639, F-91761 Palaiseau, France
| | | |
Collapse
|
5
|
Nguyen QLD, Simoni J, Dorney KM, Shi X, Ellis JL, Brooks NJ, Hickstein DD, Grennell AG, Yazdi S, Campbell EEB, Tan LZ, Prendergast D, Daligault J, Kapteyn HC, Murnane MM. Direct Observation of Enhanced Electron-Phonon Coupling in Copper Nanoparticles in the Warm-Dense Matter Regime. PHYSICAL REVIEW LETTERS 2023; 131:085101. [PMID: 37683150 DOI: 10.1103/physrevlett.131.085101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 06/27/2022] [Accepted: 05/26/2023] [Indexed: 09/10/2023]
Abstract
Warm dense matter (WDM) represents a highly excited state that lies at the intersection of solids, plasmas, and liquids and that cannot be described by equilibrium theories. The transient nature of this state when created in a laboratory, as well as the difficulties in probing the strongly coupled interactions between the electrons and the ions, make it challenging to develop a complete understanding of matter in this regime. In this work, by exciting isolated ∼8 nm copper nanoparticles with a femtosecond laser below the ablation threshold, we create uniformly excited WDM. Using photoelectron spectroscopy, we measure the instantaneous electron temperature and extract the electron-ion coupling of the nanoparticle as it undergoes a solid-to-WDM phase transition. By comparing with state-of-the-art theories, we confirm that the superheated nanoparticles lie at the boundary between hot solids and plasmas, with associated strong electron-ion coupling. This is evidenced both by a fast energy loss of electrons to ions, and a strong modulation of the electron temperature induced by strong acoustic breathing modes that change the nanoparticle volume. This work demonstrates a new route for experimental exploration of the exotic properties of WDM.
Collapse
Affiliation(s)
- Quynh L D Nguyen
- JILA, Department of Physics, University of Colorado and NIST, Boulder, Colorado 80309, USA
| | - Jacopo Simoni
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Kevin M Dorney
- JILA, Department of Physics, University of Colorado and NIST, Boulder, Colorado 80309, USA
| | - Xun Shi
- JILA, Department of Physics, University of Colorado and NIST, Boulder, Colorado 80309, USA
| | - Jennifer L Ellis
- JILA, Department of Physics, University of Colorado and NIST, Boulder, Colorado 80309, USA
| | - Nathan J Brooks
- JILA, Department of Physics, University of Colorado and NIST, Boulder, Colorado 80309, USA
| | - Daniel D Hickstein
- Kapteyn-Murnane Laboratories Inc., 4775 Walnut St #102, Boulder, Colorado 80301, USA
| | - Amanda G Grennell
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309 80309, USA
| | - Sadegh Yazdi
- Renewable and Sustainable Energy Institute, University of Colorado Boulder, Boulder, Colorado 80309, USA
| | - Eleanor E B Campbell
- EaStCHEM, School of Chemistry, Edinburgh University, David Brewster Road, Edinburgh EH9 3FJ, United Kingdom
- Department of Physics, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Liang Z Tan
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - David Prendergast
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Jerome Daligault
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - Henry C Kapteyn
- JILA, Department of Physics, University of Colorado and NIST, Boulder, Colorado 80309, USA
- Kapteyn-Murnane Laboratories Inc., 4775 Walnut St #102, Boulder, Colorado 80301, USA
| | - Margaret M Murnane
- JILA, Department of Physics, University of Colorado and NIST, Boulder, Colorado 80309, USA
| |
Collapse
|
6
|
Gao CZ, Zhang CB, Cai Y, Wu Y, Fan ZF, Wang P, Wang JG. Assessment of the electron-proton energy relaxation rates extracted from molecular dynamics simulations in weakly-coupled hydrogen plasmas. Phys Rev E 2023; 107:015203. [PMID: 36797881 DOI: 10.1103/physreve.107.015203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 12/23/2022] [Indexed: 06/18/2023]
Abstract
Electron-proton energy relaxation rates are assessed using molecular dynamics (MD) simulations in weakly-coupled hydrogen plasmas. To this end, we use various approaches to extract the energy relaxation rate from MD-simulated temperatures, and we find that existing extracting approaches may yield results with a sizable discrepancy larger than the variance between analytical models, which is further verified by well-known case studies. Present results show that two of the extracting approaches can produce identical results, which is attributed to a proper treatment of relaxation evolution. To discriminate the use of various methods, an empirical criterion with respect to initial plasma temperatures is proposed, which can self-consistently explain the cases considered. In addition, for a transient electron-proton plasma, we show that it is possible to extrapolate the Coulomb logarithm from that derived by initial plasma parameters in a single MD calculation, which is reasonably consistent with previous MD data. Our results are helpful to obtain accurate MD-based energy relaxation rates.
Collapse
Affiliation(s)
- Cong-Zhang Gao
- Institute of Applied Physics and Computational Mathematics, Beijing 100088, People's Republic of China
| | - Cun-Bo Zhang
- Institute of Applied Physics and Computational Mathematics, Beijing 100088, People's Republic of China
| | - Ying Cai
- Institute of Applied Physics and Computational Mathematics, Beijing 100088, People's Republic of China
| | - Yong Wu
- Institute of Applied Physics and Computational Mathematics, Beijing 100088, People's Republic of China
| | - Zheng-Feng Fan
- Institute of Applied Physics and Computational Mathematics, Beijing 100088, People's Republic of China
| | - Pei Wang
- Institute of Applied Physics and Computational Mathematics, Beijing 100088, People's Republic of China
| | - Jian-Guo Wang
- Institute of Applied Physics and Computational Mathematics, Beijing 100088, People's Republic of China
| |
Collapse
|
7
|
Vinson J. Advances in the OCEAN-3 spectroscopy package. Phys Chem Chem Phys 2022; 24:12787-12803. [PMID: 35608324 PMCID: PMC9844114 DOI: 10.1039/d2cp01030e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The OCEAN code for calculating valence- and core-level spectra using the Bethe-Salpeter equation is briefly reviewed. OCEAN is capable of calculating optical absorption, near-edge X-ray absorption or non-resonant scattering, and resonant inelastic X-ray scattering, requiring only the structure of the material as input. Improved default behavior and reduced input requirements are detailed as well as new capabilities, such as incorporation of final-state-dependent broadening, finite-temperature dependence, and flexibility in the density-functional theory exchange-correlation potentials. OCEAN is built on top of a plane-wave, pseudopotential, density-functional theory foundation, and calculations are shown for systems ranging in size up to 7 nm3.
Collapse
Affiliation(s)
- John Vinson
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA.
| |
Collapse
|
8
|
Zhang J, Qin R, Zhu W, Vorberger J. Energy Relaxation and Electron-Phonon Coupling in Laser-Excited Metals. MATERIALS (BASEL, SWITZERLAND) 2022; 15:1902. [PMID: 35269134 PMCID: PMC8911575 DOI: 10.3390/ma15051902] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/24/2022] [Accepted: 02/25/2022] [Indexed: 02/01/2023]
Abstract
The rate of energy transfer between electrons and phonons is investigated by a first-principles framework for electron temperatures up to Te = 50,000 K while considering the lattice at ground state. Two typical but differently complex metals are investigated: aluminum and copper. In order to reasonably take the electronic excitation effect into account, we adopt finite temperature density functional theory and linear response to determine the electron temperature-dependent Eliashberg function and electron density of states. Of the three branch-dependent electron-phonon coupling strengths, the longitudinal acoustic mode plays a dominant role in the electron-phonon coupling for aluminum for all temperatures considered here, but for copper it only dominates above an electron temperature of Te = 40,000 K. The second moment of the Eliashberg function and the electron phonon coupling constant at room temperature Te=315 K show good agreement with other results. For increasing electron temperatures, we show the limits of the T=0 approximation for the Eliashberg function. Our present work provides a rich perspective on the phonon dynamics and this will help to improve insight into the underlying mechanism of energy flow in ultra-fast laser-metal interaction.
Collapse
Affiliation(s)
- Jia Zhang
- Institute of Radiation Physics, Helmholtz-Zentrum Dresden-Rosendorf, Bautzner Landstraße 400, 01328 Dresden, Germany;
- National Key Laboratory of Shock Wave and Detonation Physics, Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang 621999, China; (R.Q.); (W.Z.)
| | - Rui Qin
- National Key Laboratory of Shock Wave and Detonation Physics, Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang 621999, China; (R.Q.); (W.Z.)
| | - Wenjun Zhu
- National Key Laboratory of Shock Wave and Detonation Physics, Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang 621999, China; (R.Q.); (W.Z.)
| | - Jan Vorberger
- Institute of Radiation Physics, Helmholtz-Zentrum Dresden-Rosendorf, Bautzner Landstraße 400, 01328 Dresden, Germany;
| |
Collapse
|
9
|
Sprenkle RT, Silvestri LG, Murillo MS, Bergeson SD. Temperature relaxation in strongly-coupled binary ionic mixtures. Nat Commun 2022; 13:15. [PMID: 35013203 PMCID: PMC8748956 DOI: 10.1038/s41467-021-27696-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 12/02/2021] [Indexed: 11/09/2022] Open
Abstract
New facilities such as the National Ignition Facility and the Linac Coherent Light Source have pushed the frontiers of high energy-density matter. These facilities offer unprecedented opportunities for exploring extreme states of matter, ranging from cryogenic solid-state systems to hot, dense plasmas, with applications to inertial-confinement fusion and astrophysics. However, significant gaps in our understanding of material properties in these rapidly evolving systems still persist. In particular, non-equilibrium transport properties of strongly-coupled Coulomb systems remain an open question. Here, we study ion-ion temperature relaxation in a binary mixture, exploiting a recently-developed dual-species ultracold neutral plasma. We compare measured relaxation rates with atomistic simulations and a range of popular theories. Our work validates the assumptions and capabilities of the simulations and invalidates theoretical models in this regime. This work illustrates an approach for precision determinations of detailed material properties in Coulomb mixtures across a wide range of conditions.
Collapse
Affiliation(s)
- R Tucker Sprenkle
- Department of Physics and Astronomy, Brigham Young University, Provo, UT, 84602, USA
- Honeywell Quantum Solutions, 303 S Technology Ct, Broomfield, CO, 80021, USA
| | - L G Silvestri
- Department of Computational Mathematics, Science and Engineering, Michigan State University, East Lansing, MI, 48824, USA
| | - M S Murillo
- Department of Computational Mathematics, Science and Engineering, Michigan State University, East Lansing, MI, 48824, USA.
| | - S D Bergeson
- Department of Physics and Astronomy, Brigham Young University, Provo, UT, 84602, USA.
| |
Collapse
|
10
|
Grolleau A, Dorchies F, Jourdain N, Ta Phuoc K, Gautier J, Mahieu B, Renaudin P, Recoules V, Martinez P, Lecherbourg L. Femtosecond Resolution of the Nonballistic Electron Energy Transport in Warm Dense Copper. PHYSICAL REVIEW LETTERS 2021; 127:275901. [PMID: 35061440 DOI: 10.1103/physrevlett.127.275901] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 11/03/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
The ultrafast electron energy transport is investigated in laser-heated warm dense copper in a high flux regime (2.5±0.7×10^{13} W/cm^{2} absorbed). The dynamics of the electron temperature is retrieved from femtosecond time-resolved x-ray absorption near-edge spectroscopy near the Cu L3 edge. A characteristic time of ∼1 ps is observed for the increase in the average temperature in a 100 nm thick sample. Data are well reproduced by two-temperature hydrodynamic simulations, which support energy transport dominated by thermal conduction rather than ballistic electrons.
Collapse
Affiliation(s)
- A Grolleau
- CEA, DAM, DIF, F-91297 Arpajon, France
- Université Bordeaux, CNRS, CEA, CELIA, UMR 5107, F-33400 Talence, France
| | - F Dorchies
- Université Bordeaux, CNRS, CEA, CELIA, UMR 5107, F-33400 Talence, France
| | - N Jourdain
- CEA, DAM, DIF, F-91297 Arpajon, France
- Université Bordeaux, CNRS, CEA, CELIA, UMR 5107, F-33400 Talence, France
| | - K Ta Phuoc
- LOA, ENSTA, CNRS UMR 7639, Institut Polytechnique de Paris, F-91761 Palaiseau, France
| | - J Gautier
- LOA, ENSTA, CNRS UMR 7639, Institut Polytechnique de Paris, F-91761 Palaiseau, France
| | - B Mahieu
- LOA, ENSTA, CNRS UMR 7639, Institut Polytechnique de Paris, F-91761 Palaiseau, France
| | | | | | - P Martinez
- Université Bordeaux, CNRS, CEA, CELIA, UMR 5107, F-33400 Talence, France
| | - L Lecherbourg
- CEA, DAM, DIF, F-91297 Arpajon, France
- LOA, ENSTA, CNRS UMR 7639, Institut Polytechnique de Paris, F-91761 Palaiseau, France
| |
Collapse
|
11
|
Lee JW, Kim M, Kang G, Vinko SM, Bae L, Cho MS, Chung HK, Kim M, Kwon S, Lee G, Nam CH, Park SH, Sohn JH, Yang SH, Zastrau U, Cho BI. Investigation of Nonequilibrium Electronic Dynamics of Warm Dense Copper with Femtosecond X-Ray Absorption Spectroscopy. PHYSICAL REVIEW LETTERS 2021; 127:175003. [PMID: 34739265 DOI: 10.1103/physrevlett.127.175003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/11/2021] [Accepted: 09/23/2021] [Indexed: 06/13/2023]
Abstract
Ultrafast optical excitation of matter leads to highly excited states that are far from equilibrium. In this study, femtosecond x-ray absorption spectroscopy was used to visualize the ultrafast dynamics in photoexcited warm dense Cu. The rich dynamical features related to d vacancies are observed on femtosecond timescales. Despite the success in explaining x-ray absorption data in the picosecond regime, the new femtosecond data are poorly understood through the traditional two-temperature model based on the fast thermalization concept and the static electronic structure for high-temperature metals. An improved understanding can be achieved by including the recombination dynamics of nonthermal electrons and changes in the screening of the excited d block. The population balance between the 4sp and 3d bands is mainly determined by the recombination rate of nonthermal electrons, and the underpopulated 3d block is initially strongly downshifted and recovered in several hundreds of femtoseconds.
Collapse
Affiliation(s)
- Jong-Won Lee
- Center for Relativistic Laser Science, Institute for Basic Science, Gwangju 61005, Republic of Korea
- Department of Physics and Photon Science, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Minju Kim
- Center for Relativistic Laser Science, Institute for Basic Science, Gwangju 61005, Republic of Korea
- Department of Physics and Photon Science, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Gyeongbo Kang
- Center for Relativistic Laser Science, Institute for Basic Science, Gwangju 61005, Republic of Korea
- Department of Physics and Photon Science, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Sam M Vinko
- Department of Physics, University of Oxford, Parks Road, Oxford OXI 3PU, United Kingdom
- Central Laser Facility, STFC Rutherford Appleton Laboratory, Didcot OX11 0QX, United Kingdom
| | - Leejin Bae
- Korea Atomic Energy Research Institute, Daejeon 34057, Republic of Korea
| | - Min Sang Cho
- Center for Relativistic Laser Science, Institute for Basic Science, Gwangju 61005, Republic of Korea
- Department of Physics and Photon Science, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Hyun-Kyung Chung
- Korea Institute of Fusion Energy, Daejeon 34133, Republic of Korea
| | - Minseok Kim
- Pohang Accelerator Laboratory, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Soonnam Kwon
- Pohang Accelerator Laboratory, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Gyusang Lee
- Center for Relativistic Laser Science, Institute for Basic Science, Gwangju 61005, Republic of Korea
- Department of Physics and Photon Science, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Chang Hee Nam
- Center for Relativistic Laser Science, Institute for Basic Science, Gwangju 61005, Republic of Korea
- Department of Physics and Photon Science, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Sang Han Park
- Pohang Accelerator Laboratory, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Jang Hyeob Sohn
- Department of Physics and Photon Science, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Seong Hyeok Yang
- Department of Physics and Photon Science, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Ulf Zastrau
- European XFEL Gmbh, Notkestrasse 85, D-22607 Hamburg, Germany
| | - Byoung Ick Cho
- Center for Relativistic Laser Science, Institute for Basic Science, Gwangju 61005, Republic of Korea
- Department of Physics and Photon Science, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| |
Collapse
|
12
|
Rightley S, Baalrud SD. Kinetic model for electron-ion transport in warm dense matter. Phys Rev E 2021; 103:063206. [PMID: 34271617 DOI: 10.1103/physreve.103.063206] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 05/03/2021] [Indexed: 12/23/2022]
Abstract
We present a model for electron-ion transport in warm dense matter that incorporates Coulomb coupling effects into the quantum Boltzmann equation of Uehling and Uhlenbeck through the use of a statistical potential of mean force. Although the model presented here can be derived rigorously in the classical limit [S. D. Baalrud and J. Daligault, Phys. Plasmas 26, 082106 (2019)PHPAEN1070-664X10.1063/1.5095655], its quantum generalization is complicated by the uncertainty principle. Here we apply an existing model for the potential of mean force based on the quantum Ornstein-Zernike equation coupled with an average-atom model [C. E. Starrett, High Energy Density Phys. 25, 8 (2017)1574-181810.1016/j.hedp.2017.09.003]. This potential contains correlations due to both Coulomb coupling and exchange, and the collision kernel of the kinetic theory enforces Pauli blocking while allowing for electron diffraction and large-angle collisions. We use the Uehling-Uhlenbeck equation to predict the momentum and temperature relaxation times and electrical conductivity of solid density aluminum plasma based on electron-ion collisions. We present results for density and temperature conditions that span the transition from classical weakly-coupled plasma to degenerate moderately-coupled plasma. Our findings agree well with recent quantum molecular dynamics simulations.
Collapse
Affiliation(s)
- Shane Rightley
- Department of Physics and Astronomy, University of Iowa, Iowa City, Iowa 52242, USA
| | - Scott D Baalrud
- Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
13
|
Jourdain N, Lecherbourg L, Recoules V, Renaudin P, Dorchies F. Ultrafast Thermal Melting in Nonequilibrium Warm Dense Copper. PHYSICAL REVIEW LETTERS 2021; 126:065001. [PMID: 33635705 DOI: 10.1103/physrevlett.126.065001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 01/13/2021] [Accepted: 01/25/2021] [Indexed: 06/12/2023]
Abstract
The ultrafast dynamics of the loss of crystalline periodicity is investigated in femtosecond laser heated warm dense copper, by the original use of x-ray absorption near-edge specific structures just above the L3 edge. The characteristic time is observed near 1 ps, for specific energy density ranging from 1 to 5 MJ/kg, using ps-resolution x-ray absorption spectroscopy. The overall experimental data are well reproduced with two-temperature hydrodynamic simulations, supporting a thermal phase transition.
Collapse
Affiliation(s)
- N Jourdain
- Univ. Bordeaux, CNRS, CEA, CELIA (Centre Lasers Intenses et Applications), UMR 5107, F-33400 Talence, France
- CEA, DAM, DIF, F-91297 Arpajon, France
| | - L Lecherbourg
- CEA, DAM, DIF, F-91297 Arpajon, France
- LOA, ENSTA ParisTech, CNRS, Ecole Polytechnique, Univ. Paris-Saclay, 91120 Palaiseau, France
| | | | | | - F Dorchies
- Univ. Bordeaux, CNRS, CEA, CELIA (Centre Lasers Intenses et Applications), UMR 5107, F-33400 Talence, France
| |
Collapse
|
14
|
Simoni J, Daligault J. Nature of Non-Adiabatic Electron-Ion Forces in Liquid Metals. J Phys Chem Lett 2020; 11:8839-8843. [PMID: 32893639 DOI: 10.1021/acs.jpclett.0c02134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
An accurate description of electron-ion interactions in materials is crucial for our understanding of their equilibrium and nonequilibrium properties. Here we assess the properties of frictional forces experienced by ions in noncrystalline metallic systems, including liquid metals and warm dense plasmas, that arise from electronic excitations driven by the nuclear motion due to the presence of a continuum of low-lying electronic states. To this end, we perform detailed ab initio calculations of the full friction tensor that characterizes the set of friction forces. The non-adiabatic electron-ion interactions introduce hydrodynamic couplings between the ionic degrees of freedom, which are sizable between nearest neighbors. The friction tensor is generally inhomogeneous, anisotropic, and nondiagonal, especially at lower densities.
Collapse
Affiliation(s)
- Jacopo Simoni
- Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Jérôme Daligault
- Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| |
Collapse
|
15
|
Lee JW, Kang G, Kim M, Kim M, Park SH, Kwon S, Yang S, Cho BI. Femtosecond soft X-ray absorption spectroscopy of warm dense matter at the PAL-XFEL. JOURNAL OF SYNCHROTRON RADIATION 2020; 27:953-958. [PMID: 33566003 DOI: 10.1107/s160057752000524x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 04/14/2020] [Indexed: 06/12/2023]
Abstract
Free-electron laser pulse-based X-ray absorption spectroscopy measurements on warm dense copper are presented. The incident X-ray pulse energies were measured with a detector assembly consisting of a photocathode membrane and microchannel plates, and the transmitted energies were measured simultaneously with a photodiode detector. The precision of the absorption measurements was evaluated. For a warm dense copper foil irradiated by an intense femtosecond laser pulse, the enhanced X-ray absorption below the L3-edge, followed by the rapid evolution of highly excited Fermi liquid within a picosecond, were successfully measured. This result demonstrates a unique capability to study femtosecond non-equilibrium electron-hole dynamics in extreme states of matter.
Collapse
Affiliation(s)
- Jong Won Lee
- Department of Physics and Photon Science, GIST, Gwangju 61005, Republic of Korea
| | - Gyeongbo Kang
- Department of Physics and Photon Science, GIST, Gwangju 61005, Republic of Korea
| | - Minju Kim
- Department of Physics and Photon Science, GIST, Gwangju 61005, Republic of Korea
| | - Minseok Kim
- Pohang Accelerator Laboratory, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Sang Han Park
- Pohang Accelerator Laboratory, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Soonnam Kwon
- Pohang Accelerator Laboratory, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Seonghyeok Yang
- Department of Physics and Photon Science, GIST, Gwangju 61005, Republic of Korea
| | - Byoung Ick Cho
- Department of Physics and Photon Science, GIST, Gwangju 61005, Republic of Korea
| |
Collapse
|
16
|
Daligault J, Simoni J. Theory of the electron-ion temperature relaxation rate spanning the hot solid metals and plasma phases. Phys Rev E 2019; 100:043201. [PMID: 31770967 DOI: 10.1103/physreve.100.043201] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Indexed: 11/07/2022]
Abstract
We present a theory for the rate of energy exchange between electrons and ions-also known as the electron-ion coupling factor-in physical systems ranging from hot solid metals to plasmas, including liquid metals and warm dense matter. The paper provides the theoretical foundations of a recent work [J. Simoni and J. Daligault, Phys. Rev. Lett. 122, 205001 (2019)PRLTAO0031-900710.1103/PhysRevLett.122.205001], where first-principles quantum molecular dynamics calculations based on this theory were presented for representative materials and conditions. We first derive a general expression for the electron-ion coupling factor that includes self-consistently the quantum mechanical and statistical nature of electrons, the thermal and disorder effects, and the correlations between particles. The electron-ion coupling is related to the friction coefficients felt by individual ions due to their nonadiabatic interactions with the electrons. Each coefficient satisfies a Kubo relation given by the time integral of the autocorrelation function of the interaction force of an ion with the electrons. Exact properties and different representations of the general expressions are discussed. We then show that our theory reduces to well-known models in limiting cases. In particular, we show that it simplifies to the standard electron-phonon coupling formula in the limit of hot solids with lattice and electronic temperatures much greater than the Debye temperature, and that it extends the electron-phonon coupling formula beyond the harmonic phonon approximation. For plasmas, we show that the theory readily reduces to the well-known Spitzer formula in the hot plasma limit, to the Fermi "golden rule" formula in the limit of weak electron-ion interactions, and to other models proposed to go beyond the latter approximation. We explain that the electron-ion coupling is particularly well adapted to average atom models, which offer an effective way to include nonideal interaction effects to the standard models and at a much reduced computational cost in comparison to first-principles quantum molecular dynamics simulations.
Collapse
Affiliation(s)
- Jérôme Daligault
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - Jacopo Simoni
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| |
Collapse
|
17
|
X-ray Spectroscopies of High Energy Density Matter Created with X-ray Free Electron Lasers. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9224812] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The recent progress in the development of X-ray free electron lasers (XFELs) allows for the delivery of over 1011 high-energy photons to solid-density samples in a femtosecond time scale. The corresponding peak brightness of XFEL induces a nonlinear response of matter in a short-wavelength regime. The absorption of an XFEL pulse in a solid also results in the creation of high energy density (HED) matter. The electronic structure and related fundamental properties of such HED matter can be investigated with the control of XFEL and various X-ray spectroscopic techniques. These experimental data provide unique opportunities to benchmark theories and models for extreme conditions and to guide further advances. In this article, the current progress in spectroscopic studies on intense XFEL–matter interactions and HED matter are reviewed, and future research opportunities are discussed.
Collapse
|
18
|
Simoni J, Daligault J. First-Principles Determination of Electron-Ion Couplings in the Warm Dense Matter Regime. PHYSICAL REVIEW LETTERS 2019; 122:205001. [PMID: 31172779 DOI: 10.1103/physrevlett.122.205001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 04/12/2019] [Indexed: 06/09/2023]
Abstract
We present first-principles calculations of the rate of energy exchanges between electrons and ions in nonequilibrium warm dense plasmas, liquid metals, and hot solids, a fundamental property for which various models offer diverging predictions. To this end, a Kubo relation for the electron-ion coupling parameter is introduced, which includes self-consistently the quantum, thermal, nonlinear, and strong coupling effects that coexist in materials at the confluence of solids and plasmas. Most importantly, like other Kubo relations widely used for calculating electronic conductivities, the expression can be evaluated using quantum molecular dynamics simulations. Results are presented and compared to experimental and theoretical predictions for representative materials of various electronic complexity, including aluminum, copper, iron, and nickel.
Collapse
Affiliation(s)
- Jacopo Simoni
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - Jérôme Daligault
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| |
Collapse
|
19
|
Mo MZ, Becker V, Ofori-Okai BK, Shen X, Chen Z, Witte B, Redmer R, Li RK, Dunning M, Weathersby SP, Wang XJ, Glenzer SH. Determination of the electron-lattice coupling strength of copper with ultrafast MeV electron diffraction. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2018; 89:10C108. [PMID: 30399817 DOI: 10.1063/1.5035368] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Accepted: 08/06/2018] [Indexed: 06/08/2023]
Abstract
Electron-lattice coupling strength governs the energy transfer between electrons and the lattice and is important for understanding the material behavior under highly non-equilibrium conditions. Here we report the results of employing time-resolved electron diffraction at MeV energies to directly study the electron-lattice coupling strength in 40-nm-thick polycrystalline copper excited by femtosecond optical lasers. The temporal evolution of lattice temperature at various pump fluence conditions were obtained from the measurements of the Debye-Waller decay of multiple diffraction peaks. We observed the temperature dependence of the electron-lattice relaxation time which is a result of the temperature dependence of electron heat capacity. Comparison with two-temperature model simulations reveals an electron-lattice coupling strength of (0.9 ± 0.1) × 1017 W/m3/K for copper.
Collapse
Affiliation(s)
- M Z Mo
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
| | - V Becker
- Department of Physics, Southern Illinois University Edwardsville, Edwardsville, Illinois 62026, USA
| | - B K Ofori-Okai
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
| | - X Shen
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
| | - Z Chen
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
| | - B Witte
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
| | - R Redmer
- Institut für Physik, Universität Rostock, 18051 Rostock, Germany
| | - R K Li
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
| | - M Dunning
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
| | - S P Weathersby
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
| | - X J Wang
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
| | - S H Glenzer
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
| |
Collapse
|
20
|
Mahieu B, Jourdain N, Ta Phuoc K, Dorchies F, Goddet JP, Lifschitz A, Renaudin P, Lecherbourg L. Probing warm dense matter using femtosecond X-ray absorption spectroscopy with a laser-produced betatron source. Nat Commun 2018; 9:3276. [PMID: 30115918 PMCID: PMC6095895 DOI: 10.1038/s41467-018-05791-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 07/27/2018] [Indexed: 11/25/2022] Open
Abstract
Exploring and understanding ultrafast processes at the atomic level is a scientific challenge. Femtosecond X-ray absorption spectroscopy (XAS) arises as an essential experimental probing method, as it can simultaneously reveal both electronic and atomic structures, and thus potentially unravel their nonequilibrium dynamic interplay which is at the origin of most of the ultrafast mechanisms. However, despite considerable efforts, there is still no femtosecond X-ray source suitable for routine experiments. Here we show that betatron radiation from relativistic laser−plasma interaction combines ideal features for femtosecond XAS. It has been used to investigate the nonequilibrium dynamics of a copper sample brought at extreme conditions of temperature and pressure by a femtosecond laser pulse. We measured a rise-time of the electron temperature below 100 fs. This experiment demonstrates the great potential of the table-top betatron source which makes possible the investigation of unexplored ultrafast processes in manifold fields of research. Understanding the ultrafast dynamics of materials under extreme conditions is challenging. Here the authors use a femtosecond betatron X-ray source to investigate the solid to dense plasma phase transition in copper using XAS with unprecedented time resolution.
Collapse
Affiliation(s)
- B Mahieu
- LOA, ENSTA ParisTech, CNRS, Ecole Polytechnique, Université Paris-Saclay, 828 Boulevard des Maréchaux, 91120, Palaiseau, France.
| | - N Jourdain
- Université de Bordeaux, CNRS, CEA, CELIA (Centre Lasers Intenses et Applications), UMR 5107, 33400, Talence, France.,CEA-DAM-DIF, 91297, Arpajon, France
| | - K Ta Phuoc
- LOA, ENSTA ParisTech, CNRS, Ecole Polytechnique, Université Paris-Saclay, 828 Boulevard des Maréchaux, 91120, Palaiseau, France
| | - F Dorchies
- Université de Bordeaux, CNRS, CEA, CELIA (Centre Lasers Intenses et Applications), UMR 5107, 33400, Talence, France
| | - J-P Goddet
- LOA, ENSTA ParisTech, CNRS, Ecole Polytechnique, Université Paris-Saclay, 828 Boulevard des Maréchaux, 91120, Palaiseau, France
| | - A Lifschitz
- LOA, ENSTA ParisTech, CNRS, Ecole Polytechnique, Université Paris-Saclay, 828 Boulevard des Maréchaux, 91120, Palaiseau, France
| | | | | |
Collapse
|
21
|
Mo C, Fu Z, Kang W, Zhang P, He XT. First-Principles Estimation of Electronic Temperature from X-Ray Thomson Scattering Spectrum of Isochorically Heated Warm Dense Matter. PHYSICAL REVIEW LETTERS 2018; 120:205002. [PMID: 29864337 DOI: 10.1103/physrevlett.120.205002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 03/24/2018] [Indexed: 06/08/2023]
Abstract
Through the perturbation formula of time-dependent density functional theory broadly employed in the calculation of solids, we provide a first-principles calculation of x-ray Thomson scattering spectrum of isochorically heated aluminum foil, as considered in the experiments of Sperling et al. [Phys. Rev. Lett. 115, 115001 (2015)PRLTAO0031-900710.1103/PhysRevLett.115.115001], where ions were constrained near their lattice positions. From the calculated spectra, we find that the electronic temperature cannot exceed 2 eV, much smaller than the previous estimation of 6 eV via the detailed balance relation. Our results may well be an indication of unique electronic properties of warm dense matter, which can be further illustrated by future experiments. The lower electronic temperature predicted partially relieves the concern on the heating of x-ray free electron laser to the sample when used in structure measurement.
Collapse
Affiliation(s)
- Chongjie Mo
- HEDPS, Center for Applied Physics and Technology, Peking University, Beijing 100871, China
- School of Physics, Peking University, Beijing 100871, China
| | - Zhenguo Fu
- Institute of Applied Physics and Computational Mathematics, Beijing 100088, China
| | - Wei Kang
- HEDPS, Center for Applied Physics and Technology, Peking University, Beijing 100871, China
- College of Engineering, Peking University, Beijing 100871, China
- Collaborative Innovation Center of IFSA (CICIFSA), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ping Zhang
- HEDPS, Center for Applied Physics and Technology, Peking University, Beijing 100871, China
- Institute of Applied Physics and Computational Mathematics, Beijing 100088, China
- Collaborative Innovation Center of IFSA (CICIFSA), Shanghai Jiao Tong University, Shanghai 200240, China
| | - X T He
- HEDPS, Center for Applied Physics and Technology, Peking University, Beijing 100871, China
- Institute of Applied Physics and Computational Mathematics, Beijing 100088, China
- Collaborative Innovation Center of IFSA (CICIFSA), Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
22
|
Daligault J. Crossover from Classical to Fermi Liquid Behavior in Dense Plasmas. PHYSICAL REVIEW LETTERS 2017; 119:045002. [PMID: 29341759 DOI: 10.1103/physrevlett.119.045002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Indexed: 06/07/2023]
Abstract
We explore the crossover from classical plasma to quantum Fermi liquid behavior of electrons in dense plasmas. To this end, we analyze the evolution with density and temperature of the momentum lifetime of a test electron introduced in a dense electron gas. This allows us (1) to determine the boundaries of the crossover region in the temperature-density plane and to shed light on the evolution of scattering properties across it, (2) to quantify the role of the fermionic nature of electrons on electronic collisions across the crossover region, and (3) to explain how the concept of the Coulomb logarithm emerges at a high enough temperature but disappears at a low enough temperature.
Collapse
Affiliation(s)
- Jérôme Daligault
- Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| |
Collapse
|
23
|
Seely JF, Hudson LT, Henins A, Feldman U. High resolution spectrometer for extended x-ray absorption fine structure measurements in the 6 keV to 15 keV energy range. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2016; 87:11E305. [PMID: 27910617 PMCID: PMC5488268 DOI: 10.1063/1.4959918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
A Cauchois transmission-crystal spectrometer has been developed with high crystal resolving power in the 6 keV-15 keV energy range and sufficient sensitivity to record single-shot spectra from the Lawrence Livermore National Laboratory (LLNL) Titan laser and other comparable or more energetic lasers. The spectrometer capabilities were tested by recording the W L transitions from a laboratory source and the extended x-ray absorption fine structure (EXAFS) spectrum through a Cu foil.
Collapse
Affiliation(s)
- J. F. Seely
- Artep Inc., 2922 Excelsior Springs Court, Ellicott City, Maryland 21042, USA
| | - L. T. Hudson
- National Institute of Standards and Technology (NIST), Gaithersburg, Maryland 20899, USA
| | - Albert Henins
- National Institute of Standards and Technology (NIST), Gaithersburg, Maryland 20899, USA
| | - U. Feldman
- Artep Inc., 2922 Excelsior Springs Court, Ellicott City, Maryland 21042, USA
| |
Collapse
|