1
|
Fontani F, Boano R, Cinti A, Demarchi B, Sandron S, Rampelli S, Candela M, Traversari M, Latorre A, Iacovera R, Abondio P, Sarno S, Mackie M, Collins M, Radini A, Milani C, Petrella E, Giampalma E, Minelli A, Larocca F, Cilli E, Luiselli D. Bioarchaeological and paleogenomic profiling of the unusual Neolithic burial from Grotta di Pietra Sant'Angelo (Calabria, Italy). Sci Rep 2023; 13:11978. [PMID: 37488251 PMCID: PMC10366206 DOI: 10.1038/s41598-023-39250-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 07/21/2023] [Indexed: 07/26/2023] Open
Abstract
The Neolithic burial of Grotta di Pietra Sant'Angelo (CS) represents a unique archaeological finding for the prehistory of Southern Italy. The unusual placement of the inhumation at a rather high altitude and far from inhabited areas, the lack of funerary equipment and the prone deposition of the body find limited similarities in coeval Italian sites. These elements have prompted wider questions on mortuary customs during the prehistory of Southern Italy. This atypical case requires an interdisciplinary approach aimed to build an integrated bioarchaeological profile of the individual. The paleopathological investigation of the skeletal remains revealed the presence of numerous markers that could be associated with craft activities, suggesting possible interpretations of the individual's lifestyle. CT analyses, carried out on the maxillary bones, showed the presence of a peculiar type of dental wear, but also a good density of the bone matrix. Biomolecular and micromorphological analyses of dental calculus highlight the presence of a rich Neolithic-like oral microbiome, the composition of which is consistent with the presence pathologies. Finally, paleogenomic data obtained from the individual were compared with ancient and modern Mediterranean populations, including unpublished high-resolution genome-wide data for 20 modern inhabitants of the nearby village of San Lorenzo Bellizzi, which provided interesting insights into the biodemographic landscape of the Neolithic in Southern Italy.
Collapse
Affiliation(s)
- Francesco Fontani
- Department of Cultural Heritage, University of Bologna, Via Degli Ariani 1, 48121, Ravenna, Italy.
| | - Rosa Boano
- Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123, Torino, Italy
| | - Alessandra Cinti
- Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123, Torino, Italy
| | - Beatrice Demarchi
- Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123, Torino, Italy
| | - Sarah Sandron
- Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123, Torino, Italy
| | - Simone Rampelli
- Department of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro 6, 40126, Bologna, Italy
| | - Marco Candela
- Department of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro 6, 40126, Bologna, Italy
| | - Mirko Traversari
- Department of Cultural Heritage, University of Bologna, Via Degli Ariani 1, 48121, Ravenna, Italy
| | - Adriana Latorre
- Department of Cultural Heritage, University of Bologna, Via Degli Ariani 1, 48121, Ravenna, Italy
| | - Rocco Iacovera
- Department of Cultural Heritage, University of Bologna, Via Degli Ariani 1, 48121, Ravenna, Italy
| | - Paolo Abondio
- Department of Cultural Heritage, University of Bologna, Via Degli Ariani 1, 48121, Ravenna, Italy
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Via Selmi 3, 40126, Bologna, Italy
| | - Stefania Sarno
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Via Selmi 3, 40126, Bologna, Italy
| | - Meaghan Mackie
- Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123, Torino, Italy
- Faculty of Health and Medical Sciences, The Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Blegdamsvej 3B, 2200, København, Denmark
- Faculty of Health and Medical Sciences, The Globe Institute, University of Copenhagen, Øster Farimagsgade 5, 1353, København, Denmark
- School of Archeology, University College Dublin, Belfield, Dublin 4, Ireland
| | - Matthew Collins
- Faculty of Health and Medical Sciences, The Globe Institute, University of Copenhagen, Øster Farimagsgade 5, 1353, København, Denmark
- McDonald Institute for Archaeological Research, University of Cambridge, Downing Street, Cambridge, CB2 3ER, UK
| | - Anita Radini
- School of Archeology, University College Dublin, Belfield, Dublin 4, Ireland
| | - Chantal Milani
- SIOF - Italian Society of Forensic Odontology, Strada Degli Schiocchi 12, 41124, Modena, Italy
| | - Enrico Petrella
- Radiology Unit, Morgagni-Pierantoni Hospital, AUSL Romagna, Via Carlo Forlanini 34, 47121, Forlì, Italy
| | - Emanuela Giampalma
- Radiology Unit, Morgagni-Pierantoni Hospital, AUSL Romagna, Via Carlo Forlanini 34, 47121, Forlì, Italy
| | - Antonella Minelli
- Department of Humanities, Education and Social Sciences, University of Molise, Via Francesco De Sanctis, 86100, Campobasso, Italy
| | - Felice Larocca
- Speleo-Archaeological Research Group, University of Bari, Piazza Umberto I 1, 70121, Bari, Italy
- Speleo-Archaeological Research Centre "Enzo dei Medici", Via Lucania 3, 87070, Roseto Capo Spulico (CS), Italy
| | - Elisabetta Cilli
- Department of Cultural Heritage, University of Bologna, Via Degli Ariani 1, 48121, Ravenna, Italy
| | - Donata Luiselli
- Department of Cultural Heritage, University of Bologna, Via Degli Ariani 1, 48121, Ravenna, Italy.
| |
Collapse
|
2
|
Unterberger SH, Berger C, Schirmer M, Pallua AK, Zelger B, Schäfer G, Kremser C, Degenhart G, Spiegl H, Erler S, Putzer D, Arora R, Parson W, Pallua JD. Morphological and Tissue Characterization with 3D Reconstruction of a 350-Year-Old Austrian Ardea purpurea Glacier Mummy. BIOLOGY 2023; 12:biology12010114. [PMID: 36671806 PMCID: PMC9855678 DOI: 10.3390/biology12010114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 01/12/2023]
Abstract
Glaciers are dwindling archives, releasing animal mummies preserved in the ice for centuries due to climate changes. As preservation varies, residual soft tissues may differently expand the biological information content of such mummies. DNA studies have proven the possibility of extracting and analyzing DNA preserved in skeletal residuals and sediments for hundreds or thousands of years. Paleoradiology is the method of choice as a non-destructive tool for analyzing mummies, including micro-computed tomography (micro-CT) and magnetic resonance imaging (MRI). Together with radiocarbon dating, histo-anatomical analyses, and DNA sequencing, these techniques were employed to identify a 350-year-old Austrian Ardea purpurea glacier mummy from the Ötztal Alps. Combining these techniques proved to be a robust methodological concept for collecting inaccessible information regarding the structural organization of the mummy. The variety of methodological approaches resulted in a distinct picture of the morphological patterns of the glacier animal mummy. The BLAST search in GenBank resulted in a 100% and 98.7% match in the cytb gene sequence with two entries of the species Purple heron (Ardea purpurea; Accession number KJ941160.1 and KJ190948.1) and a 98% match with the same species for the 16 s sequence (KJ190948.1), which was confirmed by the anatomic characteristics deduced from micro-CT and MRI.
Collapse
Affiliation(s)
- Seraphin H. Unterberger
- Material-Technology, Leopold-Franzens University Innsbruck, Technikerstraße 13, 6020 Innsbruck, Austria
| | - Cordula Berger
- Institute of Legal Medicine, Medical University of Innsbruck, Muellerstraße 44, 6020 Innsbruck, Austria
| | - Michael Schirmer
- Department of Internal Medicine, Clinic II, Medical University of Innsbruck, Anichstrasse 35, 6020 Innsbruck, Austria
| | - Anton Kasper Pallua
- Former Institute for Computed Tomography-Neuro CT, Medical University of Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria
| | - Bettina Zelger
- Institute of Pathology, Neuropathology, and Molecular Pathology, Medical University of Innsbruck, Muellerstrasse 44, 6020 Innsbruck, Austria
| | - Georg Schäfer
- Institute of Pathology, Neuropathology, and Molecular Pathology, Medical University of Innsbruck, Muellerstrasse 44, 6020 Innsbruck, Austria
| | - Christian Kremser
- Department of Radiology, Medical University of Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria
| | - Gerald Degenhart
- Department of Radiology, Medical University of Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria
| | - Harald Spiegl
- WESTCAM Datentechnik GmbH, Gewerbepark 38, 6068 Mils, Austria
| | - Simon Erler
- WESTCAM Datentechnik GmbH, Gewerbepark 38, 6068 Mils, Austria
| | - David Putzer
- University Hospital for Orthopaedics and Traumatology, Medical University of Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria
| | - Rohit Arora
- University Hospital for Orthopaedics and Traumatology, Medical University of Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria
| | - Walther Parson
- Institute of Legal Medicine, Medical University of Innsbruck, Muellerstraße 44, 6020 Innsbruck, Austria
- Forensic Science Program, The Pennsylvania State University, State College, PA 16801, USA
| | - Johannes Dominikus Pallua
- Institute of Legal Medicine, Medical University of Innsbruck, Muellerstraße 44, 6020 Innsbruck, Austria
- Institute of Pathology, Neuropathology, and Molecular Pathology, Medical University of Innsbruck, Muellerstrasse 44, 6020 Innsbruck, Austria
- University Hospital for Orthopaedics and Traumatology, Medical University of Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria
- Correspondence:
| |
Collapse
|
3
|
Zink AR, Maixner F. The Current Situation of the Tyrolean Iceman. Gerontology 2019; 65:699-706. [PMID: 31505504 DOI: 10.1159/000501878] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 07/03/2019] [Indexed: 11/19/2022] Open
Abstract
The Tyrolean Iceman, commonly known as Ötzi, is the world's oldest glacier mummy and one of the best investigated ancient human remains in the world. Since the discovery of the 5,300-year-old Copper Age individual in 1991, in a glacier in the Eastern Italian Alps, a variety of morphological, biochemical, and molecular analyses have been performed that revealed important insights into his origin, his life habits, and the circumstances surrounding his demise. In more recent research, the mummy was subjected to cutting-edge modern research methodologies currently focusing on high-throughput sequence analysis of ancient biomolecules (DNA, proteins, lipids) that are still preserved in the mummified tissues. This application of innovative "-omics" technologies revealed novel insights on the ancestry, disease predisposition, diet, and the presence of pathogens in the glacier mummy. In this review, the most important and actual results of the molecular studies will be highlighted.
Collapse
Affiliation(s)
- Albert R Zink
- Institute for Mummy Studies, Eurac Research, Bolzano, Italy,
| | - Frank Maixner
- Institute for Mummy Studies, Eurac Research, Bolzano, Italy
| |
Collapse
|
4
|
Ishiya K, Mizuno F, Wang L, Ueda S. MitoIMP: A Computational Framework for Imputation of Missing Data in Low-Coverage Human Mitochondrial Genome. Bioinform Biol Insights 2019; 13:1177932219873884. [PMID: 31523131 PMCID: PMC6732850 DOI: 10.1177/1177932219873884] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Accepted: 08/13/2019] [Indexed: 11/16/2022] Open
Abstract
The incompleteness of partial human mitochondrial genome sequences makes it difficult to perform relevant comparisons among multiple resources. To deal with this issue, we propose a computational framework for deducing missing nucleotides in the human mitochondrial genome. We applied it to worldwide mitochondrial haplogroup lineages and assessed its performance. Our approach can deduce the missing nucleotides with a precision of 0.99 or higher in most human mitochondrial DNA lineages. Furthermore, although low-coverage mitochondrial genome sequences often lead to a blurred relationship in the multidimensional scaling analysis, our approach can correct this positional arrangement according to the corresponding mitochondrial DNA lineages. Therefore, our framework will provide a practical solution to compensate for the lack of genome coverage in partial and fragmented human mitochondrial genome sequences. In this study, we developed an open-source computer program, MitoIMP, implementing our imputation procedure. MitoIMP is freely available from https://github.com/omics-tools/mitoimp.
Collapse
Affiliation(s)
- Koji Ishiya
- Computational Bio Big Data Open Innovation Lab (CBBD-OIL), National Institute of Advanced Industrial Science and Technology (AIST)-Waseda University, Tokyo, Japan
| | - Fuzuki Mizuno
- Department of Legal Medicine, School of Medicine, Toho University, Tokyo, Japan
| | - Li Wang
- School of Medicine, Hangzhou Normal University, Zhejiang, China
| | - Shintaroh Ueda
- Department of Legal Medicine, School of Medicine, Toho University, Tokyo, Japan.,School of Medicine, Hangzhou Normal University, Zhejiang, China.,Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
5
|
D’Amore G, Orru A, Frederic P, Di Bacco M. Probability of Mitochondrial Lineage Extinction in Female Offspring, Modern and Paleolithic: Branching Process Analysis. RUSS J GENET+ 2018. [DOI: 10.1134/s1022795418090028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Maixner F, Turaev D, Cazenave-Gassiot A, Janko M, Krause-Kyora B, Hoopmann MR, Kusebauch U, Sartain M, Guerriero G, O'Sullivan N, Teasdale M, Cipollini G, Paladin A, Mattiangeli V, Samadelli M, Tecchiati U, Putzer A, Palazoglu M, Meissen J, Lösch S, Rausch P, Baines JF, Kim BJ, An HJ, Gostner P, Egarter-Vigl E, Malfertheiner P, Keller A, Stark RW, Wenk M, Bishop D, Bradley DG, Fiehn O, Engstrand L, Moritz RL, Doble P, Franke A, Nebel A, Oeggl K, Rattei T, Grimm R, Zink A. The Iceman's Last Meal Consisted of Fat, Wild Meat, and Cereals. Curr Biol 2018; 28:2348-2355.e9. [PMID: 30017480 PMCID: PMC6065529 DOI: 10.1016/j.cub.2018.05.067] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 05/15/2018] [Accepted: 05/23/2018] [Indexed: 12/21/2022]
Abstract
The history of humankind is marked by the constant adoption of new dietary habits affecting human physiology, metabolism, and even the development of nutrition-related disorders. Despite clear archaeological evidence for the shift from hunter-gatherer lifestyle to agriculture in Neolithic Europe [1], very little information exists on the daily dietary habits of our ancestors. By undertaking a complementary -omics approach combined with microscopy, we analyzed the stomach content of the Iceman, a 5,300-year-old European glacier mummy [2, 3]. He seems to have had a remarkably high proportion of fat in his diet, supplemented with fresh or dried wild meat, cereals, and traces of toxic bracken. Our multipronged approach provides unprecedented analytical depth, deciphering the nutritional habit, meal composition, and food-processing methods of this Copper Age individual.
Collapse
Affiliation(s)
- Frank Maixner
- Eurac Research - Institute for Mummy Studies, Viale Druso 1, 39100 Bolzano, Italy.
| | - Dmitrij Turaev
- CUBE - Division of Computational Systems Biology, Department of Microbiology and Ecosystem Science, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Amaury Cazenave-Gassiot
- SLING, Life Sciences Institute, National University of Singapore, Singapore; Department of Biochemistry, National University of Singapore, Singapore
| | - Marek Janko
- Institute of Materials Science, Physics of Surfaces, Technische Universität Darmstadt, Alarich-Weiss-Str. 2, 64287 Darmstadt, Germany; Center of Smart Interfaces, Technische Universität Darmstadt, Alarich-Weiss-Str. 10, 64287 Darmstadt, Germany
| | - Ben Krause-Kyora
- Institute of Clinical Molecular Biology, Kiel University, Rosalind-Franklin-Str. 12, 24105 Kiel, Germany
| | - Michael R Hoopmann
- Institute for Systems Biology, 401 Terry Avenue North, Seattle, WA 98109, USA
| | - Ulrike Kusebauch
- Institute for Systems Biology, 401 Terry Avenue North, Seattle, WA 98109, USA
| | - Mark Sartain
- Institute for Systems Biology, 401 Terry Avenue North, Seattle, WA 98109, USA
| | - Gea Guerriero
- Environmental Research and Innovation (ERIN), Luxembourg Institute of Science and Technology (LIST), Esch/Alzette, Luxembourg
| | - Niall O'Sullivan
- Eurac Research - Institute for Mummy Studies, Viale Druso 1, 39100 Bolzano, Italy
| | - Matthew Teasdale
- Smurfit Institute of Genetics, University of Dublin, Trinity College, Dublin 2, Ireland
| | - Giovanna Cipollini
- Eurac Research - Institute for Mummy Studies, Viale Druso 1, 39100 Bolzano, Italy
| | - Alice Paladin
- Eurac Research - Institute for Mummy Studies, Viale Druso 1, 39100 Bolzano, Italy
| | - Valeria Mattiangeli
- Smurfit Institute of Genetics, University of Dublin, Trinity College, Dublin 2, Ireland
| | - Marco Samadelli
- Eurac Research - Institute for Mummy Studies, Viale Druso 1, 39100 Bolzano, Italy
| | - Umberto Tecchiati
- Responsabile del Laboratorio di Archeozoologia della Soprintendenza Provinciale ai Beni culturali di Bolzano - Alto Adige, Ufficio Beni archeologica, 39100 Bolzano, Italy
| | - Andreas Putzer
- South Tyrol Museum of Archaeology, Museumstrasse 43, 39100 Bolzano, Italy
| | - Mine Palazoglu
- Department of Molecular and Cellular Biology & Genome Center, University of California, Davis, Davis, CA, USA
| | - John Meissen
- Department of Molecular and Cellular Biology & Genome Center, University of California, Davis, Davis, CA, USA
| | - Sandra Lösch
- Department of Physical Anthropology, Institute of Forensic Medicine, University of Bern, Sulgenauweg 40, 3007 Bern, Switzerland
| | - Philipp Rausch
- Max Planck Institute for Evolutionary Biology, August-Thienemann-Strasse 2, D-24306, Plön, Germany
| | - John F Baines
- Max Planck Institute for Evolutionary Biology, August-Thienemann-Strasse 2, D-24306, Plön, Germany
| | - Bum Jin Kim
- Cancer Research Institute & Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, Korea
| | - Hyun-Joo An
- Cancer Research Institute & Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, Korea
| | - Paul Gostner
- Department of Radiodiagnostics, Central Hospital Bolzano, Bolzano, Italy
| | - Eduard Egarter-Vigl
- Scuola Superiore Sanitaria Provinciale "Claudiana," Via Lorenz Böhler 13, 39100 Bolzano, Italy
| | - Peter Malfertheiner
- Department of Gastroenterology, Hepatology, and Infectious Diseases, Otto-von-Guericke University, Leipziger Strasse 44, 39120 Magdeburg, Germany
| | - Andreas Keller
- Chair for Clinical Bioinformatics, Saarland University, Medical Faculty, Saarbrücken, Germany
| | - Robert W Stark
- Institute of Materials Science, Physics of Surfaces, Technische Universität Darmstadt, Alarich-Weiss-Str. 2, 64287 Darmstadt, Germany; Center of Smart Interfaces, Technische Universität Darmstadt, Alarich-Weiss-Str. 10, 64287 Darmstadt, Germany
| | - Markus Wenk
- SLING, Life Sciences Institute, National University of Singapore, Singapore; Department of Biochemistry, National University of Singapore, Singapore
| | - David Bishop
- Elemental Bio-imaging Facility, University of Technology Sydney, Broadway, New South Wales, 2007, Australia
| | - Daniel G Bradley
- Smurfit Institute of Genetics, University of Dublin, Trinity College, Dublin 2, Ireland
| | - Oliver Fiehn
- Department of Molecular and Cellular Biology & Genome Center, University of California, Davis, Davis, CA, USA
| | - Lars Engstrand
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 141 83 Stockholm, Sweden
| | - Robert L Moritz
- Institute for Systems Biology, 401 Terry Avenue North, Seattle, WA 98109, USA
| | - Philip Doble
- Elemental Bio-imaging Facility, University of Technology Sydney, Broadway, New South Wales, 2007, Australia
| | - Andre Franke
- Institute of Clinical Molecular Biology, Kiel University, Rosalind-Franklin-Str. 12, 24105 Kiel, Germany
| | - Almut Nebel
- Institute of Clinical Molecular Biology, Kiel University, Rosalind-Franklin-Str. 12, 24105 Kiel, Germany
| | - Klaus Oeggl
- Institute of Botany, Sternwartestrasse 15, University of Innsbruck, 6020 Innsbruck, Austria
| | - Thomas Rattei
- CUBE - Division of Computational Systems Biology, Department of Microbiology and Ecosystem Science, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Rudolf Grimm
- Agilent Technologies, 5301 Stevens Creek Blvd, Santa Clara, CA 95051, USA
| | - Albert Zink
- Eurac Research - Institute for Mummy Studies, Viale Druso 1, 39100 Bolzano, Italy.
| |
Collapse
|
7
|
Artioli G, Angelini I, Kaufmann G, Canovaro C, Dal Sasso G, Villa IM. Long-distance connections in the Copper Age: New evidence from the Alpine Iceman's copper axe. PLoS One 2017; 12:e0179263. [PMID: 28678801 PMCID: PMC5497943 DOI: 10.1371/journal.pone.0179263] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 05/28/2017] [Indexed: 11/24/2022] Open
Abstract
25 years after the discovery in the Ötztal Italian Alps, the 5,300-year-old mummy keeps providing key information on human biological and medical conditions, aspects of everyday life and societal organization in the Copper Age. The hand axe found with the body of the Alpine Iceman is one of the rare copper objects that is firmly dated to the early Copper Age because of the radiocarbon dating of the axe wooden shaft. Here we report the measurement of the lead isotope ratios of the copper blade. The results unambiguously indicate that the source of the metal is the ore-rich area of Southern Tuscany, despite ample evidence that Alpine copper ore sources were known and exploited at the time. The experimental results are discussed within the framework of all the available coeval archaeometallurgical data in Central-Southern Europe: they show that the Alps were a neat cultural barrier separating distinct metal circuits. The direct evidence of raw metal or object movement between Central Italy and the Alps is surprising and provides a new perspective on long-distance relocation of goods and relationships between the early Copper Age cultures in the area. The result is in line with the recent investigations re-evaluating the timing and extent of copper production in Central Italy in the 4th millennium BC.
Collapse
Affiliation(s)
- Gilberto Artioli
- Department of Geosciences, Università di Padova, Padova, Italy
- INSTM, Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali, Firenze, Italy
| | - Ivana Angelini
- INSTM, Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali, Firenze, Italy
- Department of Cultural Heritage, Università di Padova, Padova, Italy
| | - Günther Kaufmann
- Museo Archeologico dell'Alto Adige/Südtiroler Archäologiemuseum, Bolzano/Bozen, Italy
| | - Caterina Canovaro
- Department of Geosciences, Università di Padova, Padova, Italy
- INSTM, Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali, Firenze, Italy
| | | | - Igor Maria Villa
- Centro Universitario Datazioni e Archeometria, Università di Milano Bicocca, Milano, Italy
- Institut für Geologie, Universität Bern, Bern, Switzerland
| |
Collapse
|
8
|
Mapping Post-Glacial expansions: The Peopling of Southwest Asia. Sci Rep 2017; 7:40338. [PMID: 28059138 PMCID: PMC5216412 DOI: 10.1038/srep40338] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 12/05/2016] [Indexed: 11/24/2022] Open
Abstract
Archaeological, palaeontological and geological evidence shows that post-glacial warming released human populations from their various climate-bound refugia. Yet specific connections between these refugia and the timing and routes of post-glacial migrations that ultimately established modern patterns of genetic variation remain elusive. Here, we use Y-chromosome markers combined with autosomal data to reconstruct population expansions from regional refugia in Southwest Asia. Populations from three regions in particular possess distinctive autosomal genetic signatures indicative of likely refugia: one, in the north, centered around the eastern coast of the Black Sea, the second, with a more Levantine focus, and the third in the southern Arabian Peninsula. Modern populations from these three regions carry the widest diversity and may indeed represent the most likely descendants of the populations responsible for the Neolithic cultures of Southwest Asia. We reveal the distinct and datable expansion routes of populations from these three refugia throughout Southwest Asia and into Europe and North Africa and discuss the possible correlations of these migrations to various cultural and climatic events evident in the archaeological record of the past 15,000 years.
Collapse
|