1
|
Zhu Y, Chen S, Liu W, Zhang L, Xu F, Hayashi T, Mizuno K, Hattori S, Fujisaki H, Ikejima T. Collagens I and V differently regulate the proliferation and adhesion of rat islet INS-1 cells through the integrin β1/E-cadherin/β-catenin pathway. Connect Tissue Res 2021; 62:658-670. [PMID: 33957832 DOI: 10.1080/03008207.2020.1845321] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Extracellular matrix (ECM) plays an important role in tissue repair, cell proliferation, and differentiation. Our previous study showed that collagen I and collagen V differently regulate the proliferation of rat pancreatic β cells (INS-1 cells) through opposite influences on the nuclear translocation of β-catenin. In this study, we investigated the β-catenin pathway in INS-1 cells on dishes coated with collagen I or V. We found that nuclear translocation of the transcription factor Yes-associated protein (YAP) was enhanced by collagen I and suppressed by collagen V, but had no effect on INS-1 cell proliferation. Morphologically, INS-1 cells on collagen V-coated dishes showed stronger cell-to-cell adhesion, while the cells on collagen I-coated dishes showed weaker cell-to-cell adhesion in comparison with the cells on non-coated dishes. E-cadherin played an inhibitory role in the proliferation of INS-1 cells cultured on collagen I or collagen V coated dishes via regulation of the nuclear translocation of β-catenin. Integrin β1 was enhanced with collagen I, while it was repressed with collagen V. The integrin β1 pathway positively regulated the cell proliferation. Inhibition of integrin β1 pathway restored the protein level of E-cadherin and inhibited the nuclear translocation of β-catenin in the cells on collagen I-coated dishes, but no effect was observed in the cells on collagen V-coated dishes. In conclusion, collagen I enhances the proliferation of INS-1 cells via the integrin β1 and E-cadherin/β-catenin signaling pathway. In INS-1 cells on collagen V-coated dishes, both integrin β1 and E-cadherin/β-catenin signal pathways are involved in the inhibition of proliferation.
Collapse
Affiliation(s)
- Yingying Zhu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, China
| | - Shuaigao Chen
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, China
| | - Weiwei Liu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, China
| | - Luxin Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, China
| | - Fanxing Xu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, China
| | - Toshihiko Hayashi
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, China.,Department of Chemistry and Life Science, School of Advanced Engineering Kogakuin University, 2665-1, Nakanomachi Hachioji, Tokyo, 192-0015, Japan
| | - Kazunori Mizuno
- Nippi Research Institute of Biomatrix, Toride, Ibaraki 302-0017, Japan
| | - Shunji Hattori
- Nippi Research Institute of Biomatrix, Toride, Ibaraki 302-0017, Japan
| | - Hitomi Fujisaki
- Nippi Research Institute of Biomatrix, Toride, Ibaraki 302-0017, Japan
| | - Takashi Ikejima
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, China.,Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, China
| |
Collapse
|
2
|
Wang X, Younis S, Cen J, Wang Y, Krizhanovskii C, Andersson L, Welsh N. ZBED6 counteracts high-fat diet-induced glucose intolerance by maintaining beta cell area and reducing excess mitochondrial activation. Diabetologia 2021; 64:2292-2305. [PMID: 34296320 PMCID: PMC8423654 DOI: 10.1007/s00125-021-05517-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 04/01/2021] [Indexed: 12/31/2022]
Abstract
AIMS/HYPOTHESIS ZBED6 (zinc finger, BED-type containing 6) is known to regulate muscle mass by suppression of Igf2 gene transcription. In insulin-producing cell lines, ZBED6 maintains proliferative capacity at the expense of differentiation and beta cell function. The aim was to study the impact of Zbed6 knockout on beta cell function and glucose tolerance in C57BL/6 mice. METHODS Beta cell area and proliferation were determined in Zbed6 knockout mice using immunohistochemical analysis. Muscle and fat distribution were assessed using micro-computed tomography. Islet gene expression was assessed by RNA sequencing. Effects of a high-fat diet were analysed by glucose tolerance and insulin tolerance tests. ZBED6 was overexpressed in EndoC-βH1 cells and human islet cells using an adenoviral vector. Beta cell cell-cycle analysis, insulin release and mitochondrial function were studied in vitro using propidium iodide staining and flow cytometry, ELISA, the Seahorse technique, and the fluorescent probes JC-1 and MitoSox. RESULTS Islets from Zbed6 knockout mice showed lowered expression of the cell cycle gene Pttg1, decreased beta cell proliferation and decreased beta cell area, which occurred independently from ZBED6 effects on Igf2 gene expression. Zbed6 knockout mice, but not wild-type mice, developed glucose intolerance when given a high-fat diet. The high-fat diet Zbed6 knockout islets displayed upregulated expression of oxidative phosphorylation genes and genes associated with beta cell differentiation. In vitro, ZBED6 overexpression resulted in increased EndoC-βH1 cell proliferation and a reduced glucose-stimulated insulin release in human islets. ZBED6 also reduced mitochondrial JC-1 J-aggregate formation, mitochondrial oxygen consumption rates (OCR) and mitochondrial reactive oxygen species (ROS) production, both at basal and palmitate + high glucose-stimulated conditions. ZBED6-induced inhibition of OCR was not rescued by IGF2 addition. ZBED6 reduced levels of the mitochondrial regulator PPAR-γ related coactivator 1 protein (PRC) and bound its promoter/enhancer region. Knockdown of PRC resulted in a lowered OCR. CONCLUSIONS/INTERPRETATION It is concluded that ZBED6 is required for normal beta cell replication and also limits excessive beta cell mitochondrial activation in response to an increased functional demand. ZBED6 may act, at least in part, by restricting PRC-mediated mitochondrial activation/ROS production, which may lead to protection against beta cell dysfunction and glucose intolerance in vivo.
Collapse
Affiliation(s)
- Xuan Wang
- Science for Life Laboratory, Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Shady Younis
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- Division of Immunology and Rheumatology, Stanford University, Stanford, CA, USA
| | - Jing Cen
- Science for Life Laboratory, Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Yun Wang
- Science for Life Laboratory, Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Camilla Krizhanovskii
- Science for Life Laboratory, Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Leif Andersson
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden.
- Department of Veterinary Integrative Biosciences, Texas A & M University, College Station, TX, USA.
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden.
| | - Nils Welsh
- Science for Life Laboratory, Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
3
|
Zhao H, Wu M, Liu S, Tang X, Yi X, Li Q, Wang S, Sun X. Liver Expression of IGF2 and Related Proteins in ZBED6 Gene-Edited Pig by RNA-Seq. Animals (Basel) 2020; 10:ani10112184. [PMID: 33266436 PMCID: PMC7700129 DOI: 10.3390/ani10112184] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/14/2020] [Accepted: 11/19/2020] [Indexed: 12/19/2022] Open
Abstract
Simple Summary Zinc finger BED-type containing 6 (ZBED6), as a regulatory factor, has different regulatory mechanisms in animal development. The intron of insulin-like growth factor 2 (IGF2) regulates the development of animal muscle and adipose by combining with the binding site of ZBED6. As a member of the insulin-like growth factor family, IGF2 plays an important role in embryonic growth and development, cell proliferation, muscle growth and genome imprinting. In order to further study the regulatory mechanism of ZBED6 on IGF2, we detected the expression of IGF2 and related genes in ZBED6 single allele knockout (ZBED6-SKO) pig tissues and analyzed differently expressed genes of the transcriptome of ZBED6-SKO pig liver. The results showed that the partial knockout of ZBED6 could affect the secretion of IGF2 in pig liver but had no significant difference at the protein level. This research provides a new idea for the interaction between IGF2 and ZBED6. Abstract Zinc finger BED-type containing 6 (ZBED6), a highly conservative transcription factor of placental mammals, has conservative interaction of insulin-like growth factor 2 (IGF2) based on the 16 bp binding sites of ZBED6 on the IGF2 sequence. IGF2 is related to embryo growth and cell proliferation. At the same time, its functions in muscle and adipose in mammals have been widely mentioned in recent studies. To further investigate the mechanism of ZBED6 on IGF2, we detected the expression of IGF2 and related genes in ZBED6 single allele knockout (ZBED6-SKO) pig tissues and analyzed the transcriptome of ZBED6-SKO pig liver. Through RNA-seq, we captured nine up-regulated genes and eight down-regulated genes which related to lipid metabolism. The results showed that the mRNA of IGF2 had an upward trend after the partial knockout of ZBED6 in liver and had no significant difference in protein expression of IGF2. In summary, ZBED6-SKO could affect the secretion of IGF2 in pig liver and its own lipid metabolism. Our research has provided basic information for revealing the regulatory mechanism of the interaction between ZBED6 and IGF2 in mammals.
Collapse
Affiliation(s)
- Haidong Zhao
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; (H.Z.); (M.W.); (S.L.); (X.T.); (X.Y.); (Q.L.); (S.W.)
| | - Mingli Wu
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; (H.Z.); (M.W.); (S.L.); (X.T.); (X.Y.); (Q.L.); (S.W.)
| | - Shirong Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; (H.Z.); (M.W.); (S.L.); (X.T.); (X.Y.); (Q.L.); (S.W.)
| | - Xiaoqin Tang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; (H.Z.); (M.W.); (S.L.); (X.T.); (X.Y.); (Q.L.); (S.W.)
| | - Xiaohua Yi
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; (H.Z.); (M.W.); (S.L.); (X.T.); (X.Y.); (Q.L.); (S.W.)
| | - Qi Li
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; (H.Z.); (M.W.); (S.L.); (X.T.); (X.Y.); (Q.L.); (S.W.)
| | - Shuhui Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; (H.Z.); (M.W.); (S.L.); (X.T.); (X.Y.); (Q.L.); (S.W.)
| | - Xiuzhu Sun
- College of Grassland Agriculture, Northwest A&F University, Yangling 712100, China
- Correspondence:
| |
Collapse
|
4
|
Han Y, Baltriukienė D, Kozlova EN. Effect of scaffold properties on adhesion and maintenance of boundary cap neural crest stem cells in vitro. J Biomed Mater Res A 2020; 108:1274-1280. [PMID: 32061005 DOI: 10.1002/jbm.a.36900] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 02/08/2020] [Accepted: 02/10/2020] [Indexed: 12/20/2022]
Abstract
Optimal combination of stem cells and biocompatible support material is a promising strategy for successful tissue engineering. The required differentiation of stem cells is crucial for functionality of engineered tissues and can be regulated by chemical and physical cues. Here we examined how boundary cap neural crest stem cells (bNCSCs) are affected when cultured in the same medium, but on collagen- or laminin-polyacrylamide (PAA) scaffolds of different stiffness (0.5, 1, or ~7 kPa). bNCSCs displayed marked differences in their ability to attach, maintain a large cell population and differentiate, depending on scaffold stiffness. These findings show that the design of physical cues is an important parameter to achieve optimal stem cell properties for tissue repair and engineering.
Collapse
Affiliation(s)
- Yilin Han
- Department of Neuroscience, Uppsala University, Biomedical Centre, Uppsala, Sweden
| | - Daiva Baltriukienė
- Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Elena N Kozlova
- Department of Neuroscience, Uppsala University, Biomedical Centre, Uppsala, Sweden
| |
Collapse
|
5
|
Wang X, Jiang L, Wallerman O, Younis S, Yu Q, Klaesson A, Tengholm A, Welsh N, Andersson L. ZBED6 negatively regulates insulin production, neuronal differentiation, and cell aggregation in MIN6 cells. FASEB J 2018; 33:88-100. [PMID: 29957057 DOI: 10.1096/fj.201600835r] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Zinc finger BED domain containing protein 6 ( Zbed6) has evolved from a domesticated DNA transposon and encodes a transcription factor unique to placental mammals. The aim of the present study was to investigate further the role of ZBED6 in insulin-producing cells, using mouse MIN6 cells, and to evaluate the effects of Zbed6 knockdown on basal β-cell functions, such as morphology, transcriptional regulation, insulin content, and release. Zbed6-silenced cells and controls were characterized with a range of methods, including RNA sequencing, chromatin immunoprecipitation sequencing, insulin content and release, subplasma membrane Ca2+ measurements, cAMP determination, and morphologic studies. More than 700 genes showed differential expression in response to Zbed6 knockdown, which was paralleled by increased capacity to generate cAMP, as well as by augmented subplasmalemmal calcium concentration and insulin secretion in response to glucose stimulation. We identified >4000 putative ZBED6-binding sites in the MIN6 genome, with an enrichment of ZBED6 sites at upregulated genes, such as the β-cell transcription factors v-maf musculoaponeurotic fibrosarcoma oncogene homolog A and Nk6 homeobox 1. We also observed altered morphology/growth patterns, as indicated by increased cell clustering, and in the appearance of axon-like Neurofilament, medium polypeptide and tubulin β 3, class III-positive protrusions. We conclude that ZBED6 acts as a transcriptional regulator in MIN6 cells and that its activity suppresses insulin production, cell aggregation, and neuronal-like differentiation.-Wang, X., Jiang, L., Wallerman, O., Younis, S., Yu, Q., Klaesson, A., Tengholm, A., Welsh, N., Andersson, L. ZBED6 negatively regulates insulin production, neuronal differentiation, and cell aggregation in MIN6 cells.
Collapse
Affiliation(s)
- Xuan Wang
- Department of Medical Cell Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Lin Jiang
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden.,The Key Laboratory for Farm Animal Genetic Resources and Utilization of Ministry of Agriculture of China, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ola Wallerman
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden; and
| | - Shady Younis
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden.,Department of Animal Production, Ain Shams University, Shoubra El-Kheima, Cairo, Egypt
| | - Qian Yu
- Department of Medical Cell Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Axel Klaesson
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Anders Tengholm
- Department of Medical Cell Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Nils Welsh
- Department of Medical Cell Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Leif Andersson
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden.,Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden; and
| |
Collapse
|