1
|
Kumar Pradhan S, Morrow JL, Sharpe SR, Karuppannasamy A, Ramasamy E, Bynakal S, Maligeppagol M, Ramasamy A, Riegler M. RNA virus diversity and prevalence in field and laboratory populations of melon fly throughout its distribution. J Invertebr Pathol 2024; 204:108117. [PMID: 38679365 DOI: 10.1016/j.jip.2024.108117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/17/2024] [Accepted: 04/25/2024] [Indexed: 05/01/2024]
Abstract
Insects have a rich diversity of RNA viruses that can either cause acute infections or persist in host populations without visible symptoms. The melon fly, Zeugodacus cucurbitae (Tephritidae) causes substantial economic losses through infestation of diverse cucurbit and other crops. Of Indomalayan origin, it is now established in many tropical regions of the world. The virome diversity of Z. cucurbitae is largely unknown across large parts of its distribution, including the Indian subcontinent. We have analysed three transcriptomes each of one field-collected and one laboratory-reared Z. cucurbitae population from Bangalore (India) and discovered genomes of ten putative RNA viruses: two sigmaviruses, one chimbavirus, one cripavirus, one noda-like virus, one nora virus, one orbivirus, one partiti-like virus, one sobemovirus and one toti-like virus. Analysis of the only available host genome of a Hawaiian Z. cucurbitae population did not detect host genome integration of the detected viruses. While all ten viruses were found in the Bangalore field population only seven were detected in the laboratory population, indicating that these seven may cause persistent covert infections. Using virus-specific RNA-dependent RNA polymerase gene primers, we detected nine of the RNA viruses with an overall low variant diversity in some but not all individual flies from four out of five Indian regions. We then screened 39 transcriptomes of Z. cucurbitae laboratory populations from eastern Asia (Guangdong, Hainan, Taiwan) and the Pacific region (Hawaii), and detected seven of the ten virus genomes. We found additional genomes of a picorna-like virus and a negev-like virus. Hawaii as the only tested population from the fly's invasive range only had one virus. Our study provides evidence of new and high RNA virus diversity in Indian populations within the original range of Z. cucurbitae, as well as the presence of persistent covert infections in laboratory populations. It builds the basis for future research of tephritid-associated RNA viruses, including their host effects, epidemiology and application potential in biological control.
Collapse
Affiliation(s)
- Sanjay Kumar Pradhan
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia; ICAR- Indian Institute of Horticultural Research, Hesaraghatta Lake, Bengaluru 560089, Karnataka, India; Department of Agricultural Entomology, University of Agricultural Sciences, Bengaluru 560065, Karnataka, India.
| | - Jennifer L Morrow
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia.
| | - Stephen R Sharpe
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia.
| | - Ashok Karuppannasamy
- ICAR- Indian Institute of Horticultural Research, Hesaraghatta Lake, Bengaluru 560089, Karnataka, India; Tamil Nadu Agricultural University, Coimbatore 641003, Tamil Nadu, India; Tata Institute for Genetics and Society, Bengaluru 560065, Karnataka, India.
| | - Ellango Ramasamy
- Computational and Mathematical Biology Centre (CMBC), THSTI- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad 121001, Haryana, India.
| | - Shivanna Bynakal
- Department of Agricultural Entomology, University of Agricultural Sciences, Bengaluru 560065, Karnataka, India.
| | - Manamohan Maligeppagol
- ICAR- Indian Institute of Horticultural Research, Hesaraghatta Lake, Bengaluru 560089, Karnataka, India.
| | - Asokan Ramasamy
- ICAR- Indian Institute of Horticultural Research, Hesaraghatta Lake, Bengaluru 560089, Karnataka, India.
| | - Markus Riegler
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia.
| |
Collapse
|
2
|
Li JB, Liu Q, Ma S, Wang YY, Liu XZ, Wang CW, Wang DJ, Hu ZZ, Gan JW, Zhu XY, Li BP, Yin MZ, Zhang YN. Binding properties of chemosensory protein 4 in Riptortus pedestris to aggregation pheromones. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 201:105874. [PMID: 38685243 DOI: 10.1016/j.pestbp.2024.105874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 03/11/2024] [Accepted: 03/13/2024] [Indexed: 05/02/2024]
Abstract
In insects, chemosensory proteins (CSPs) play an important role in the perception of the external environment and have been widely used for protein-binding characterization. Riptortus pedestris has received increased attention as a potential cause of soybean staygreen syndrome in recent years. In this study, we found that RpedCSP4 expression in the antennae of adult R. pedestris increased with age, with no significant difference in expression level observed between males and females, as determined through quantitative real-time polymerase chain reaction (qRT-PCR). Subsequently, we investigated the ability of RpedCSP4 to bind various ligands (five aggregated pheromone components and 13 soybean volatiles) using a prokaryotic expression system and fluorescence competitive binding assays. We found that RpedCSP4 binds to three aggregated pheromone components of R. pedestris, namely, ((E)-2-hexenyl (Z)-3-hexenoate (E2Z3), (E)-2-hexenyl (E)-2-hexenoate (E2E2), and (E)-2-hexenyl hexenoate (E2HH)), and that its binding capacities are most stable under acidic condition. Finally, the structure and protein-ligand interactions of RpedCSP4 were further analyzed via homology modeling, molecular docking, and targeted mutagenesis experiments. The L29A mutant exhibited a loss of binding ability to these three aggregated pheromone components. Our results show that the olfactory function of RpedCSP4 provides new insights into the binding mechanism of RpedCSPs to aggregation pheromones and contributes to discover new target candidates that will provide a theoretical basis for future population control of R. pedestris.
Collapse
Affiliation(s)
- Jin-Bu Li
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; Suzhou Academy of Agricultural Sciences, Suzhou 234000, China; Suzhou Vocational and Technical College, Suzhou 234000, China
| | - Qiang Liu
- Anhui Engineering Research Center for Green Production Technology of Drought Grain Crops, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| | - Sai Ma
- Anhui Engineering Research Center for Green Production Technology of Drought Grain Crops, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| | - Yue-Ying Wang
- Suzhou Academy of Agricultural Sciences, Suzhou 234000, China
| | - Xing-Zhou Liu
- Suzhou Academy of Agricultural Sciences, Suzhou 234000, China
| | - Chao-Wei Wang
- Suzhou Academy of Agricultural Sciences, Suzhou 234000, China
| | - Da-Jiang Wang
- Suzhou Academy of Agricultural Sciences, Suzhou 234000, China
| | | | - Jia-Wen Gan
- Anhui Engineering Research Center for Green Production Technology of Drought Grain Crops, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| | - Xiu-Yun Zhu
- Anhui Engineering Research Center for Green Production Technology of Drought Grain Crops, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| | - Bao-Ping Li
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Mao-Zhu Yin
- Suzhou Academy of Agricultural Sciences, Suzhou 234000, China.
| | - Ya-Nan Zhang
- Anhui Engineering Research Center for Green Production Technology of Drought Grain Crops, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China.
| |
Collapse
|
3
|
Wang JJ, Ma C, Yue Y, Yang J, Chen LX, Wang YT, Zhao CC, Gao X, Chen HS, Ma WH, Zhou Z. Identification of candidate chemosensory genes in Bactrocera cucurbitae based on antennal transcriptome analysis. Front Physiol 2024; 15:1354530. [PMID: 38440345 PMCID: PMC10910661 DOI: 10.3389/fphys.2024.1354530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 01/24/2024] [Indexed: 03/06/2024] Open
Abstract
The melon fly, Bactrocera cucurbitae (Coquillett) (Tephritidae: Diptera), is an invasive pest that poses a significant threat to agriculture in Africa and other regions. Flies are known to use their olfactory systems to recognise environmental chemical cues. However, the molecular components of the chemosensory system of B. cucurbitae are poorly characterised. To address this knowledge gap, we have used next-generation sequencing to analyse the antenna transcriptomes of sexually immature B. cucurbitae adults. The results have identified 160 potential chemosensory genes, including 35 odourant-binding proteins (OBPs), one chemosensory protein (CSP), three sensory neuron membrane proteins (SNMPs), 70 odourant receptors (ORs), 30 ionotropic receptors (IRs), and 21 gustatory receptors (GRs). Quantitative real-time polymerase chain reaction quantitative polymerase chain reaction was used to validate the results by assessing the expression profiles of 25 ORs and 15 OBPs. Notably, high expression levels for BcucOBP5/9/10/18/21/23/26 were observed in both the female and male antennae. Furthermore, BcucOROrco/6/7/9/13/15/25/27/28/42/62 exhibited biased expression in the male antennae, whereas BcucOR55 showed biased expression in the female antennae. This comprehensive investigation provides valuable insights into insect olfaction at the molecular level and will, thus, help to facilitate the development of enhanced pest management strategies in the future.
Collapse
Affiliation(s)
- Jing Jing Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya, China
| | - Chao Ma
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya, China
| | - Yang Yue
- National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya, China
| | - Jingfang Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya, China
| | - Li Xiang Chen
- National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya, China
| | - Yi Ting Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya, China
| | | | - Xuyuan Gao
- National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya, China
- Guangxi Key Laboratory for Biology of Crop Diseases and Insect Pests, Institute of Plant Protection, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Hong Song Chen
- National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya, China
- Guangxi Key Laboratory for Biology of Crop Diseases and Insect Pests, Institute of Plant Protection, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Wei Hua Ma
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zhongshi Zhou
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya, China
| |
Collapse
|
4
|
Yin MZ, Li JQ, Liu Q, Ma S, Hu ZZ, Liu XZ, Wang CW, Yao WC, Zhu XY, Wang YY, Li JB, Zhang YN. Binding properties of chemosensory protein 12 in Riptortus pedestris to aggregation pheromone (E)-2-hexenyl (Z)-3-hexenoate. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 194:105513. [PMID: 37532328 DOI: 10.1016/j.pestbp.2023.105513] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/08/2023] [Accepted: 06/29/2023] [Indexed: 08/04/2023]
Abstract
Riptortus pedestris (bean bug), a common soybean pest, has a highly developed olfactory system to find hosts for feeding and oviposition. Chemosensory proteins (CSPs) have been identified in many insect species; however, their functions in R. pedestris remain unknown. In this study, quantitative real time-polymerase chain reaction (qRT-PCR) revealed that the expression of RpedCSP12 in the adult antennae of R. pedestris increased with age. Moreover, a significant difference in the expression levels of RpedCSP12 was observed between male and female antennae at one and three days of age. We also investigated the binding ability of RpedCSP12 to different ligands using a prokaryotic expression system and fluorescence competitive binding assays. We found that RpedCSP12 only bound to one aggregation pheromone, (E)-2-hexenyl (Z)-3-hexenoate, and its binding decreased with increasing pH. Furthermore, homology modelling, molecular docking, and site-directed mutagenesis revealed that the Y27A, L74A, and L85A mutants lost their binding ability to (E)-2-hexenyl (Z)-3-hexenoate. Our findings highlight the olfactory roles of RpedCSP12, providing insights into the mechanism by which RpedCSPs bind to aggregation pheromones. Therefore, our study can be used as a theoretical basis for the population control of R. pedestris in the future.
Collapse
Affiliation(s)
- Mao-Zhu Yin
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China; Suzhou Academy of Agricultural Sciences, Suzhou 234000, China
| | - Jian-Qiao Li
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| | - Qiang Liu
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| | - Sai Ma
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| | | | - Xing-Zhou Liu
- Suzhou Academy of Agricultural Sciences, Suzhou 234000, China
| | - Chao-Wei Wang
- Suzhou Academy of Agricultural Sciences, Suzhou 234000, China
| | - Wei-Chen Yao
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| | - Xiu-Yun Zhu
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| | - Yue-Ying Wang
- Suzhou Academy of Agricultural Sciences, Suzhou 234000, China.
| | - Jin-Bu Li
- Suzhou Academy of Agricultural Sciences, Suzhou 234000, China; Suzhou Vocational and Technical College, Suzhou 234000, China.
| | - Ya-Nan Zhang
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China.
| |
Collapse
|
5
|
Jiao J, Zhu R, Ren L, Tao J, Luo Y. Identification and expression profile analysis of chemosensory genes in pine needle gall midge, Thecodiplosis japonensis (Diptera: Cecidomyiidae). Front Physiol 2023; 14:1123479. [PMID: 36875036 PMCID: PMC9978445 DOI: 10.3389/fphys.2023.1123479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/06/2023] [Indexed: 02/18/2023] Open
Abstract
Insects have highly specialized and sensitive olfactory systems involving several chemosensory genes to locate their mates and hosts or escape from predators. Pine needle gall midge, Thecodiplosis japonensis (Diptera: Cecidomyiidae), has invaded China since 2016 and caused serious damage. Till now, there is no environmentally friendly measure to control this gall midge. Screening molecules with high affinity to target odorant-binding protein to develop highly efficient attractants is a potential pest management method. However, the chemosensory genes in T. japonensis are still unclear. We identified 67 chemosensory-related genes in the transcriptomes of antennae, including 26 OBPs, 2 CSPs, 17 ORs, 3 SNMPs, 6 GRs, and 13 IRs, using high throughput sequencing. Phylogenetic analysis of these six chemosensory gene families among Dipteran was performed to classify and predict the functions. The expression profiles of OBPs, CSPs and ORs were validated by quantitative real-time PCR. 16 of the 26 OBPs were biased expressed in antennae. TjapORco and TjapOR5 were highly expressed in the antenna of unmated male and female adults. The functions of related OBPs and ORs genes were also discussed. These results provide a basis for the functional research on chemosensory genes at the molecular level.
Collapse
Affiliation(s)
- Jipeng Jiao
- Key Laboratory for Forest Pest Control, College of Forestry, Beijing Forestry University, Beijing, China
| | - Rui Zhu
- Key Laboratory for Forest Pest Control, College of Forestry, Beijing Forestry University, Beijing, China
| | - Lili Ren
- Key Laboratory for Forest Pest Control, College of Forestry, Beijing Forestry University, Beijing, China.,Sino-French Joint Laboratory for Invasive Forest Pests in Eurasia, Beijing Forestry University/French National Research Institute for Agriculture, Food and Environment (INRAE), Beijing, China
| | - Jing Tao
- Key Laboratory for Forest Pest Control, College of Forestry, Beijing Forestry University, Beijing, China.,Sino-French Joint Laboratory for Invasive Forest Pests in Eurasia, Beijing Forestry University/French National Research Institute for Agriculture, Food and Environment (INRAE), Beijing, China
| | - Youqing Luo
- Key Laboratory for Forest Pest Control, College of Forestry, Beijing Forestry University, Beijing, China.,Sino-French Joint Laboratory for Invasive Forest Pests in Eurasia, Beijing Forestry University/French National Research Institute for Agriculture, Food and Environment (INRAE), Beijing, China
| |
Collapse
|
6
|
Identification of Candidate Chemosensory Gene Families by Head Transcriptomes Analysis in the Mexican Fruit Fly, Anastrepha ludens Loew (Diptera: Tephritidae). Int J Mol Sci 2022; 23:ijms231810531. [PMID: 36142444 PMCID: PMC9500802 DOI: 10.3390/ijms231810531] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 08/31/2022] [Accepted: 09/06/2022] [Indexed: 11/16/2022] Open
Abstract
Insect chemosensory systems, such as smell and taste, are mediated by chemosensory receptor and non-receptor protein families. In the last decade, many studies have focused on discovering these families in Tephritidae species of agricultural importance. However, to date, there is no information on the Mexican fruit fly Anastrepha ludens Loew, a priority pest of quarantine importance in Mexico and other countries. This work represents the first effort to identify, classify and characterize the six chemosensory gene families by analyzing two head transcriptomes of sexually immature and mature adults of A. ludens from laboratory-reared and wild populations, respectively. We identified 120 chemosensory genes encoding 31 Odorant-Binding Proteins (OBPs), 5 Chemosensory Proteins (CSPs), 2 Sensory Neuron Membrane Proteins (SNMPs), 42 Odorant Receptors (ORs), 17 Ionotropic Receptors (IRs), and 23 Gustatory Receptors (GRs). The 120 described chemosensory proteins of the Mexican fruit fly significantly contribute to the genetic databases of insects, particularly dipterans. Except for some OBPs, this work reports for the first time the repertoire of olfactory proteins for one species of the genus Anastrepha, which provides a further basis for studying the olfactory system in the family Tephritidae, one of the most important for its economic and social impact worldwide.
Collapse
|
7
|
Zhang Y, Feng K, Mei R, Li W, Tang F. Analysis of the Antennal Transcriptome and Identification of Tissue-specific Expression of Olfactory-related Genes in Micromelalopha troglodyta (Lepidoptera: Notodontidae). JOURNAL OF INSECT SCIENCE (ONLINE) 2022; 22:8. [PMID: 36165424 PMCID: PMC9513789 DOI: 10.1093/jisesa/ieac056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Indexed: 06/16/2023]
Abstract
Micromelalopha troglodyta (Graeser) has been one of the most serious pests on poplars in China. We used Illumina HiSeq 2000 sequencing to construct an antennal transcriptome and identify olfactory-related genes. In total, 142 transcripts were identified, including 74 odorant receptors (ORs), 32 odorant-binding proteins (OBPs), 13 chemosensory proteins (CSPs), 20 ionotropic receptors (IRs), and 3 sensory neuron membrane proteins (SNMPs). The genetic relationships were obtained by the phylogenetic tree, and the tissue-specific expression of important olfactory-related genes was determined by quantitative real-time PCR (qRT-PCR). The results showed that most of these genes are abundantly expressed in the antennae and head. In most insects, olfaction plays a key role in foraging, host localization, and searching for mates. Our research lays the foundation for future research on the molecular mechanism of the olfactory system in M. troglodyta. In addition, this study provides a theoretical basis for exploring the relationship between M. troglodyta and their host plants, and for the biological control of M. troglodyta using olfactory receptor as targets.
Collapse
Affiliation(s)
| | | | - Ruolan Mei
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Wei Li
- College of Life Sciences, Yangtze University, Jingzhou 434025, Hubei Province, China
| | | |
Collapse
|
8
|
Li JB, Yin MZ, Yao WC, Ma S, Dewer Y, Liu XZ, Wang YY, Wang CW, Li BP, Zhu XY. Genome-Wide Analysis of Odorant-Binding Proteins and Chemosensory Proteins in the Bean bug Riptortus pedestris. Front Physiol 2022; 13:949607. [PMID: 35910558 PMCID: PMC9329939 DOI: 10.3389/fphys.2022.949607] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 06/20/2022] [Indexed: 11/30/2022] Open
Abstract
Insects have sensitive olfactory systems to interact with environment and respond to the change in host plant conditions. Key genes in the system can be potential targets for developing new and efficient pest behaviour control methods. Riptortus pedestris is an important soybean pest in East Asia and has caused serious damage to the soybean plants in Huang-Huai-Hai region of China. However, the current treatment of pests is dominated by chemical insecticides and lacks efficient sustainable prevention and control technologies. In this study, we identified 49 putative odorant-binding proteins (OBPs) (43 were new genes) and 25 chemosensory proteins (CSPs) (17 were new genes) in R. pedestris genome. These OBP and CSP genes are clustered in highly conserved groups from other hemipteran species in phylogenetic trees. Most RpedOBPs displayed antennal-biased expression. Among the 49 RpedOBPs, 33 were significantly highly expressed in the antennae, including three male-biased and nine female-biased. While many RpedCSPs were detected both in the antennae and in non-antennal tissues, only 11 RpedCSPs displayed antennal-biased expression, in which four RpedCSPs were male-biased and five RpedCSPs were female-biased. Some OBP and CSP genes showed sex-biased expression profiles. Our results not only provide a foundation for future exploration of the functions of RpedOBPs and RpedCSPs but also aid in developing environmentally friendly insecticides in the future.
Collapse
Affiliation(s)
- Jin-Bu Li
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- Institute of Plant Protection, Suzhou Academy of Agricultural Sciences, Suzhou, China
| | - Mao-Zhu Yin
- Institute of Plant Protection, Suzhou Academy of Agricultural Sciences, Suzhou, China
| | - Wei-Chen Yao
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Anhui Provincial Engineering Laboratory for Efficient Utilization of Featured Resource Plants, College of Life Sciences, Huaibei Normal University, Huaibei, China
| | - Sai Ma
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Anhui Provincial Engineering Laboratory for Efficient Utilization of Featured Resource Plants, College of Life Sciences, Huaibei Normal University, Huaibei, China
| | - Youssef Dewer
- Phytotoxicity Research Department, Central Agricultural Pesticide Laboratory, Agricultural Research Center, Giza, Egypt
| | - Xing-Zhou Liu
- Institute of Plant Protection, Suzhou Academy of Agricultural Sciences, Suzhou, China
| | - Yue-Ying Wang
- Institute of Plant Protection, Suzhou Academy of Agricultural Sciences, Suzhou, China
| | - Chao-Wei Wang
- Institute of Plant Protection, Suzhou Academy of Agricultural Sciences, Suzhou, China
| | - Bao-Ping Li
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- *Correspondence: Bao-Ping Li, ; Xiu-Yun Zhu,
| | - Xiu-Yun Zhu
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Anhui Provincial Engineering Laboratory for Efficient Utilization of Featured Resource Plants, College of Life Sciences, Huaibei Normal University, Huaibei, China
- *Correspondence: Bao-Ping Li, ; Xiu-Yun Zhu,
| |
Collapse
|
9
|
Shi W, Ye H, Roderick G, Cao J, Kerdelhué C, Han P. Role of Genes in Regulating Host Plants Expansion in Tephritid Fruit Flies (Diptera) and Potential for RNAi-Based Control. JOURNAL OF INSECT SCIENCE (ONLINE) 2022; 22:10. [PMID: 35983691 PMCID: PMC9389179 DOI: 10.1093/jisesa/ieac047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Indexed: 06/15/2023]
Abstract
Host plant expansion is an important survival strategy for tephritids as they expand their range. Successful host expansion requires tephritids to adapt to the chemical and nonchemical properties of a novel host fruit, such as fruit color, phenology, and phytochemicals. These plant properties trigger a series of processes in tephritids, with each process having its own genetic basis, which means that various genes are involved in regulating host plant expansion by tephritids. This review summarizes current knowledge on the categories and roles of genes involved in host plant expansion in several important tephritid species, including genes related to chemoreception (olfactory and gustation), vision, digestion, detoxification, development, ribosomal and energy metabolism. Chemoreception- and detoxification- and digestion-related genes are stimulated by volatile chemicals and secondary chemicals of different hosts, respectively, which are involved in the regulation of nervous signal transduction that triggers behavioral, physical, and chemical responses to the novel host fruit. Vision-, nerve-, and development-related genes and metabolism-associated genes are activated in response to nonchemical stimuli from different hosts, such as color and phenology, to regulate a comprehensive adaptation of the extending host for tephritids. The chemical and nonchemical signals of hosts activate ribosomal and energy-related genes that result in the basic regulation of many processes of host expansion, including detoxification and development. These genes do not regulate novel host use individually, but multiple genes regulate multilevel adaptation to novel host fruits via multiple mechanisms. These genes may also be potential target genes for RNAi-based control of tephritid pests.
Collapse
Affiliation(s)
- Wei Shi
- School of Ecology and Environment Science, Yunnan University, Kunming, China
| | - Hui Ye
- School of Ecology and Environment Science, Yunnan University, Kunming, China
| | - George Roderick
- Department of Environmental Science Policy and Management, University of California, Berkeley, CA 94720, USA
| | - Jun Cao
- School of Ecology and Environment Science, Yunnan University, Kunming, China
| | - Carole Kerdelhué
- INRAE, CBGP (INRAE, CIRAD, RD, Montpellier Supagro, University Montpellier), Montpellier, France
| | - Peng Han
- School of Ecology and Environment Science, Yunnan University, Kunming, China
| |
Collapse
|
10
|
Qu C, Yang ZK, Wang S, Zhao HP, Li FQ, Yang XL, Luo C. Binding Affinity Characterization of Four Antennae-Enriched Odorant-Binding Proteins From Harmonia axyridis (Coleoptera: Coccinellidae). Front Physiol 2022; 13:829766. [PMID: 35350682 PMCID: PMC8957989 DOI: 10.3389/fphys.2022.829766] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 01/24/2022] [Indexed: 11/30/2022] Open
Abstract
Harmonia axyridis is an important natural enemy that consumes many agricultural and forestry pests. It relies on a sensitive olfactory system to find prey and mates. Odorant-binding proteins (OBPs) as the first-step of recognizing volatiles, transport odors through sensillum lymph to odorant receptors (ORs). However, little is known about the molecular mechanisms of H. axyridis olfaction. In this study, four H. axyridis antenna specific OBP genes, HaxyOBP3, 5, 12, and 15, were bacterially expressed and the binding features of the four recombinant proteins to 40 substances were investigated using fluorescence competitive binding assays. Three-dimensional structure modeling and molecular docking analysis predicted the binding sites between HaxyOBPs and candidate volatiles. Developmental expression analyses showed that the four HaxyOBP genes displayed a variety of expression patterns at different development stages. The expression levels of HaxyOBP3 and HaxyOBP15 were higher in the adult stage than in the other developmental stages, and HaxyOBP15 was significantly transcriptionally enriched in adult stage. Ligand-binding analysis demonstrated that HaxyOBP3 and HaxyOBP12 only combined with two compounds, β-ionone and p-anisaldehyde. HaxyOBP5 protein displayed binding affinities with methyl salicylate, β-ionone, and p-anisaldehyde (Ki = 18.15, 11.71, and 13.45 μM). HaxyOBP15 protein had a broad binding profile with (E)-β-farnesene, β-ionone, α-ionone, geranyl acetate, nonyl aldehyde, dihydro-β-ionone, and linalyl acetate (Ki = 4.33-31.01 μM), and hydrophobic interactions played a key role in the binding of HaxyOBP15 to these substances according to molecular docking. Taken together, HaxyOBP15 exhibited a broader ligand-binding spectrum and a higher expression in adult stage than HaxyOBP3, 5, and 12, indicating HaxyOBP15 may play a greater role in binding volatiles than other three HaxyOBPs. The results will increase our understanding of the molecular mechanism of H. axyridis olfaction and may also result in new management strategies (attractants/repellents) that increase the biological control efficacy of H. axyridis.
Collapse
Affiliation(s)
- Cheng Qu
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Zhao-kai Yang
- Department of Applied Chemistry, Innovation Center of Pesticide Research, China Agricultural University, Beijing, China
| | - Su Wang
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Hai-peng Zhao
- College of Plant Protection, Shandong Agricultural University, Taian, China
| | - Feng-qi Li
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Xin-ling Yang
- Department of Applied Chemistry, Innovation Center of Pesticide Research, China Agricultural University, Beijing, China
| | - Chen Luo
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| |
Collapse
|
11
|
Ono H, Hee AKW, Jiang H. Recent Advancements in Studies on Chemosensory Mechanisms Underlying Detection of Semiochemicals in Dacini Fruit Flies of Economic Importance (Diptera: Tephritidae). INSECTS 2021; 12:106. [PMID: 33530622 PMCID: PMC7911962 DOI: 10.3390/insects12020106] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/22/2021] [Accepted: 01/23/2021] [Indexed: 11/16/2022]
Abstract
Dacini fruit flies mainly contain two genera, Bactrocera and Zeugodacus, and include many important pests of fruits and vegetables. Their life cycle is affected by various environmental cues. Among them, multiple characteristic semiochemicals have remarkable effects on their reproductive and host-finding behaviors. Notably, floral fragrances released from so-called fruit fly orchids strongly attract males of several Dacini fruit fly species. Focusing on the strong attraction of male flies to particular chemicals, natural and synthetic lures have been used for pest management. Thus, the perception of semiochemicals is important to understand environmental adaptation in Dacini fruit flies. Since next-generation sequencers are available, a large number of chemosensory-related genes have been identified in Dacini fruit flies, as well as other insects. Furthermore, recent studies have succeeded in the functional analyses of olfactory receptors in response to semiochemicals. Thus, characterization of molecular components required for chemoreception is under way. However, the mechanisms underlying chemoreception remain largely unknown. This paper reviews recent findings on peripheral mechanisms in the perception of odors in Dacini fruit flies, describing related studies in other dipteran species, mainly the model insect Drosophilamelanogaster. Based on the review, important themes for future research have also been discussed.
Collapse
Affiliation(s)
- Hajime Ono
- Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Alvin Kah-Wei Hee
- Department of Biology, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia;
| | - Hongbo Jiang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400716, China;
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
| |
Collapse
|
12
|
Potential of Cucurbitacin B and Epigallocatechin Gallate as Biopesticides against Aphis gossypii. INSECTS 2021; 12:insects12010032. [PMID: 33466501 PMCID: PMC7824822 DOI: 10.3390/insects12010032] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 12/29/2020] [Accepted: 12/31/2020] [Indexed: 11/17/2022]
Abstract
Simple Summary The Aphis gossypii is a global problem for its pesticide resistance with substantial economic and ecological cost and a wide host range, including cotton and cucurbits. The development of insecticide resistance is rapid and widespread and threatens crop productivity. Biopesticides have emerged as a better alternative for pest control. Cucurbitacin B (CucB) and epigallocatechin gallate (EGCG) are the major secondary metabolites of host plants cucurbits and cotton. In this study, we used cotton- and cucurbit-specialized aphids (CO and CU) as a study system to better understand the effects of CucB and EGCG on cotton aphid. Our study showed that CucB and EGCG can significantly reduce the population-level fitness of A. gossypii, affect their ability to adapt to nonhost plants and alter the levels of some detoxifying enzymes, which showed a potential to be developed into new biopesticides against the notorious aphids. Abstract Aphis gossypii (Glover) is distributed worldwide and causes substantial economic and ecological problems owing to its rapid reproduction and high pesticide resistance. Plant-derived cucurbitacin B (CucB) and epigallocatechin gallate (EGCG) are known to have insecticidal and repellent activities. However, their insecticidal activity on cotton- and cucurbit-specialized aphids (CO and CU), the two important host biotypes of A. gossypii, remains to be investigated. In the present study, we characterized, for the first time, the effects of these two plant extracts on the two host biotypes of A. gossypii. CucB and EGCG significantly reduced the A. gossypii population-level fitness and affected their ability to adapt to nonhost plants. Activities of important detoxification enzymes were also altered, indicating that pesticide resistance is weakened in the tested aphids. Our results suggest that CucB and EGCG have unique properties and may be developed as potential biopesticides for aphid control in agriculture.
Collapse
|
13
|
Ruiz-May E, Altúzar-Molina A, Elizalde-Contreras JM, Arellano-de los Santos J, Monribot-Villanueva J, Guillén L, Vázquez-Rosas-Landa M, Ibarra-Laclette E, Ramírez-Vázquez M, Ortega R, Aluja M. A First Glimpse of the Mexican Fruit Fly Anastrepha ludens (Diptera: Tephritidae) Antenna Morphology and Proteome in Response to a Proteinaceous Attractant. Int J Mol Sci 2020; 21:ijms21218086. [PMID: 33138264 PMCID: PMC7663321 DOI: 10.3390/ijms21218086] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/25/2020] [Accepted: 10/26/2020] [Indexed: 11/17/2022] Open
Abstract
Anastrepha ludens is a key pest of mangoes and citrus from Texas to Costa Rica but the mechanisms of odorant perception in this species are poorly understood. Detection of volatiles in insects occurs mainly in the antenna, where molecules penetrate sensillum pores and link to soluble proteins in the hemolymph until reaching specific odor receptors that trigger signal transduction and lead to behavioral responses. Scrutinizing the molecular foundation of odorant perception in A. ludens is necessary to improve biorational management strategies against this pest. After exposing adults of three maturity stages to a proteinaceous attractant, we studied antennal morphology and comparative proteomic profiles using nano-LC-MS/MS with tandem mass tags combined with synchronous precursor selection (SPS)-MS3. Antennas from newly emerged flies exhibited dense agglomerations of olfactory sensory neurons. We discovered 4618 unique proteins in the antennas of A. ludens and identified some associated with odor signaling, including odorant-binding and calcium signaling related proteins, the odorant receptor co-receptor (Orco), and putative odorant-degrading enzymes. Antennas of sexually immature flies exhibited the most upregulation of odor perception proteins compared to mature flies exposed to the attractant. This is the first report where critical molecular players are linked to the odor perception mechanism of A. ludens.
Collapse
Affiliation(s)
- Eliel Ruiz-May
- Red de Estudios Moleculares Avanzados, Clúster Científico y Tecnológico BioMimic, Instituto de Ecología A.C. (INECOL), Carretera Antigua a Coatepec 351, El Haya, Xalapa 91073, Veracruz, Mexico; (J.M.E.-C.); (J.A.-d.l.S.); (J.M.-V.); (E.I.-L.); (M.R.-V.)
- Correspondence: (E.R.-M.); (M.A.)
| | - Alma Altúzar-Molina
- Red de Manejo Biorracional de Plagas y Vectores, Clúster Científico y Tecnológico BioMimic, Instituto de Ecología A.C. (INECOL), Carretera Antigua a Coatepec 351, El Haya, Xalapa 91073, Veracruz, Mexico; (A.A.-M.); (L.G.); (M.V.-R.-L.); (R.O.)
| | - José M. Elizalde-Contreras
- Red de Estudios Moleculares Avanzados, Clúster Científico y Tecnológico BioMimic, Instituto de Ecología A.C. (INECOL), Carretera Antigua a Coatepec 351, El Haya, Xalapa 91073, Veracruz, Mexico; (J.M.E.-C.); (J.A.-d.l.S.); (J.M.-V.); (E.I.-L.); (M.R.-V.)
| | - Jiovanny Arellano-de los Santos
- Red de Estudios Moleculares Avanzados, Clúster Científico y Tecnológico BioMimic, Instituto de Ecología A.C. (INECOL), Carretera Antigua a Coatepec 351, El Haya, Xalapa 91073, Veracruz, Mexico; (J.M.E.-C.); (J.A.-d.l.S.); (J.M.-V.); (E.I.-L.); (M.R.-V.)
| | - Juan Monribot-Villanueva
- Red de Estudios Moleculares Avanzados, Clúster Científico y Tecnológico BioMimic, Instituto de Ecología A.C. (INECOL), Carretera Antigua a Coatepec 351, El Haya, Xalapa 91073, Veracruz, Mexico; (J.M.E.-C.); (J.A.-d.l.S.); (J.M.-V.); (E.I.-L.); (M.R.-V.)
| | - Larissa Guillén
- Red de Manejo Biorracional de Plagas y Vectores, Clúster Científico y Tecnológico BioMimic, Instituto de Ecología A.C. (INECOL), Carretera Antigua a Coatepec 351, El Haya, Xalapa 91073, Veracruz, Mexico; (A.A.-M.); (L.G.); (M.V.-R.-L.); (R.O.)
| | - Mirna Vázquez-Rosas-Landa
- Red de Manejo Biorracional de Plagas y Vectores, Clúster Científico y Tecnológico BioMimic, Instituto de Ecología A.C. (INECOL), Carretera Antigua a Coatepec 351, El Haya, Xalapa 91073, Veracruz, Mexico; (A.A.-M.); (L.G.); (M.V.-R.-L.); (R.O.)
| | - Enrique Ibarra-Laclette
- Red de Estudios Moleculares Avanzados, Clúster Científico y Tecnológico BioMimic, Instituto de Ecología A.C. (INECOL), Carretera Antigua a Coatepec 351, El Haya, Xalapa 91073, Veracruz, Mexico; (J.M.E.-C.); (J.A.-d.l.S.); (J.M.-V.); (E.I.-L.); (M.R.-V.)
| | - Mónica Ramírez-Vázquez
- Red de Estudios Moleculares Avanzados, Clúster Científico y Tecnológico BioMimic, Instituto de Ecología A.C. (INECOL), Carretera Antigua a Coatepec 351, El Haya, Xalapa 91073, Veracruz, Mexico; (J.M.E.-C.); (J.A.-d.l.S.); (J.M.-V.); (E.I.-L.); (M.R.-V.)
| | - Rafael Ortega
- Red de Manejo Biorracional de Plagas y Vectores, Clúster Científico y Tecnológico BioMimic, Instituto de Ecología A.C. (INECOL), Carretera Antigua a Coatepec 351, El Haya, Xalapa 91073, Veracruz, Mexico; (A.A.-M.); (L.G.); (M.V.-R.-L.); (R.O.)
| | - Martín Aluja
- Red de Manejo Biorracional de Plagas y Vectores, Clúster Científico y Tecnológico BioMimic, Instituto de Ecología A.C. (INECOL), Carretera Antigua a Coatepec 351, El Haya, Xalapa 91073, Veracruz, Mexico; (A.A.-M.); (L.G.); (M.V.-R.-L.); (R.O.)
- Correspondence: (E.R.-M.); (M.A.)
| |
Collapse
|
14
|
Wu Z, Cui Y, Ma J, Qu M, Lin J. Analyses of chemosensory genes provide insight into the evolution of behavioral differences to phytochemicals in Bactrocera species. Mol Phylogenet Evol 2020; 151:106858. [DOI: 10.1016/j.ympev.2020.106858] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 05/15/2020] [Accepted: 05/21/2020] [Indexed: 02/07/2023]
|
15
|
Li L, Gao X, Gui H, Lan M, Zhu J, Xie Y, Zhan Y, Wang Z, Li Z, Ye M, Wu G. Identification and preliminary characterization of chemosensory-related proteins in the gall fly, Procecidochares utilis by transcriptomic analysis. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2020; 36:100724. [PMID: 32836214 DOI: 10.1016/j.cbd.2020.100724] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/24/2020] [Accepted: 08/05/2020] [Indexed: 01/20/2023]
Abstract
Chemoreception is critical for insect behaviors such as foraging, host searching and oviposition. The process of chemoreception is mediated by a series of proteins, including odorant-binding proteins (OBPs), gustatory receptors (GRs), odorant receptors (ORs), ionotropic receptors (IRs), chemosensory proteins (CSPs) and sensory neuron membrane proteins (SNMPs). The tephritid stem gall fly, Procecidochares utilis Stone, is a type of egg parasitic insect, which is an effective biological control agent for the invasive weed Ageratina adenophora in many countries. However, the study of molecular components related to the olfactory system of P. utilis has not been investigated. Here, we conducted the developmental transcriptome (egg, first-third instar larva, pupa, female and male adult) of P. utilis using next-generation sequencing technology and identified a total of 133 chemosensory genes, including 40 OBPs, 29 GRs, 24 ORs, 28 IRs, 6 CSPs, and 6 SNMPs. The sequences of these candidate chemosensory genes were confirmed by BLAST, and phylogenetic analysis was performed. Quantitative real-time PCR (qRT-PCR) confirmed that the expression levels of the candidate OBPs varied at the different developmental stages of P. utilis with most OBPs expressed mainly in the pupae, female and male adults but scarcely in eggs and larvae, which was consistent with the differentially expressed genes (DEGs) analysis using the fragments per kilobase per million fragments (FPKM) value. Our results provide a significant contribution towards the knowledge of the set of chemosensory proteins and help advance the use of P. utilis as biological control agents.
Collapse
Affiliation(s)
- Lifang Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China
| | - Xi Gao
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China
| | - Huamin Gui
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China
| | - Mingxian Lan
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China
| | - Jiaying Zhu
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming 650224, China
| | - Yonghui Xie
- Kunming Branch of Yunnan Provincial Tobacco Company, Kunming 650021, China
| | - Youguo Zhan
- Kunming Branch of Yunnan Provincial Tobacco Company, Kunming 650021, China
| | - Zhijiang Wang
- Kunming Branch of Yunnan Provincial Tobacco Company, Kunming 650021, China
| | - Zhengyue Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China
| | - Min Ye
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China.
| | - Guoxing Wu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China.
| |
Collapse
|
16
|
Zhang XQ, Yan Q, Li LL, Xu JW, Mang D, Wang XL, Hoh HH, Ye J, Ju Q, Ma Y, Liang M, Zhang YY, Zhu XY, Zhang F, Dong SL, Zhang YN, Zhang LW. Different binding properties of two general-odorant binding proteins in Athetis lepigone with sex pheromones, host plant volatiles and insecticides. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2020; 164:173-182. [PMID: 32284124 DOI: 10.1016/j.pestbp.2020.01.012] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 01/01/2020] [Accepted: 01/21/2020] [Indexed: 06/11/2023]
Abstract
Athetis lepigone (Alep) is a polyphagous pest native to Europe and Asia that has experienced major outbreaks in the summer maize area of China since 2011 and has shown evidence of resistance to some insecticides. Insect olfaction is crucial for recognition of sex pheromones, host plant volatiles and even insecticides, in which two general-odorant binding proteins (GOBPs) play important roles. To elucidate the functions of GOBPs in A. lepigone, we first expressed the two AlepGOBP proteins in the E. coli expression system. Then, the results of fluorescence competitive binding assays demonstrated that the high binding affinity of AlepGOBP2 with sex pheromones [(Z)-7-dodecenyl acetate (Z7-12:Ac), Ki = 0.65 μM; (Z)-9-tetradecenyl acetate (Z9-14:Ac), Ki = 0.83 μM], two maize plant volatiles [Ocimene, Ki = 9.63 μM; (E)-β-Farnesene, Ki = 4.76 μM] and two insecticides (Chlorpyrifos Ki =5.61 μM; Phoxim, Ki = 4.38 μM). However, AlepGOBP1 could only bind Ocimene (Ki = 13.0 μM) and two insecticides (Chlorpyrifos Ki =4.46 μM; Phoxim, Ki = 3.27 μM). These results clearly suggest that AlepGOBP1 and AlepGOBP2 differentiate among odorants and other ligands. The molecular docking results further revealed different key residues involved in the ligand binding of AlepGOBPs. In summary, this study provides a foundation for exploring the olfactory mechanism of A. lepigone and identified two potential target genes for the development of highly effective insecticides in the future.
Collapse
Affiliation(s)
- Xiao-Qing Zhang
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, College of Life Sciences, Huaibei Normal University, Huaibei, China; Anhui Provincial Key Laboratory of Microbial Control, School of Forestry & Landscape Architecture, Anhui Agricultural University, Hefei, China; Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Qi Yan
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Lu-Lu Li
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, College of Life Sciences, Huaibei Normal University, Huaibei, China
| | - Ji-Wei Xu
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, College of Life Sciences, Huaibei Normal University, Huaibei, China
| | - Dingze Mang
- Bioinspired Soft Matter Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Xue-Liang Wang
- Dangshan Plant Protection and Plant Inspection Service Center, Dangshan, China
| | - Hong-Huat Hoh
- Bioinspired Soft Matter Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Jia Ye
- Anhui Provincial Key Laboratory of Microbial Control, School of Forestry & Landscape Architecture, Anhui Agricultural University, Hefei, China
| | - Qian Ju
- Shandong Peanut Research Institute, Qingdao, China
| | - Yu Ma
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, College of Life Sciences, Huaibei Normal University, Huaibei, China
| | - Meng Liang
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, College of Life Sciences, Huaibei Normal University, Huaibei, China
| | - Yun-Ying Zhang
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, College of Life Sciences, Huaibei Normal University, Huaibei, China
| | - Xiu-Yun Zhu
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, College of Life Sciences, Huaibei Normal University, Huaibei, China
| | - Fan Zhang
- Key Laboratory of Animal Resistance Research, College of Life Science, Shandong Normal University, Jinan, China
| | - Shuang-Lin Dong
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Ya-Nan Zhang
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, College of Life Sciences, Huaibei Normal University, Huaibei, China.
| | - Long-Wa Zhang
- Anhui Provincial Key Laboratory of Microbial Control, School of Forestry & Landscape Architecture, Anhui Agricultural University, Hefei, China.
| |
Collapse
|
17
|
Wu Z, Kang C, Qu M, Chen J, Chen M, Bin S, Lin J. Candidates for chemosensory genes identified in the Chinese citrus fly, Bactrocera minax, through a transcriptomic analysis. BMC Genomics 2019; 20:646. [PMID: 31412763 PMCID: PMC6693287 DOI: 10.1186/s12864-019-6022-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 08/09/2019] [Indexed: 11/10/2022] Open
Abstract
Background The males of many Bactrocera species (Diptera: Tephritidae) respond strongly to plant-derived chemicals (male lures) and can be divided into cue lure/raspberry ketone (CL/RK) responders, methyl eugenol (ME) responders and non-responders. Representing a non-responders, Bactrocera minax display unique olfactory sensory characteristics compared with other Bactrocera species. The chemical senses of insects mediate behaviors that are associated with survival and reproduction. Here, we report the generation of transcriptomes from antennae and the rectal glands of both male and female adults of B. minax using Illumina sequencing technology, and annotated gene families potentially responsible for chemosensory. Results We developed four transcriptomes from different tissues of B. minax and identified a set of candidate genes potentially responsible for chemosensory by analyzing the transcriptomic data. The candidates included 40 unigenes coding for odorant receptors (ORs), 30 for ionotropic receptors (IRs), 17 for gustatory receptors (GRs), three for sensory neuron membrane proteins (SNMPs), 33 for odorant-binding proteins (OBPs), four for chemosensory proteins (CSPs). Sex- and tissue-specific expression profiles for candidate chemosensory genes were analyzed via transcriptomic data analyses, and expression profiles of all ORs and antennal IRs were investigated by real-time quantitative PCR (RT-qPCR). Phylogenetic analyses were also conducted on gene families and paralogs from other insect species together. Conclusions A large number of chemosensory genes were identified from transcriptomic data. Identification of these candidate genes and their expression profiles in various tissues provide useful information for future studies towards revealing their function in B. minax. Electronic supplementary material The online version of this article (10.1186/s12864-019-6022-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zhongzhen Wu
- Guang Zhou City Key Laboratory of Subtropical Fruit Tree Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, People's Republic of China
| | - Cong Kang
- Guang Zhou City Key Laboratory of Subtropical Fruit Tree Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, People's Republic of China
| | - Mengqiu Qu
- Guang Zhou City Key Laboratory of Subtropical Fruit Tree Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, People's Republic of China
| | - Junlong Chen
- Guang Zhou City Key Laboratory of Subtropical Fruit Tree Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, People's Republic of China
| | - Mingshun Chen
- Department of Entomology, Kansas State University, Manhattan, KS, 66506, USA
| | - Shuying Bin
- Guang Zhou City Key Laboratory of Subtropical Fruit Tree Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, People's Republic of China
| | - Jintian Lin
- Guang Zhou City Key Laboratory of Subtropical Fruit Tree Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, People's Republic of China.
| |
Collapse
|
18
|
Chieng ACT, Hee AKW, Wee SL. Involvement of the Antennal and Maxillary Palp Structures in Detection and Response to Methyl Eugenol by Male Bactrocera dorsalis (Diptera: Tephritidae). JOURNAL OF INSECT SCIENCE (ONLINE) 2018; 18:5142394. [PMID: 30351432 PMCID: PMC6197378 DOI: 10.1093/jisesa/iey104] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Indexed: 05/04/2023]
Abstract
The oriental fruit fly, Bactrocera dorsalis (Handel) is one of the most destructive pests of fruits. The discovery of methyl eugenol (ME) as a potent male attractant for this species has led to its successful use in area-wide fruit fly control programs such as male annihilation. While the antenna is recognized as primarily responsible for male flies' detection of attractants such as ME, little is known of the involvement of the maxillary palp. Using behavioral assays involving males with intact and ablated antennae and maxillary palp structures, we seek to ascertain the relative involvement of the maxillary palp in the ability of the male fly to detect ME. In cage bioassays (distance of ≤40 cm from the source), >97% of unmodified males will normally show a response to ME. Here, we showed that 17.6% of males with their antennae ablated were still attracted to ME versus 75.0% of males with their palps ablated. However, none of the antennae-ablated males were able to detect ME over a distance of >100 cm. Furthermore, wind tunnel bioassays showed that maxillary palp-ablated males took a significantly longer time compared to unablated males to successfully detect and eventually feed on ME. These results suggest that although the antennae are necessary for detection of ME over longer distances, at shorter distances, both antennae and maxillary palps are also involved in detecting ME. Hence, those palps may play a larger role than previously recognized in maneuvering males toward lure sources over shorter ranges.
Collapse
Affiliation(s)
- Anna Chui-Ting Chieng
- Department of Biology, Faculty of Science, Universiti Putra Malaysia, UPM Serdang, Selangor Darul Ehsan, Malaysia
| | - Alvin Kah-Wei Hee
- Department of Biology, Faculty of Science, Universiti Putra Malaysia, UPM Serdang, Selangor Darul Ehsan, Malaysia
- Corresponding author, e-mail:
| | - Suk-Ling Wee
- Centre of Insect Systematics, School of Environmental and Natural Resource Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor Darul Ehsan, Malaysia
| |
Collapse
|
19
|
Zhao Y, Ding J, Zhang Z, Liu F, Zhou C, Mu W. Sex- and Tissue-Specific Expression Profiles of Odorant Binding Protein and Chemosensory Protein Genes in Bradysia odoriphaga (Diptera: Sciaridae). Front Physiol 2018; 9:107. [PMID: 29666581 PMCID: PMC5891581 DOI: 10.3389/fphys.2018.00107] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 02/02/2018] [Indexed: 11/13/2022] Open
Abstract
Bradysia odoriphaga is an agricultural pest insect affecting the production of Chinese chive and other liliaceous vegetables in China, and it is significantly attracted by sex pheromones and the volatiles derived from host plants. Despite verification of this chemosensory behavior, however, it is still unknown how B. odoriphaga recognizes these volatile compounds on the molecular level. Many of odorant binding proteins (OBPs) and chemosensory proteins (CSPs) play crucial roles in olfactory perception. Here, we identified 49 OBP and 5 CSP genes from the antennae and body transcriptomes of female and male adults of B. odoriphaga, respectively. Sequence alignment and phylogenetic analysis among Dipteran OBPs and CSPs were analyzed. The sex- and tissue-specific expression profiles of 54 putative chemosensory genes among different tissues were investigated by quantitative real-time PCR (qRT-PCR). qRT-PCR analysis results suggested that 22 OBP and 3 CSP genes were enriched in the antennae, indicating they might be essential for detection of general odorants and pheromones. Among these antennae-enriched genes, nine OBPs (BodoOBP2/4/6/8/12/13/20/28/33) were enriched in the male antennae and may play crucial roles in the detection of sex pheromones. Moreover, some OBP and CSP genes were enriched in non-antennae tissues, such as in the legs (BodoOBP3/9/19/21/34/35/38/39/45 and BodoCSP1), wings (BodoOBP17/30/32/37/44), abdomens and thoraxes (BodoOBP29/36), and heads (BodoOBP14/23/31 and BodoCSP2), suggesting that these genes might be involved in olfactory, gustatory, or other physiological processes. Our findings provide a starting point to facilitate functional research of these chemosensory genes in B. odoriphaga at the molecular level.
Collapse
Affiliation(s)
- Yunhe Zhao
- College of Plant Protection, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, Shandong Agricultural University, Tai'an, China
| | - Jinfeng Ding
- College of Plant Protection, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, Shandong Agricultural University, Tai'an, China
| | - Zhengqun Zhang
- College of Horticultural Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Feng Liu
- College of Plant Protection, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, Shandong Agricultural University, Tai'an, China
| | - Chenggang Zhou
- College of Plant Protection, Shandong Agricultural University, Tai'an, China
| | - Wei Mu
- College of Plant Protection, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, Shandong Agricultural University, Tai'an, China
| |
Collapse
|
20
|
Incongruence between molecules and morphology: A seven-gene phylogeny of Dacini fruit flies paves the way for reclassification (Diptera: Tephritidae). Mol Phylogenet Evol 2018; 121:139-149. [DOI: 10.1016/j.ympev.2017.12.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 12/02/2017] [Accepted: 12/03/2017] [Indexed: 11/23/2022]
|
21
|
Jacob V, Scolari F, Delatte H, Gasperi G, Jacquin-Joly E, Malacrida AR, Duyck PF. Current source density mapping of antennal sensory selectivity reveals conserved olfactory systems between tephritids and Drosophila. Sci Rep 2017; 7:15304. [PMID: 29127313 PMCID: PMC5681579 DOI: 10.1038/s41598-017-15431-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 10/27/2017] [Indexed: 11/09/2022] Open
Abstract
Ecological specialization of insects involves the functional and morphological reshaping of olfactory systems. Little is known about the degree to which insect sensitivity to odorant compounds is conserved between genera, tribes, or families. Here we compared the olfactory systems of six tephritid fruit fly species spanning two tribes and the distantly related Drosophila melanogaster at molecular, functional, and morphological levels. Olfaction in these flies is mediated by a set of olfactory receptors (ORs) expressed in different functional classes of neurons located in distinct antennal regions. We performed a phylogenetic analysis that revealed both family-specific OR genes and putative orthologous OR genes between tephritids and Drosophila. With respect to function, we then used a current source density (CSD) analysis to map activity across antennae. Functional maps mirrored the intrinsic structure of antennae observed with scanning electron microscopy. Together, the results revealed partial conservation of the olfactory systems between tephritids and Drosophila. We also demonstrate that the mapping of olfactory responses is necessary to decipher antennal sensory selectivity to olfactory compounds. CSD analysis can be easily applied to map antennae of other species and therefore enables the rapid deriving of olfactory maps and the reconstructing of the target organisms' history of evolution.
Collapse
Affiliation(s)
- Vincent Jacob
- UMR PVBMT, Université de la Réunion, Saint Pierre, La Réunion, France.
- UMR PVBMT, CIRAD, Saint Pierre, La Réunion, France.
| | - Francesca Scolari
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | | | - Giuliano Gasperi
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | | | - Anna R Malacrida
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | | |
Collapse
|
22
|
Campanini EB, Congrains C, Torres FR, de Brito RA. Odorant-binding proteins expression patterns in recently diverged species of Anastrepha fruit flies. Sci Rep 2017; 7:2194. [PMID: 28526847 PMCID: PMC5438349 DOI: 10.1038/s41598-017-02371-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 04/11/2017] [Indexed: 11/21/2022] Open
Abstract
We studied two species of closely related South American fruit flies, Anastrepha fraterculus and Anastrepha obliqua which, despite being able to interbreed, still show some ecological and reproductive differences. Because part of these differences, such as host and mate preferences, may be related to olfactory perception, we focused our investigation on the differential expression of Odorant-binding protein (OBP) gene family, which participate in initial steps of the olfactory signal transduction cascade. We investigated patterns of expression of eight OBP genes by qPCR in male and female head tissues of both species. The expression patterns of these OBPs suggest that some OBP genes are more likely involved with the location of food resources, while others seem to be associated with mate and pheromone perception. Furthermore, the expression patterns obtained at different reproductive stages indicate that OBP expression levels changed significantly after mating in males and females of both species. All eight OBP genes analyzed here showed significant levels of differential expression between A. fraterculus and A. obliqua, suggesting that they may hold important roles in their olfactory perception differences, and consequently, may potentially be involved in their differentiation.
Collapse
Affiliation(s)
- Emeline Boni Campanini
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, Brazil.
| | - Carlos Congrains
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, Brazil
| | - Felipe Rafael Torres
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, Brazil
| | | |
Collapse
|
23
|
Zhang YN, Zhu XY, Ma JF, Dong ZP, Xu JW, Kang K, Zhang LW. Molecular identification and expression patterns of odorant binding protein and chemosensory protein genes in Athetis lepigone (Lepidoptera: Noctuidae). PeerJ 2017; 5:e3157. [PMID: 28382236 PMCID: PMC5376112 DOI: 10.7717/peerj.3157] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 03/07/2017] [Indexed: 11/20/2022] Open
Abstract
The olfaction system of insects plays an important role in mediating various physiological behaviors, including locating hosts, avoiding predators, and recognizing mates and oviposition sites. Therefore, some key genes in the system present valuable opportunities as targets for developing novel green pesticides. Athetis lepigone, a noctuid moth can feed on more than 30 different host plants making it a serious polyphagous pest worldwide, and it has become one of the major maize pests in northern China since 2011. However, there are no reports on effective and environmentally friendly pesticides for the control of this pest. In this study, we identified 28 genes encoding putative odorant binding proteins (OBPs) and 20 chemosensory protein (CSPs) genes based on our previous A. lepigone transcriptomic data. A tissue expression investigation and phylogenetic analysis were conducted in an effort to postulate the functions of these genes. Our results show that nearly half (46.4%) of the AlOBPs exhibited antennae-biased expression while many of the AlCSPs were highly abundant in non-antennal tissues. These results will aid in exploring the chemosensory mechanisms of A. lepigone and developing environmentally friendly pesticides against this pest in the future.
Collapse
Affiliation(s)
- Ya-Nan Zhang
- College of Life Sciences, Huaibei Normal University, Huaibei, China; Key Laboratory of Integrated Pest Management on Crops in East China, Ministry of Agriculture, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Xiu-Yun Zhu
- College of Life Sciences, Huaibei Normal University , Huaibei , China
| | - Ji-Fang Ma
- Institute of Millet Crops, Hebei Academy of Agriculture and Forestry Sciences , Shijiazhuang , China
| | - Zhi-Ping Dong
- Institute of Millet Crops, Hebei Academy of Agriculture and Forestry Sciences , Shijiazhuang , China
| | - Ji-Wei Xu
- College of Life Sciences, Huaibei Normal University , Huaibei , China
| | - Ke Kang
- Anhui Vocational & Technical College of Forestry , Hefei , China
| | - Long-Wa Zhang
- Anhui Provincial Key Laboratory of Microbial Control, School of Forestry & Landscape Architecture, Anhui Agricultural University , Hefei , China
| |
Collapse
|
24
|
Zhang LW, Kang K, Jiang SC, Zhang YN, Wang TT, Zhang J, Sun L, Yang YQ, Huang CC, Jiang LY, Ding DG. Analysis of the Antennal Transcriptome and Insights into Olfactory Genes in Hyphantria cunea (Drury). PLoS One 2016; 11:e0164729. [PMID: 27741298 PMCID: PMC5065180 DOI: 10.1371/journal.pone.0164729] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 09/29/2016] [Indexed: 11/19/2022] Open
Abstract
Hyphantria cunea (Drury) (Lepidoptera: Arctiidae) is an invasive insect pest which, in China, causes unprecedented damage and economic losses due to its extreme fecundity and wide host range, including forest and shade trees, and even crops. Compared to the better known lepidopteran species which use Type-I pheromones, little is known at the molecular level about the olfactory mechanisms of host location and mate choice in H. cunea, a species using Type-II lepidopteran pheromones. In the present study, the H. cunea antennal transcriptome was constructed by Illumina Hiseq 2500TM sequencing, with the aim of discovering olfaction-related genes. We obtained 64,020,776 clean reads, and 59,243 unigenes from the analysis of the transcriptome, and the putative gene functions were annotated using gene ontology (GO) annotation. We further identified 124 putative chemosensory unigenes based on homology searches and phylogenetic analysis, including 30 odorant binding proteins (OBPs), 17 chemosensory proteins (CSPs), 52 odorant receptors (ORs), 14 ionotropic receptors (IRs), nine gustatory receptors (GRs) and two sensory neuron membrane proteins (SNMPs). We also found many conserved motif patterns of OBPs and CSPs using a MEME system. Moreover, we systematically analyzed expression patterns of OBPs and CSPs based on reverse transcription PCR and quantitative real time PCR (RT-qPCR) with RNA extracted from different tissues and life stages of both sexes in H. cunea. The antennae-biased expression may provide a deeper further understanding of olfactory processing in H. cunea. The first ever identification of olfactory genes in H. cunea may provide new leads for control of this major pest.
Collapse
Affiliation(s)
- Long-Wa Zhang
- Anhui Provincial Key Laboratory of Microbial Control, School of Forestry & Landscape Architecture, Anhui Agricultural University, Hefei, 230036, China
- * E-mail: (L-WZ); (Y-NZ)
| | - Ke Kang
- Anhui Provincial Key Laboratory of Microbial Control, School of Forestry & Landscape Architecture, Anhui Agricultural University, Hefei, 230036, China
| | - Shi-Chang Jiang
- Anhui Provincial Key Laboratory of Microbial Control, School of Forestry & Landscape Architecture, Anhui Agricultural University, Hefei, 230036, China
| | - Ya-Nan Zhang
- College of Life Sciences, Huaibei Normal University, Huaibei, 235000, China
- * E-mail: (L-WZ); (Y-NZ)
| | - Tian-Tian Wang
- Anhui Provincial Key Laboratory of Microbial Control, School of Forestry & Landscape Architecture, Anhui Agricultural University, Hefei, 230036, China
| | - Jing Zhang
- Anhui Provincial Key Laboratory of Microbial Control, School of Forestry & Landscape Architecture, Anhui Agricultural University, Hefei, 230036, China
| | - Long Sun
- Anhui Provincial Key Laboratory of Microbial Control, School of Forestry & Landscape Architecture, Anhui Agricultural University, Hefei, 230036, China
| | - Yun-Qiu Yang
- Anhui Provincial Key Laboratory of Microbial Control, School of Forestry & Landscape Architecture, Anhui Agricultural University, Hefei, 230036, China
| | - Chang-Chun Huang
- Forest Pests Control and Quarantine Bureau of Anhui Province, Hefei, 230001, China
| | - Li-Ya Jiang
- Forest Pests Control and Quarantine Bureau of Anhui Province, Hefei, 230001, China
| | - De-Gui Ding
- Forest Pests Control and Quarantine Bureau of Anhui Province, Hefei, 230001, China
| |
Collapse
|