1
|
Kang C, Li X, Yang X, Cheng X, Zhang D, Wei X. Voltage-gated potassium channels associated with head and neck cancer. Biochim Biophys Acta Rev Cancer 2025; 1880:189340. [PMID: 40318770 DOI: 10.1016/j.bbcan.2025.189340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 04/28/2025] [Accepted: 04/28/2025] [Indexed: 05/07/2025]
Abstract
Head and neck cancer (HNC) is a common disease in otorhinolaryngology. Its prevalence is higher in men than in women and is mostly related to tobacco, alcohol and viral infections. Despite significant advances in the treatment of HNC in recent years, the mortality rate is still high and most patients are diagnosed at an advanced stage, and the prognosis for these patients is even worse. Earlier metastasis makes the treatment of HNC trickier. Therefore, actively seeking ways to treat HNC more effectively has been the goal of head and neck surgeons. Potassium (K+) channels are the most diverse ion channels found in all areas of life. Voltage-gated potassium (Kv) channels are the most important subfamily of K+ channels. Multiple Kv channels are associated with the development of HNC. This review focuses on several Kv channels associated with HNC.
Collapse
Affiliation(s)
- Chenglin Kang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu, China; Department of Otolaryngology, Gansu Provincial Hospital, Lanzhou, Gansu, China
| | - Xiaomei Li
- Department of Otolaryngology, Second People's Hospital of Gansu Province, Lanzhou, Gansu, China
| | - Xiaolong Yang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu, China; Department of Otolaryngology, Gansu Provincial Hospital, Lanzhou, Gansu, China
| | - Xiaoling Cheng
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu, China; Department of Otolaryngology, Gansu Provincial Hospital, Lanzhou, Gansu, China
| | - Dengxiao Zhang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu, China; Department of Otolaryngology, Gansu Provincial Hospital, Lanzhou, Gansu, China
| | - Xudong Wei
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu, China; Department of Otolaryngology, Gansu Provincial Hospital, Lanzhou, Gansu, China.
| |
Collapse
|
2
|
Arcangeli A, Iorio J, Duranti C. Targeting the hERG1 and β1 integrin complex for cancer treatment. Expert Opin Ther Targets 2024; 28:145-157. [PMID: 38372580 DOI: 10.1080/14728222.2024.2318449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 02/09/2024] [Indexed: 02/20/2024]
Abstract
INTRODUCTION Despite great advances, novel therapeutic targets and strategies are still needed, in particular for some carcinomas in the metastatic stage (breast cancer, colorectal cancer, pancreatic ductal adenocarcinoma and the clear cell renal carcinoma). Ion channels may be considered good cancer biomarkers and targets for antineoplastic therapy. These concepts are particularly relevant considering the hERG1 potassium channel as a novel target for antineoplastic therapy. AREAS COVERED A great deal of evidence demonstrates that hERG1 is aberrantly expressed in human cancers, in particular in aggressive carcinomas. A relevant cornerstone was the discovery that, in cancer cells, the channel is present in a very peculiar conformation, strictly bound to the β1 subunit of integrin receptors. The hERG1/β1 integrin complex does not occur in the heart. Starting from this evidence, we developed a novel single chain bispecific antibody (scDb-hERG1-β1), which specifically targets the hERG1/β1 integrin complex and exerts antineoplastic effects in preclinical experiments. EXPERT OPINION Since hERG1 blockade cannot be pursued for antineoplastic therapy due to the severe cardiac toxic effects (ventricular arrhythmias) that many hERG1 blockers exert, different strategies must be identified to specifically target hERG1 in cancer. The targeting of the hERG1/β1 integrin complex through the bispecific antibody scDb-hERG1-β1 can overcome such hindrances.
Collapse
Affiliation(s)
- Annarosa Arcangeli
- Department of Experimental and Clinical Medicine, Section of Internal Medicine, University of Florence, Firenze, Italy
- CSDC (Center for the Study of complex dynamics), University of Florence, Sesto Fiorentino (FI), Italy
- MCK Therapeutics srl, Pistoia (PT), Italy
| | - Jessica Iorio
- Department of Experimental and Clinical Medicine, Section of Internal Medicine, University of Florence, Firenze, Italy
| | - Claudia Duranti
- Department of Experimental and Clinical Medicine, Section of Internal Medicine, University of Florence, Firenze, Italy
- MCK Therapeutics srl, Pistoia (PT), Italy
| |
Collapse
|
3
|
Pellegrino M, Ricci E, Ceraldi R, Nigro A, Bonofiglio D, Lanzino M, Morelli C. From HDAC to Voltage-Gated Ion Channels: What's Next? The Long Road of Antiepileptic Drugs Repositioning in Cancer. Cancers (Basel) 2022; 14:cancers14184401. [PMID: 36139561 PMCID: PMC9497059 DOI: 10.3390/cancers14184401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/02/2022] [Accepted: 09/03/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Although in the last decades the clinical outcome of cancer patients considerably improved, the major drawbacks still associated with chemotherapy are the unwanted side effects and the development of drug resistance. Therefore, a continuous effort in trying to discover new tumor markers, possibly of diagnostic, prognostic and therapeutic value, is being made. This review is aimed at highlighting the anti-tumor activity that several antiepileptic drugs (AEDs) exert in breast, prostate and other types of cancers, mainly focusing on their ability to block the voltage-gated Na+ and Ca++ channels, as well as to inhibit the activity of histone deacetylases (HDACs), all well-documented tumor markers and/or molecular targets. The existence of additional AEDs molecular targets is highly suspected. Therefore, the repurposing of already available drugs as adjuvants in cancer treatment would have several advantages, such as reductions in dose-related toxicity CVs will be sent in a separate mail to the indicated address of combined treatments, lower production costs, and faster approval for clinical use. Abstract Cancer is a major health burden worldwide. Although the plethora of molecular targets identified in the last decades and the deriving developed treatments, which significantly improved patients’ outcome, the occurrence of resistance to therapies remains the major cause of relapse and mortality. Thus, efforts in identifying new markers to be exploited as molecular targets in cancer therapy are needed. This review will first give a glance on the diagnostic and therapeutic significance of histone deacetylase (HDAC) and voltage gated ion channels (VGICs) in cancer. Nevertheless, HDAC and VGICs have also been reported as molecular targets through which antiepileptic drugs (AEDs) seem to exert their anticancer activity. This should be claimed as a great advantage. Indeed, due to the slowness of drug approval procedures, the attempt to turn to off-label use of already approved medicines would be highly preferable. Therefore, an updated and accurate overview of both preclinical and clinical data of commonly prescribed AEDs (mainly valproic acid, lamotrigine, carbamazepine, phenytoin and gabapentin) in breast, prostate, brain and other cancers will follow. Finally, a glance at the emerging attempt to administer AEDs by means of opportunely designed drug delivery systems (DDSs), so to limit toxicity and improve bioavailability, is also given.
Collapse
Affiliation(s)
| | | | | | | | | | - Marilena Lanzino
- Correspondence: (M.L.); (C.M.); Tel.: +39-0984-496206 (M.L.); +39-0984-496211 (C.M.)
| | - Catia Morelli
- Correspondence: (M.L.); (C.M.); Tel.: +39-0984-496206 (M.L.); +39-0984-496211 (C.M.)
| |
Collapse
|
4
|
Becchetti A, Duranti C, Arcangeli A. Dynamics and physiological meaning of complexes between ion channels and integrin receptors: the case of Kv11.1. Am J Physiol Cell Physiol 2022; 322:C1138-C1150. [PMID: 35442831 DOI: 10.1152/ajpcell.00107.2022] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The cellular functions are regulated by a complex interplay of diffuse and local signals. Experimental work in cell physiology has led to recognize that understanding a cell's dynamics requires a deep comprehension of local fluctuations of cytosolic regulators. Macromolecular complexes are major determinants of local signaling. Multi-enzyme assemblies limit the diffusion restriction to reaction kinetics by direct exchange of metabolites. Likewise, close coupling of ion channels and transporters modulate the ion concentration around a channel mouth or transporter binding site. Extreme signal locality is brought about by conformational coupling between membrane proteins, as is typical of mechanotransduction. A paradigmatic case is integrin-mediated cell adhesion. Sensing the extracellular microenvironment and providing an appropriate response is essential in growth and development and has innumerable pathological implications. The process involves bidirectional signal transduction by complex supra-molecular structures that link integrin receptors to ion channels and transporters, growth factor receptors, cytoskeletal elements and other regulatory elements. The dynamics of such complexes is only beginning to be understood. A thoroughly studied example is the association between integrin receptors and the voltage-gated K+ channels Kv11.1. These channels are widely expressed in early embryos, where their physiological roles are poorly understood and apparently different from the shaping of action potential firing in the adult. Hints about these roles come from studies in cancer cells, where Kv11.1 is often overexpressed and appears to re-assume functions, such as controlling cell proliferation/differentiation, apoptosis and migration. Kv11.1 is implicated in these processes through its linking to integrin subunits.
Collapse
Affiliation(s)
- Andrea Becchetti
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy
| | - Claudia Duranti
- Department of Experimental and Clinical Medicine. University of Florence, Firenze, Italy
| | - Annarosa Arcangeli
- Department of Experimental and Clinical Medicine. University of Florence, Firenze, Italy
| |
Collapse
|
5
|
He S, Moutaoufik MT, Islam S, Persad A, Wu A, Aly KA, Fonge H, Babu M, Cayabyab FS. HERG channel and cancer: A mechanistic review of carcinogenic processes and therapeutic potential. Biochim Biophys Acta Rev Cancer 2020; 1873:188355. [PMID: 32135169 DOI: 10.1016/j.bbcan.2020.188355] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 02/28/2020] [Accepted: 02/28/2020] [Indexed: 12/21/2022]
Abstract
The human ether-à-go-go related gene (HERG) encodes the alpha subunit of Kv11.1, which is a voltage-gated K+ channel protein mainly expressed in heart and brain tissue. HERG plays critical role in cardiac repolarization, and mutations in HERG can cause long QT syndrome. More recently, evidence has emerged that HERG channels are aberrantly expressed in many kinds of cancer cells and play important roles in cancer progression. HERG could therefore be a potential biomarker for cancer and a possible molecular target for anticancer drug design. HERG affects a number of cellular processes, including cell proliferation, apoptosis, angiogenesis and migration, any of which could be affected by dysregulation of HERG. This review provides an overview of available information on HERG channel as it relates to cancer, with focus on the mechanism by which HERG influences cancer progression. Molecular docking attempts suggest two possible protein-protein interactions of HERG with the ß1-integrin receptor and the transcription factor STAT-1 as novel HERG-directed therapeutic targeting which avoids possible cardiotoxicity. The role of epigenetics in regulating HERG channel expression and activity in cancer will also be discussed. Finally, given its inherent extracellular accessibility as an ion channel, we discuss regulatory roles of this molecule in cancer physiology and therapeutic potential. Future research should be directed to explore the possibilities of therapeutic interventions targeting HERG channels while minding possible complications.
Collapse
Affiliation(s)
- Siyi He
- Department of Surgery, Neuroscience Research Group, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | | | - Saadul Islam
- Department of Surgery, Neuroscience Research Group, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Amit Persad
- Department of Surgery, Neuroscience Research Group, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Adam Wu
- Department of Surgery, Neuroscience Research Group, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Khaled A Aly
- Department of Biochemistry, University of Regina, Regina, SK S4S 0A2, Canada
| | - Humphrey Fonge
- Department of Medical Imaging, University of Saskatchewan, Saskatoon, Saskatchewan S7N 0W8, Canada; Department of Medical Imaging, Royal University Hospital, Saskatoon, Saskatchewan S7N 0W8, Canada
| | - Mohan Babu
- Department of Biochemistry, University of Regina, Regina, SK S4S 0A2, Canada
| | - Francisco S Cayabyab
- Department of Surgery, Neuroscience Research Group, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada.
| |
Collapse
|
6
|
Ion Channel Dysregulation in Head and Neck Cancers: Perspectives for Clinical Application. Rev Physiol Biochem Pharmacol 2020; 181:375-427. [PMID: 32789787 DOI: 10.1007/112_2020_38] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Head and neck cancers are a highly complex and heterogeneous group of malignancies that involve very diverse anatomical structures and distinct aetiological factors, treatments and clinical outcomes. Among them, head and neck squamous cell carcinomas (HNSCC) are predominant and the sixth most common cancer worldwide with still low survival rates. Omic technologies have unravelled the intricacies of tumour biology, harbouring a large diversity of genetic and molecular changes to drive the carcinogenesis process. Nonetheless, this remarkable heterogeneity of molecular alterations opens up an immense opportunity to discover novel biomarkers and develop molecular-targeted therapies. Increasing evidence demonstrates that dysregulation of ion channel expression and/or function is frequently and commonly observed in a variety of cancers from different origin. As a consequence, the concept of ion channels as potential membrane therapeutic targets and/or biomarkers for cancer diagnosis and prognosis has attracted growing attention. This chapter intends to comprehensively and critically review the current state-of-art ion channel dysregulation specifically focusing on head and neck cancers and to formulate the major challenges and research needs to translate this knowledge into clinical application. Based on current reported data, various voltage-gated potassium (Kv) channels (i.e. Kv3.4, Kv10.1 and Kv11.1) have been found frequently aberrantly expressed in HNSCC as well as precancerous lesions and are highlighted as clinically and biologically relevant features in both early stages of tumourigenesis and late stages of disease progression. More importantly, they also emerge as promising candidates as cancer risk markers, tumour markers and potential anti-proliferative and anti-metastatic targets for therapeutic interventions; however, the oncogenic properties seem to be independent of their ion-conducting function.
Collapse
|
7
|
Ion Channel Targeting with Antibodies and Antibody Fragments for Cancer Diagnosis. Antibodies (Basel) 2019; 8:antib8020033. [PMID: 31544839 PMCID: PMC6640718 DOI: 10.3390/antib8020033] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 05/17/2019] [Accepted: 05/20/2019] [Indexed: 12/12/2022] Open
Abstract
The antibody era has greatly impacted cancer management in recent decades. Indeed, antibodies are currently applied for both cancer diagnosis and therapy. For example, monoclonal antibodies are the main constituents of several in vitro diagnostics, which are applied at many levels of cancer diagnosis. Moreover, the great improvement provided by in vivo imaging, especially for early-stage cancer diagnosis, has traced the path for the development of a complete new class of antibodies, i.e., engineered antibody fragments. The latter embody the optimal characteristics (e.g., low renal retention, rapid clearance, and small size) which make them ideal for in vivo applications. Furthermore, the present review focuses on reviewing the main applications of antibodies and antibody fragments for solid cancer diagnosis, both in vitro and in vivo. Furthermore, we review the scientific evidence showing that ion channels represent an almost unexplored class of ideal targets for both in vitro and in vivo diagnostic purposes. In particular, we review the applications, in solid cancers, of monoclonal antibodies and engineered antibody fragments targeting the voltage-dependent ion channel Kv 11.1, also known as hERG1.
Collapse
|
8
|
Lastraioli E, Lottini T, Iorio J, Freschi G, Fazi M, Duranti C, Carraresi L, Messerini L, Taddei A, Ringressi MN, Salemme M, Villanacci V, Vindigni C, Tomezzoli A, La Mendola R, Bencivenga M, Compagnoni B, Chiudinelli M, Saragoni L, Manzi I, De Manzoni G, Bechi P, Boni L, Arcangeli A. hERG1 behaves as biomarker of progression to adenocarcinoma in Barrett's esophagus and can be exploited for a novel endoscopic surveillance. Oncotarget 2018; 7:59535-59547. [PMID: 27517748 PMCID: PMC5312329 DOI: 10.18632/oncotarget.11149] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Accepted: 07/09/2016] [Indexed: 12/21/2022] Open
Abstract
Barrett's esophagus (BE) is the only well-known precursor lesion of esophageal adenocarcinoma (EA). The exact estimates of the annual progression rate from BE to EA vary from 0.07% to 3.6%. The identification of BE patients at higher risk to progress to EA is hence mandatory, although difficult to accomplish. In search of novel BE biomarkers we analyzed the efficacy of hERG1 potassium channels in predicting BE progression to EA. Once tested by immunohistochemistry (IHC) on bioptic samples, hERG1 was expressed in BE, and its expression levels increased during progression from BE to esophageal dysplasia (ED) and EA. hERG1 was also over-expressed in the metaplastic cells arising in BE lesions obtained in different BE mouse models, induced either surgically or chemically. Furthermore, transgenic mice which over express hERG1 in the whole gastrointestinal tract, developed BE lesions after an esophago-jejunal anastomosis more frequently, compared to controls. A case-control study was performed on 104 bioptic samples from newly diagnosed BE patients further followed up for at least 10 years. It emerged a statistically significant association between hERG1 expression status and risk of progression to EA. Finally, a novel fluorophore- conjugated recombinant single chain variable fragment antibody (scFv-hERG1-Alexa488) was tested on freshly collected live BE biopsies: it could recognize hERG1 positive samples, perfectly matching IHC data.Overall, hERG1 can be considered a novel BE biomarker to be exploited for a novel endoscopic surveillance protocol, either in biopsies or through endoscopy, to identify those BE patients with higher risk to progress to EA.
Collapse
Affiliation(s)
- Elena Lastraioli
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| | - Tiziano Lottini
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| | - Jessica Iorio
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| | - Giancarlo Freschi
- Department of Surgery and Translational Medicine, University of Florence, 50134 Florence, Italy
| | - Marilena Fazi
- Department of Surgery and Translational Medicine, University of Florence, 50134 Florence, Italy
| | - Claudia Duranti
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| | | | - Luca Messerini
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| | - Antonio Taddei
- Department of Surgery and Translational Medicine, University of Florence, 50134 Florence, Italy
| | - Maria Novella Ringressi
- Department of Surgery and Translational Medicine, University of Florence, 50134 Florence, Italy
| | | | | | - Carla Vindigni
- Pathology Division, Azienda Ospedaliero-Universitaria Senese, 53100 Siena, Italy
| | - Anna Tomezzoli
- Pathology Division, Borgo Trento Hospital, 37134 Verona, Italy
| | | | | | - Bruno Compagnoni
- Surgery Division, Esine Hospital, ASL Vallecamonica Sebino, 25040 Esine (BS), Italy
| | - Mariella Chiudinelli
- Pathology Division, Esine Hospital, ASL Vallecamonica Sebino, 25040 Esine (BS), Italy
| | - Luca Saragoni
- Pathology Division, Morgagni-Pierantoni Hospital, 47121 Forlì, Italy
| | - Ilaria Manzi
- Gastroenterology and Endoscopy Unit, Morgagni-Pierantoni Hospital, 47121 Forlì, Italy
| | | | - Paolo Bechi
- Department of Surgery and Translational Medicine, University of Florence, 50134 Florence, Italy
| | - Luca Boni
- Clinical Trials Coordinating Center, Azienda Ospedaliero-Universitaria Careggi/Istituto Toscano Tumori, 50134 Florence, Italy
| | - Annarosa Arcangeli
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| |
Collapse
|
9
|
Molecular progression of head and neck squamous cell carcinoma. THE NUCLEUS 2017. [DOI: 10.1007/s13237-017-0212-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
10
|
Shen Z, Zhou C, Li J, Deng H, Li Q, Wang J. The association, clinicopathological significance, and diagnostic value of CDH1 promoter methylation in head and neck squamous cell carcinoma: a meta-analysis of 23 studies. Onco Targets Ther 2016; 9:6763-6773. [PMID: 27826202 PMCID: PMC5096767 DOI: 10.2147/ott.s117453] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Epithelial cadherin (encoded by the CDH1 gene) is a tumor suppressor glycoprotein that plays a role in the invasion and metastasis of human cancers. As previous studies regarding the association between CDH1 promoter methylation and head and neck squamous cell carcinoma (HNSCC) have yielded inconsistent conclusions, a meta-analysis was performed. A systematic literature review was undertaken from four databases: PubMed, Embase, Google Scholar, and Web of Science. Finally, a total of 23 studies (including 1,727 cases of HNSCC and 555 normal controls) were included in the present study. Our results showed that the frequency of CDH1 promoter methylation in HNSCC was statistically greater than in controls (odds ratio [OR] =5.94, 95% confidence interval [CI]: 3.36–10.51, P<0.001). In reported cases of HNSCC, CDH1 promoter methylation was statistically associated with tumor stage (OR =0.46, 95% CI: 0.27–0.78, P=0.004) and a history of alcohol consumption (OR =6.04, 95% CI: 2.41–15.14, P<0.001). Moreover, the sensitivity, specificity, and area under the curve of the summary receiver operator characteristic for the included studies were 0.50 (95% CI: 0.4–0.61), 0.89 (95% CI: 0.79–0.95), and 0.74 (95% CI: 0.70–0.78), respectively. In conclusion, our meta-analyses indicated that CDH1 promoter methylation was associated with HNSCC risk, and may be utilized as a valuable diagnostic biomarker for HNSCC.
Collapse
Affiliation(s)
- Zhisen Shen
- Department of Otorhinolaryngology-Head and Neck Surgery, Lihuili Hospital, Ningbo University
| | - Chongchang Zhou
- Department of Otorhinolaryngology-Head and Neck Surgery, Lihuili Hospital, Ningbo University; Department of Biochemistry and Molecular Biology, Medical School of Ningbo University
| | - Jinyun Li
- Department of Biochemistry and Molecular Biology, Medical School of Ningbo University
| | - Hongxia Deng
- Department of Otorhinolaryngology-Head and Neck Surgery, Lihuili Hospital, Ningbo University
| | - Qun Li
- Department of Otorhinolaryngology-Head and Neck Surgery, Lihuili Hospital, Ningbo University
| | - Jian Wang
- Department of Otorhinolaryngology-Head and Neck Surgery, Ningbo Yinzhou People's Hospital, Ningbo, Zhejiang, People's Republic of China
| |
Collapse
|
11
|
Fernández-Valle Á, Rodrigo JP, Rodríguez-Santamarta T, Villaronga MÁ, Álvarez-Teijeiro S, García-Pedrero JM, Suárez-Fernández L, Lequerica-Fernández P, de Vicente JC. HERG1 potassium channel expression in potentially malignant disorders of the oral mucosa and prognostic relevance in oral squamous cell carcinoma. Head Neck 2016; 38:1672-1678. [DOI: 10.1002/hed.24493] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 02/24/2016] [Accepted: 03/21/2016] [Indexed: 01/17/2023] Open
Affiliation(s)
- Álvaro Fernández-Valle
- Department of Oral and Maxillofacial Surgery; Hospital Universitario Central de Asturias (HUCA); Oviedo Asturias Spain
| | - Juan Pablo Rodrigo
- Department of Otolaryngology; Hospital Universitario Central de Asturias (HUCA); Oviedo Asturias Spain
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA); Hospital Universitario Central de Asturias, Edificio Consultas Externas, Planta Baja Lab 2 ORL-IUOPA; Oviedo Asturias Spain
| | - Tania Rodríguez-Santamarta
- Department of Oral and Maxillofacial Surgery; Hospital Universitario Central de Asturias (HUCA); Oviedo Asturias Spain
| | - M. Ángeles Villaronga
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA); Hospital Universitario Central de Asturias, Edificio Consultas Externas, Planta Baja Lab 2 ORL-IUOPA; Oviedo Asturias Spain
| | - Saúl Álvarez-Teijeiro
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA); Hospital Universitario Central de Asturias, Edificio Consultas Externas, Planta Baja Lab 2 ORL-IUOPA; Oviedo Asturias Spain
| | - Juana M. García-Pedrero
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA); Hospital Universitario Central de Asturias, Edificio Consultas Externas, Planta Baja Lab 2 ORL-IUOPA; Oviedo Asturias Spain
| | - Laura Suárez-Fernández
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA); Hospital Universitario Central de Asturias, Edificio Consultas Externas, Planta Baja Lab 2 ORL-IUOPA; Oviedo Asturias Spain
| | | | - Juan Carlos de Vicente
- Department of Oral and Maxillofacial Surgery; Hospital Universitario Central de Asturias (HUCA); Oviedo Asturias Spain
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA); Hospital Universitario Central de Asturias, Edificio Consultas Externas, Planta Baja Lab 2 ORL-IUOPA; Oviedo Asturias Spain
| |
Collapse
|