1
|
Lee H, Heo E, Yoon H. Physically Exfoliating 2D Materials: A Versatile Combination of Different Materials into a Layered Structure. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:18678-18695. [PMID: 38095583 DOI: 10.1021/acs.langmuir.3c02418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Improving the properties of the existing two-dimensional (2D) materials is a major concern for many researchers today. Synergistic coupling of single-phase 2D material species with secondary functional materials has resulted in 2D nanohybrids with significantly enhanced properties beyond the sum of their individual components. In particular, nanohybrids created by alternatingly integrating different material species in the confined 2D nanometer regime have the potential to meet the needs of a wide variety of applications, particularly the many important energy-related applications that are of interest. However, scaling up production of 2D nanohybrids is still challenging, which is a major barrier to their practical application. Delamination and exfoliation by physical means separate the weakly bound 2D nanosheets into kinetically stable single- or few-layers. Herein, we provide a concise overview of recent achievements in the physical exfoliation-based fabrication of 2D nanohybrids featuring controlled heterolayered structures. Several strategies to efficiently produce heterolayered 2D nanohybrids in large quantities are described, such as (i) coexfoliation of different 2D species, (ii) aqueous-phase synthesis, and (iii) gas-phase synthesis. The versatility of the 2D nanohybrids was also illustrated by remarkable research examples, especially in energy-related applications.
Collapse
Affiliation(s)
- Haney Lee
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, South Korea
| | - Eunseo Heo
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, South Korea
| | - Hyeonseok Yoon
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, South Korea
- School of Polymer Science and Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, South Korea
| |
Collapse
|
2
|
Kim Y, Lee S, Yoon H. Fire-Safe Polymer Composites: Flame-Retardant Effect of Nanofillers. Polymers (Basel) 2021; 13:540. [PMID: 33673106 PMCID: PMC7918670 DOI: 10.3390/polym13040540] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/05/2021] [Accepted: 02/09/2021] [Indexed: 12/20/2022] Open
Abstract
Currently, polymers are competing with metals and ceramics to realize various material characteristics, including mechanical and electrical properties. However, most polymers consist of organic matter, making them vulnerable to flames and high-temperature conditions. In addition, the combustion of polymers consisting of different types of organic matter results in various gaseous hazards. Therefore, to minimize the fire damage, there has been a significant demand for developing polymers that are fire resistant or flame retardant. From this viewpoint, it is crucial to design and synthesize thermally stable polymers that are less likely to decompose into combustible gaseous species under high-temperature conditions. Flame retardants can also be introduced to further reinforce the fire performance of polymers. In this review, the combustion process of organic matter, types of flame retardants, and common flammability testing methods are reviewed. Furthermore, the latest research trends in the use of versatile nanofillers to enhance the fire performance of polymeric materials are discussed with an emphasis on their underlying action, advantages, and disadvantages.
Collapse
Affiliation(s)
- Yukyung Kim
- R&D Laboratory: Korea Fire Institute, 331 Jisam-ro, Giheung-gu, Yongin-si, Gyeonggi-do 17088, Korea;
| | - Sanghyuck Lee
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Korea;
| | - Hyeonseok Yoon
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Korea;
- School of Polymer Science and Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Korea
| |
Collapse
|
3
|
Yang M, Sun LP, Chen B, Liao J, Yuan H, Guan BO. A universal strategy: Rational construction of noble metal nanoparticle-shell/conducting polymer nanofiber-core electrodes with enhanced electrochemical performances. NANOTECHNOLOGY 2020; 31:445602. [PMID: 32693391 DOI: 10.1088/1361-6528/aba7e3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
To address a challenge for decoration of noble metal nanoparticles (NMNPs)-shell on conducting polymer nanofiber (CPNF) electrodes (i.e. NMNP-shell/CPNF-core electrodes) for boosting electrochemical performances, a two-step strategy comprising chemical pre-deposition and electrochemical deposition is designed. The strategy shows a high universality in terms of the diversity of NMNP-shell elements (single-element: AgNP-shell, AuNP-shell, PtNP-shell, PdNP-shell; multi-element: Au/Pt/PdNP-shell) and the independence of conductive substrates of electrodes. The shells are composed of high-density NMNPs and have strong adhesion to CPNF-cores. It is demonstrated that in response to a specific applied electrical stimulus, the resulting low doping level of CPNFs facilitates the generation of high-density nucleation sites (small NMNPs) by chemical pre-deposition (as high capability of electron transfer and low resistance to electron transfer from CP chains to NM ions), which is indispensable for the formation of NMNP-shells on CPNF-cores by electrochemical deposition. The decoration of NMNP-shells can significantly enhance the electrochemical performances of CPNF electrodes. Moreover, the great practicality and reliability of NMNP-shell/CPNF-core electrodes in use as an electrocatalytic platform are confirmed. This universal strategy opens up a new avenue to construct high-dimension shell/core-nanostructured electrodes.
Collapse
Affiliation(s)
- Mingjin Yang
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communication, Institute of Photonics Technology, Jinan University, Guangzhou 511443, People's Republic of China
| | | | | | | | | | | |
Collapse
|
4
|
Chae S, Le TH, Park CS, Choi Y, Kim S, Lee U, Heo E, Lee H, Kim YA, Kwon OS, Yoon H. Anomalous restoration of sp 2 hybridization in graphene functionalization. NANOSCALE 2020; 12:13351-13359. [PMID: 32572409 DOI: 10.1039/d0nr03422c] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The functionalization of nanocarbon materials such as graphene has attracted considerable attention over the past decades. In this work, we designed and synthesized a unique N-heterocyclic carbene compound with a pyrene tail group (NHCp) to investigate how carbene species can be used for the functionalization of graphene. Although the carbene moiety of NHCp has the ability to covalently bond to graphene, the pyrene tail can noncovalently interact with graphene and allows monitoring its surrounding microenvironment. The major characteristics of the resulting nanohybrids were highly dependent on the type of graphene and the NHCp-to-graphene weight ratio. Importantly, despite the covalent functionalization of graphene, an anomalous decrease in the intensity of the Raman D peak and improved conductivity were observed for the nanohybrids. It was found that the covalent bond of NHCp to the graphene edge may allow the hybridization of their orbitals, which affects electronic energy levels and alters the double resonance process that originates the D peak at the edge defect. Importantly, the NHCp compound can act as a π acceptor (not just as a σ donor) via the NHCp-graphene covalent bridge. This is the first report showing that the concept of π-backdonation can be realized in two-dimensional materials, such as graphene, and rationally designed carbene molecules can functionalize graphene without losing their beneficial sp2 hybridization characteristics.
Collapse
Affiliation(s)
- Subin Chae
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Gwangju 61186, South Korea
| | - Thanh-Hai Le
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Gwangju 61186, South Korea
| | - Chul Soon Park
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Gwangju 61186, South Korea and Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Daejeon 34141, South Korea.
| | - Yunseok Choi
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Gwangju 61186, South Korea
| | - Semin Kim
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Gwangju 61186, South Korea
| | - Unhan Lee
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Gwangju 61186, South Korea
| | - Eunseo Heo
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Gwangju 61186, South Korea
| | - Haney Lee
- Alan G. MacDiarmid Energy Research Institute & School of Polymer Science and Engineering, Chonnam National University, 77 Yongbong-ro, Gwangju 61186, South Korea.
| | - Yoong Ahm Kim
- Alan G. MacDiarmid Energy Research Institute & School of Polymer Science and Engineering, Chonnam National University, 77 Yongbong-ro, Gwangju 61186, South Korea. and Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Gwangju 61186, South Korea
| | - Oh Seok Kwon
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Daejeon 34141, South Korea. and Department of NanoBiotechnology, Korea University of Science and Technology (UST), 125 Gwahak-ro, Daejeon 34141, South Korea
| | - Hyeonseok Yoon
- Alan G. MacDiarmid Energy Research Institute & School of Polymer Science and Engineering, Chonnam National University, 77 Yongbong-ro, Gwangju 61186, South Korea. and Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Gwangju 61186, South Korea
| |
Collapse
|
5
|
Luo Z, Ye H, Hu J, Hu T, Zhang B, Zhang X, Xu L. Synthesis of a pyrene‐functionalized hyperbranched polyethylene ternary copolymer for efficient graphite exfoliation in chloroform and formation of
ethylene‐vinyl acetate
/graphene nanocomposites. J Appl Polym Sci 2020. [DOI: 10.1002/app.49320] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Zhenggang Luo
- College of Materials Science and EngineeringZhejiang University of Technology Hangzhou China
| | - Huijian Ye
- College of Materials Science and EngineeringZhejiang University of Technology Hangzhou China
| | - Jiawei Hu
- College of Materials Science and EngineeringZhejiang University of Technology Hangzhou China
| | - Te Hu
- College of Materials Science and EngineeringZhejiang University of Technology Hangzhou China
| | - Boyuan Zhang
- College of Materials Science and EngineeringZhejiang University of Technology Hangzhou China
| | - Xuanhe Zhang
- College of Materials Science and EngineeringZhejiang University of Technology Hangzhou China
| | - Lixin Xu
- College of Materials Science and EngineeringZhejiang University of Technology Hangzhou China
| |
Collapse
|
6
|
Le TH, Oh Y, Kim H, Yoon H. Exfoliation of 2D Materials for Energy and Environmental Applications. Chemistry 2020; 26:6360-6401. [PMID: 32162404 DOI: 10.1002/chem.202000223] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Indexed: 12/20/2022]
Abstract
The fascinating properties of single-layer graphene isolated by mechanical exfoliation have inspired extensive research efforts toward two-dimensional (2D) materials. Layered compounds serve as precursors for atomically thin 2D materials (briefly, 2D nanomaterials) owing to their strong intraplane chemical bonding but weak interplane van der Waals interactions. There are newly emerging 2D materials beyond graphene, and it is becoming increasingly important to develop cost-effective, scalable methods for producing 2D nanomaterials with controlled microstructures and properties. The variety of developed synthetic techniques can be categorized into two classes: bottom-up and top-down approaches. Of top-down approaches, the exfoliation of bulk 2D materials into single or few layers is the most common. This review highlights chemical and physical exfoliation methods that allow for the production of 2D nanomaterials in large quantities. In addition, remarkable examples of utilizing exfoliated 2D nanomaterials in energy and environmental applications are introduced.
Collapse
Affiliation(s)
- Thanh-Hai Le
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, South Korea
| | - Yuree Oh
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, South Korea
| | - Hyungwoo Kim
- Alan G. MacDiarmid Energy Research &, School of Polymer Science and Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, South Korea.,Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, South Korea
| | - Hyeonseok Yoon
- Alan G. MacDiarmid Energy Research &, School of Polymer Science and Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, South Korea.,Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, South Korea
| |
Collapse
|
7
|
Kim S, Le TH, Choi Y, Lee H, Heo E, Lee U, Kim S, Chae S, Kim YA, Yoon H. Electrical monitoring of photoisomerization of block copolymers intercalated into graphene sheets. Nat Commun 2020; 11:1324. [PMID: 32165623 PMCID: PMC7067762 DOI: 10.1038/s41467-020-15132-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 02/19/2020] [Indexed: 12/01/2022] Open
Abstract
Insulating polymers have received little attention in electronic applications. Here, we synthesize a photoresponsive, amphiphilic block copolymer (PEO-b-PVBO) and further control the chain growth of the block segment (PVBO) to obtain different degrees of polymerization (DPs). The benzylidene oxazolone moiety in PEO-b-PVBO facilitated chain-conformational changes due to photoisomerization under visible/ultraviolet (UV) light illumination. Intercalation of the photoresponsive but electrically insulating PEO-b-PVBO into graphene sheets enabled electrical monitoring of the conformational change of the block copolymer at the molecular level. The current change at the microampere level was proportional to the DP of PVBO, demonstrating that the PEO-b-PVBO-intercalated graphene nanohybrid (PGNH) can be used in UV sensors. Additionally, discrete signals at the nanoampere level were separated from the first derivative of the time-dependent current using the fast Fourier transform (FFT). Analysis of the harmonic frequencies using the FFT revealed that the PGNH afforded sawtooth-type current flow mediated by Coulomb blockade oscillation. Block copolymers are electrically insulating and therefore characterization with electrical or electrochemical methods is not possible. Here, the authors demonstrate electrical monitoring of the photoisomerization transition in a benzylidene oxazolone block co-polymer intercalated into graphene sheets.
Collapse
Affiliation(s)
- Semin Kim
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, South Korea
| | - Thanh-Hai Le
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, South Korea
| | - Yunseok Choi
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, South Korea
| | - Haney Lee
- Alan G. MacDiarmid Energy Research Institute & School of Polymer Science and Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, South Korea
| | - Eunseo Heo
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, South Korea
| | - Unhan Lee
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, South Korea
| | - Saerona Kim
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, South Korea
| | - Subin Chae
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, South Korea
| | - Yoong Ahm Kim
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, South Korea.,Alan G. MacDiarmid Energy Research Institute & School of Polymer Science and Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, South Korea
| | - Hyeonseok Yoon
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, South Korea. .,Alan G. MacDiarmid Energy Research Institute & School of Polymer Science and Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, South Korea.
| |
Collapse
|
8
|
Hu T, Ye H, Luo Z, Ma J, Zhang B, Zhang X, Song J, Wang Q, Xu L. Efficient exfoliation of UV-curable, high-quality graphene from graphite in common low-boiling-point organic solvents with a designer hyperbranched polyethylene copolymer and their applications in electrothermal heaters. J Colloid Interface Sci 2020; 569:114-127. [PMID: 32105899 DOI: 10.1016/j.jcis.2020.02.068] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/11/2020] [Accepted: 02/16/2020] [Indexed: 10/25/2022]
Abstract
The use of stabilizer with designer structures can effectively promote graphite exfoliation in common solvents to render functionalized graphene desirable for their various applications. Herein, a hyperbranched polyethylene copolymer, HBPE@Py@Acryl, simultaneously bearing multiple pyrene terminal groups and pendant acryloyl moieties has been successfully synthesized from ethylene with a Pd-diimine catalyst based on unique chain walking mechanism. The unique structural design of the HBPE@Py@Acryl makes it capable of effectively promote graphite exfoliation in a series of common, low-boiling-point organic solvents, e.g. CHCl3, to render stable graphene dispersions with concentrations effectively adjustable by changing feed concentrations of graphite and polymer or sonication time. Meanwhile, it can be irreversibly adsorbed on the exfoliated graphene surface based on the π-π interactions between them to concurrently render acryloyl-functionalized graphene free of structural defects, with majority (92.7%) of them having a thickness of 2-3 layers. This allows us to obtain graphene electrothermal films simply by filtration and UV irradiation, which exhibit outstanding stability in use. The action mechanism of the HBPE@Py@Acryl as stabilizer for promoting graphite exfoliation and the role of UV irradiation on improving the stability in use of resulting graphene films have been elucidated.
Collapse
Affiliation(s)
- Te Hu
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Huijian Ye
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China; Pinghu Institute of Advanced Materials, Zhejiang University of Technology, Pinghu 314212, China.
| | - Zhenggang Luo
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Junjie Ma
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Boyuan Zhang
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xuanhe Zhang
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jinwei Song
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Qingping Wang
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Lixin Xu
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China; Pinghu Institute of Advanced Materials, Zhejiang University of Technology, Pinghu 314212, China.
| |
Collapse
|
9
|
Park G, Kim S, Chae S, Han H, Le TH, Yang KS, Chang M, Kim H, Yoon H. Combining SWNT and Graphene in Polymer Nanofibers: A Route to Unique Carbon Precursors for Electrochemical Capacitor Electrodes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:3077-3086. [PMID: 30703325 DOI: 10.1021/acs.langmuir.8b03766] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
It is important to fabricate nanostructured architectures comprised of functional components for a wide variety of applications because precise structural control in the nanometer regime can yield unprecedented, fascinating properties. Owing to their well-defined microstructural characteristics, it has been popular to use carbon nanospecies, such as nanotubes and graphene, in fabricating nanocomposites and nanohybrids. Nevertheless, it still remains hard to control and manipulate nanospecies for specific applications, thus preventing their commercialization. Herein, first, we report unique one-dimensional nanoarchitectures with meso-/macropores, consisting of single-walled nanotubes (SWNTs), graphene, and polyacrylonitrile, in which poly(vinyl alcohol) was employed as a dispersing agent and sacrificial porogen. One-dimensional SWNTs and two-dimensional graphene pieces were combined in the confined interior space of electrospun nanofibers, which led to unique microstructural characteristics such as enhanced ordering of SWNTs, graphene pieces, and polymer chains in the nanofiber interior. Next, the SWNT/graphene-in-polymer nanofiber (SGPNF) structures were converted into carbonized products (SGCNFs) with effective porosity and tunable electrochemical properties. Similar to SGPNFs, the microstructural and electrical properties of the SGCNFs depended on the incorporated amount of SWNT and graphene. At higher SWNT content, the mesopore volume proportion and specific discharge capacitance of the SGCNFs increased by max. 63 and 598%, respectively. The SGCNFs showed strong potential as a high-performance electrode material for electrochemical capacitors (max. capacitance: nonactivated ∼390 F g-1 and activated ∼750 F g-1). Flexible, all solid-state capacitor cells based on SGCNFs were also successfully demonstrated as a model application. The SGCNFs can be further functionalized by various methods, which will impart attractive properties for extended applications.
Collapse
|
10
|
Noh S, Le TH, Park CS, Kim S, Kim Y, Park JJ, Yoon H. Physical exfoliation of graphene and molybdenum disulfide sheets using conductive polyaniline: an efficient route for synthesizing unique, random-layered 3D ternary electrode materials. NEW J CHEM 2018. [DOI: 10.1039/c8nj03762k] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Unique ternary graphene/MoS2/PANI nanoarchitectures with beneficial properties are synthesized via a simple, physical exfoliation approach.
Collapse
Affiliation(s)
- Seonmyeong Noh
- Alan G. MacDiarmid Energy Research Institute
- School of Polymer Science and Engineering
- Chonnam National University
- Gwangju 61186
- South Korea
| | - Thanh-Hai Le
- Department of Polymer Engineering
- Graduate School
- Chonnam National University
- Gwangju 61186
- South Korea
| | - Chul Soon Park
- Department of Polymer Engineering
- Graduate School
- Chonnam National University
- Gwangju 61186
- South Korea
| | - Saerona Kim
- Department of Polymer Engineering
- Graduate School
- Chonnam National University
- Gwangju 61186
- South Korea
| | - Yukyung Kim
- Department of Polymer Engineering
- Graduate School
- Chonnam National University
- Gwangju 61186
- South Korea
| | - Jong-Jin Park
- Alan G. MacDiarmid Energy Research Institute
- School of Polymer Science and Engineering
- Chonnam National University
- Gwangju 61186
- South Korea
| | - Hyeonseok Yoon
- Alan G. MacDiarmid Energy Research Institute
- School of Polymer Science and Engineering
- Chonnam National University
- Gwangju 61186
- South Korea
| |
Collapse
|
11
|
Kong HJ, Kim S, Le TH, Kim Y, Park G, Park CS, Kwon OS, Yoon H. Nanostructured mesophase electrode materials: modulating charge-storage behavior by thermal treatment. NANOSCALE 2017; 9:17450-17458. [PMID: 29105721 DOI: 10.1039/c7nr05842j] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
3D nanostructured carbonaceous electrode materials with tunable capacitive phases were successfully developed using graphene/particulate polypyrrole (PPy) nanohybrid (GPNH) precursors without a separate process for incorporating heterogeneous species. The electrode material, namely carbonized GPNHs (CGPNHs) featured a mesophase capacitance consisting of both electric double-layer (EDL) capacitive and pseudocapacitive elements at the molecular level. The ratio of EDL capacitive element to pseudocapacitive element (E-to-P) in the mesophase electrode materials was controlled by varying the PPy-to-graphite weight (Pw/Gw) ratio and by heat treatment (TH), which was demonstrated by characterizing the CGPNHs with elemental analysis, cyclic voltammetry, and a charge/discharge test. The concept of the E-to-P ratio (EPR) index was first proposed to easily identify the capacitive characteristics of the mesophase electrode using a numerical algorithm, which was reasonably consistent with the experimental findings. Finally, the CGPNHs were integrated into symmetric two-electrode capacitor cells, which rendered excellent energy and power densities in both aqueous and ionic liquid electrolytes. It is anticipated that our approach could be widely extended to fabricating versatile hybrid electrode materials with estimation of their capacitive characteristics.
Collapse
Affiliation(s)
- Hye Jeong Kong
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Kim S, Le TH, Park CS, Park G, Kim KH, Kim S, Kwon OS, Lim GT, Yoon H. A Solution-Processable, Nanostructured, and Conductive Graphene/Polyaniline Hybrid Coating for Metal-Corrosion Protection and Monitoring. Sci Rep 2017; 7:15184. [PMID: 29123206 PMCID: PMC5680262 DOI: 10.1038/s41598-017-15552-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 10/23/2017] [Indexed: 11/19/2022] Open
Abstract
A smart and effective anticorrosive coating consisting of alternating graphene and polyaniline (PANI) layers was developed using top-down solution processing. Graphite was exfoliated using sonication assisted by polyaniline to produce a nanostructured, conductive graphene/polyaniline hybrid (GPn) in large quantities (>0.5 L of 6 wt% solution in a single laboratory-scale process). The GPn was coated on copper and exhibited excellent anticorrosion protection efficiencies of 46.6% and 68.4% under electrochemical polarization in 1 M sulfuric acid and 3.5 wt% sodium chloride solutions, chosen as chemical and seawater models, respectively. Impedance measurements were performed in the two corrosive solutions, with the variation in charge transfer resistance (R ct) over time indicating that the GPn acted as an efficient physical and chemical barrier preventing corrosive species from reaching the copper surface. The GPn-coated copper was composed of many PANI-coated graphene planes stacked parallel to the copper surface. PANI exhibits redox-based conductivity, which was facilitated by the high conductivity of graphene. Additionally, the GPn surface was found to be hydrophobic. These properties combined effectively to protect the copper metal against corrosion. We expect that the GPn can be further applied for developing smart anticorrosive coating layers capable of monitoring the status of metals.
Collapse
Affiliation(s)
- Saerona Kim
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, South Korea
| | - Thanh-Hai Le
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, South Korea
| | - Chul Soon Park
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, South Korea
| | - Geunsu Park
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, South Korea
| | - Kyung Ho Kim
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, South Korea
| | - Semin Kim
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, South Korea
| | - Oh Seok Kwon
- BioNanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, South Korea
| | - Gyun Taek Lim
- School of Polymer Science and Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, South Korea.
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, South Korea.
| | - Hyeonseok Yoon
- School of Polymer Science and Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, South Korea.
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, South Korea.
| |
Collapse
|
13
|
Park SJ, Park CS, Yoon H. Chemo-Electrical Gas Sensors Based on Conducting Polymer Hybrids. Polymers (Basel) 2017; 9:E155. [PMID: 30970834 PMCID: PMC6432045 DOI: 10.3390/polym9050155] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 04/24/2017] [Accepted: 04/24/2017] [Indexed: 01/06/2023] Open
Abstract
Conducting polymer (CP) hybrids, which combine CPs with heterogeneous species, have shown strong potential as electrical transducers in chemosensors. The charge transport properties of CPs are based on chemical redox reactions and provide various chemo-electrical signal transduction mechanisms. Combining CPs with other functional materials has provided opportunities to tailor their major morphological and physicochemical properties, often resulting in enhanced sensing performance. The hybrids can provide an enlarged effective surface area for enhanced interaction and chemical specificity to target analytes via a new signal transduction mechanism. Here, we review a selection of important CPs, including polyaniline, polypyrrole, polythiophene and their derivatives, to fabricate versatile organic and inorganic hybrid materials and their chemo-electrical sensing performance. We focus on what benefits can be achieved through material hybridization in the sensing application. Moreover, state-of-the-art trends in technologies of CP hybrid sensors are discussed, as are limitations and challenges.
Collapse
Affiliation(s)
- Seon Joo Park
- Hazards Monitoring Bionano Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, 34141 Daejeon, Korea.
| | - Chul Soon Park
- Hazards Monitoring Bionano Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, 34141 Daejeon, Korea.
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, 61186 Gwangju, Korea.
| | - Hyeonseok Yoon
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, 61186 Gwangju, Korea.
- School of Polymer Science and Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, 61186 Gwangju, Korea.
| |
Collapse
|
14
|
Im K, Nguyen DN, Kim S, Kong HJ, Kim Y, Park CS, Kwon OS, Yoon H. Graphene-Embedded Hydrogel Nanofibers for Detection and Removal of Aqueous-Phase Dyes. ACS APPLIED MATERIALS & INTERFACES 2017; 9:10768-10776. [PMID: 28301130 DOI: 10.1021/acsami.7b01163] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
A facile route to graphene/polymer hydrogel nanofibers was developed. An aqueous dispersion of graphene (containing >40% bilayer graphene flakes) stabilized by a functionalized water-soluble polymer with phenyl side chains was successfully electrospun to yield nanofibers. Subsequent vapor-phase cross-linking of the nanofibers produced graphene-embedded hydrogel nanofibers (GHNFs). Interestingly, the GHNFs showed chemical sensitivity to the cationic dyes methylene blue (MB) and crystal violet (CV) in the aqueous phase. The adsorption capacities were as high as 0.43 and 0.33 mmol g-1 s-1 for MB and CV, respectively, even in a 1.5 mL s-1 flow system. A density functional theory calculation revealed that aqueous-phase MB and CV dyes were oriented parallel to the graphene surface and that the graphene/dye ensembles were stabilized by secondary physical bonding mechanisms such as the π-π stacking interaction in an aqueous medium. The GHNFs exhibited electrochemical properties arising mainly from the electric double-layer capacitance, which were applied in a demonstration of GHNF-based membrane electrodes (5 cm in diameter) for detecting the dyes in the flow system. It is believed that the GHNF membrane can be a successful model candidate for commercialization of graphene due to its easy-to-fabricate process and remarkable properties.
Collapse
Affiliation(s)
| | | | | | | | | | - Chul Soon Park
- BioNanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB) , Daejeon 34141, South Korea
| | - Oh Seok Kwon
- BioNanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB) , Daejeon 34141, South Korea
| | | |
Collapse
|
15
|
Lee Y, Noh S, Kim MS, Kong HJ, Im K, Kwon OS, Kim S, Yoon H. The effect of nanoparticle packing on capacitive electrode performance. NANOSCALE 2016; 8:11940-8. [PMID: 27242155 DOI: 10.1039/c6nr02424f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Nanoparticles pack together to form macro-scale electrodes in various types of devices, and thus, optimization of the nanoparticle packing is a prerequisite for the realization of a desirable device performance. In this work, we provide in-depth insight into the effect of nanoparticle packing on the performance of nanoparticle-based electrodes by combining experimental and computational findings. As a model system, polypyrrole nanospheres of three different diameters were used to construct pseudocapacitive electrodes, and the performance of the electrodes was examined at various nanosphere diameter ratios and mixed weight fractions. Two numerical algorithms are proposed to simulate the random packing of the nanospheres on the electrode. The binary nanospheres exhibited diverse, complicated packing behaviors compared with the monophasic packing of each nanosphere species. The packing of the two nanosphere species with lower diameter ratios at an optimized composition could lead to more dense packing of the nanospheres, which in turn could contribute to better device performance. The dense packing of the nanospheres would provide more efficient transport pathways for ions because of the reduced inter-nanosphere pore size and enlarged surface area for charge storage. Ultimately, it is anticipated that our approach can be widely used to define the concept of "the best nanoparticle packing" for desirable device performance.
Collapse
Affiliation(s)
- Younghee Lee
- Department of Polymer Engineering, Graduate School, Chonnam National University, Gwangju 61186, South Korea
| | - Seonmyeong Noh
- Department of Polymer Engineering, Graduate School, Chonnam National University, Gwangju 61186, South Korea
| | - Min-Sik Kim
- Department of Polymer Engineering, Graduate School, Chonnam National University, Gwangju 61186, South Korea
| | - Hye Jeong Kong
- Department of Polymer Engineering, Graduate School, Chonnam National University, Gwangju 61186, South Korea
| | - Kyungun Im
- Department of Polymer Engineering, Graduate School, Chonnam National University, Gwangju 61186, South Korea
| | - Oh Seok Kwon
- BioNanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejon 34141, South Korea
| | - Sungmin Kim
- Department of Textiles, Merchandising, and Fashion Design, Seoul National University, Seoul 08826, South Korea.
| | - Hyeonseok Yoon
- Department of Polymer Engineering, Graduate School, Chonnam National University, Gwangju 61186, South Korea and School of Polymer Science and Engineering, Chonnam National University, Gwangju 61186, South Korea.
| |
Collapse
|
16
|
|
17
|
Nguyen DN, Yoon H. Recent Advances in Nanostructured Conducting Polymers: from Synthesis to Practical Applications. Polymers (Basel) 2016; 8:E118. [PMID: 30979209 PMCID: PMC6432394 DOI: 10.3390/polym8040118] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 03/19/2016] [Accepted: 03/25/2016] [Indexed: 12/21/2022] Open
Abstract
Conducting polymers (CPs) have been widely studied to realize advanced technologies in various areas such as chemical and biosensors, catalysts, photovoltaic cells, batteries, supercapacitors, and others. In particular, hybridization of CPs with inorganic species has allowed the production of promising functional materials with improved performance in various applications. Consequently, many important studies on CPs have been carried out over the last decade, and numerous researchers remain attracted to CPs from a technological perspective. In this review, we provide a theoretical classification of fabrication techniques and a brief summary of the most recent developments in synthesis methods. We evaluate the efficacy and benefits of these methods for the preparation of pure CP nanomaterials and nanohybrids, presenting the newest trends from around the world with 205 references, most of which are from the last three years. Furthermore, we also evaluate the effects of various factors on the structures and properties of CP nanomaterials, citing a large variety of publications.
Collapse
Affiliation(s)
- Duong Nguyen Nguyen
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Korea.
| | - Hyeonseok Yoon
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Korea.
- School of Polymer Science and Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Korea.
| |
Collapse
|