1
|
Ren B, Miao J, Wang S, Xu Y, Zhai Z, Dong X, Liu Z. Facilely synthesized porous 3D coral-like Fe-based N-doped carbon composite as effective Fenton catalyst in methylene blue degradation. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126439] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
2
|
Kim WS, Vo TN, Kim IT. GeTe-TiC-C Composite Anodes for Li-Ion Storage. MATERIALS 2020; 13:ma13194222. [PMID: 32977464 PMCID: PMC7579072 DOI: 10.3390/ma13194222] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/17/2020] [Accepted: 09/19/2020] [Indexed: 12/23/2022]
Abstract
Germanium boasts a high charge capacity, but it has detrimental effects on battery cycling life, owing to the significant volume expansion that it incurs after repeated recharging. Therefore, the fabrication of Ge composites including other elements is essential to overcome this hurdle. Herein, highly conductive Te is employed to prepare an alloy of germanium telluride (GeTe) with the addition of a highly conductive matrix comprising titanium carbide (TiC) and carbon (C) via high-energy ball milling (HEBM). The final alloy composite, GeTe-TiC-C, is used as a potential anode for lithium-ion cells. The GeTe-TiC-C composites having different combinations of TiC are characterized by electron microscopies and X-ray powder diffraction for structural and morphological analyses, which indicate that GeTe and TiC are evenly spread out in the carbon matrix. The GeTe electrode exhibits an unstable cycling life; however, the addition of higher amounts of TiC in GeTe offers much better electrochemical performance. Specifically, the GeTe-TiC (20%)-C and GeTe-TiC (30%)-C electrodes exhibited excellent reversible cyclability equivalent to 847 and 614 mAh g−1 after 400 cycles, respectively. Moreover, at 10 A g−1, stable capacity retentions of 78% for GeTe-TiC (20%)-C and 82% for GeTe-TiC (30%)-C were demonstrated. This proves that the developed GeTe-TiC-C anodes are promising for potential applications as anode candidates for high-performance lithium-ion batteries.
Collapse
Affiliation(s)
| | | | - Il Tae Kim
- Correspondence: ; Tel.: +82-31-750-8835; Fax: +82-31-750-5363
| |
Collapse
|
3
|
Rojaee R, Shahbazian-Yassar R. Two-Dimensional Materials to Address the Lithium Battery Challenges. ACS NANO 2020; 14:2628-2658. [PMID: 32083832 DOI: 10.1021/acsnano.9b08396] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Despite the ever-growing demand in safe and high power/energy density of Li+ ion and Li metal rechargeable batteries (LIBs), materials-related challenges are responsible for the majority of performance degradation in such batteries. These challenges include electrochemically induced phase transformations, repeated volume expansion and stress concentrations at interfaces, poor electrical and mechanical properties, low ionic conductivity, dendritic growth of Li, oxygen release and transition metal dissolution of cathodes, polysulfide shuttling in Li-sulfur batteries, and poor reversibility of lithium peroxide/superoxide products in Li-O2 batteries. Owing to compelling physicochemical and structural properties, in recent years two-dimensional (2D) materials have emerged as promising candidates to address the challenges in LIBs. This Review highlights the cutting-edge advances of LIBs by using 2D materials as cathodes, anodes, separators, catalysts, current collectors, and electrolytes. It is shown that 2D materials can protect the electrode materials from pulverization, improve the synergy of Li+ ion deposition, facilitate Li+ ion flux through electrolyte and electrode/electrolyte interfaces, enhance thermal stability, block the lithium polysulfide species, and facilitate the formation/decomposition of Li-O2 discharge products. This work facilitates the design of safe Li batteries with high energy and power density by using 2D materials.
Collapse
Affiliation(s)
- Ramin Rojaee
- Mechanical and Industrial Engineering Department, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Reza Shahbazian-Yassar
- Mechanical and Industrial Engineering Department, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| |
Collapse
|
4
|
Green synthesis of nitrogen-doped self-assembled porous carbon-metal oxide composite towards energy and environmental applications. Sci Rep 2019; 9:5187. [PMID: 30914729 PMCID: PMC6435743 DOI: 10.1038/s41598-019-41700-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 02/26/2019] [Indexed: 11/09/2022] Open
Abstract
Increasing environmental pollution, shortage of efficient energy conversion and storage devices and the depletion of fossil fuels have triggered the research community to look for advanced multifunctional materials suitable for different energy-related applications. Herein, we have discussed a novel and facile synthesis mechanism of such a carbon-based nanocomposite along with its energy and environmental applications. In this present work, nitrogen-doped carbon self-assembled into ordered mesoporous structure has been synthesized via an economical and environment-friendly route and its pore generating mechanism depending on the hydrogen bonding interaction has been highlighted. Incorporation of metal oxide nanoparticles in the porous carbon network has significantly improved CO2 adsorption and lithium storage capacity along with an improvement in the catalytic activity towards Oxygen Reduction Reaction (ORR). Thus our present study unveils a multifunctional material that can be used in three different fields without further modifications.
Collapse
|
5
|
Yuan Z, Xiao X, Li J, Zhao Z, Yu D, Li Q. Self-Assembled Graphene-Based Architectures and Their Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2018; 5:1700626. [PMID: 29619311 PMCID: PMC5827106 DOI: 10.1002/advs.201700626] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 10/03/2017] [Indexed: 05/20/2023]
Abstract
Due to unique planar structures and remarkable thermal, electronic, and mechanical properties, chemically modified graphenes (CMGs) such as graphene oxides, reduced graphene oxides, and the related derivatives are recognized as the attractive building blocks for "bottom-up" nanotechnology, while self-assembly of CMGs has emerged as one of the most promising approaches to construct advanced functional materials/systems based on graphene. By virtue of a variety of noncovalent forces like hydrogen bonding, van der Waals interaction, metal-to-ligand bonds, electrostatic attraction, hydrophobic-hydrophilic interactions, and π-π interactions, the CMGs bearing various functional groups are highly desirable for the assemblies with themselves and a variety of organic and/or inorganic species which can yield various hierarchical nanostructures and macroscopic composites endowed with unique structures, properties, and functions for widespread technological applications such as electronics, optoelectronics, electrocatalysis/photocatalysis, environment, and energy storage and conversion. In this review, significant recent advances concerning the self-assembly of CMGs are summarized, and the broad applications of self-assembled graphene-based materials as well as some future opportunities and challenges in this vibrant area are elucidated.
Collapse
Affiliation(s)
- Zhongke Yuan
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education Key Laboratory of High Performance Polymer‐based Composites of Guangdong ProvinceSchool of ChemistrySun Yat‐sen UniversityGuangzhou510275China
| | - Xiaofen Xiao
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education Key Laboratory of High Performance Polymer‐based Composites of Guangdong ProvinceSchool of ChemistrySun Yat‐sen UniversityGuangzhou510275China
| | - Jing Li
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education Key Laboratory of High Performance Polymer‐based Composites of Guangdong ProvinceSchool of ChemistrySun Yat‐sen UniversityGuangzhou510275China
| | - Zhe Zhao
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education Key Laboratory of High Performance Polymer‐based Composites of Guangdong ProvinceSchool of ChemistrySun Yat‐sen UniversityGuangzhou510275China
| | - Dingshan Yu
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education Key Laboratory of High Performance Polymer‐based Composites of Guangdong ProvinceSchool of ChemistrySun Yat‐sen UniversityGuangzhou510275China
| | - Quan Li
- Liquid Crystal Institute and Chemical Physics Interdisciplinary ProgramKent State UniversityKentOH44242USA
| |
Collapse
|
6
|
Schwaminger SP, Surya R, Filser S, Wimmer A, Weigl F, Fraga-García P, Berensmeier S. Formation of iron oxide nanoparticles for the photooxidation of water: Alteration of finite size effects from ferrihydrite to hematite. Sci Rep 2017; 7:12609. [PMID: 28974753 PMCID: PMC5626691 DOI: 10.1038/s41598-017-12791-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 09/15/2017] [Indexed: 11/29/2022] Open
Abstract
Iron oxide nanoparticles represent a promising low-cost environmentally-friendly material for multiple applications. Especially hematite (α-Fe2O3) nanoparticles demonstrate great possibilities in energy storage and photoelectrochemistry. A hydrothermal one-pot synthesis can be used to synthesise hematite nanoparticles. Here, the particle formation, nucleation and growth of iron oxide nanoparticles using a FeCl3 precursor over time is monitored. The formation of 6-line ferrihydrite seeds of 2-8 nm which grow with reaction time and form clusters followed by a phase transition to ~15 nm hematite particles can be observed with ex situ X-ray diffraction (XRD), transmission electron microscopy (TEM), Raman and UV/Vis spectroscopy. These particles grow with reaction time leading to 40 nm particles after 6 hours. The changes in plasmon and electron transition patterns, observed upon particle transition and growth lead to the possibility of tuning the photoelectrochemical properties. Catalytic activity of the hematite nanoparticles can be proven with visible light irradiation and the use of silver nitrate as scavenger material. The generation of elementary silver is dependent on the particle size of iron oxide nanoparticles while only slight changes can be observed in the oxygen generation. Low-cost nanoscale hematite, offers a range of future applications for artificial photosynthesis.
Collapse
Affiliation(s)
- Sebastian P Schwaminger
- Bioseparation Engineering Group, Department of Mechanical Engineering, Technical University of Munich, 85748, Garching b, München, Germany
| | - Rifki Surya
- Bioseparation Engineering Group, Department of Mechanical Engineering, Technical University of Munich, 85748, Garching b, München, Germany
| | - Simon Filser
- Non-Equilibrium Chemical Physics, Department of Physics, Technical University of Munich, 85748, Garching b, München, Germany
| | - Andreas Wimmer
- Division of Analytical Chemistry, Department of Chemistry, Technical University of Munich, 85748, Garching b, München, Germany
| | - Florian Weigl
- Division of Analytical Chemistry, Department of Chemistry, Technical University of Munich, 85748, Garching b, München, Germany
| | - Paula Fraga-García
- Bioseparation Engineering Group, Department of Mechanical Engineering, Technical University of Munich, 85748, Garching b, München, Germany
| | - Sonja Berensmeier
- Bioseparation Engineering Group, Department of Mechanical Engineering, Technical University of Munich, 85748, Garching b, München, Germany.
| |
Collapse
|
7
|
Inspired by efficient cellulose-dissolving system: Facile one-pot synthesis of biomass-based hydrothermal magnetic carbonaceous materials. Carbohydr Polym 2017; 164:127-135. [PMID: 28325308 DOI: 10.1016/j.carbpol.2017.01.087] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 12/19/2016] [Accepted: 01/23/2017] [Indexed: 11/22/2022]
Abstract
The core-shell structure of carbon encapsulated magnetic nanoparticles (CEMNs) displays unique properties. Enhancing the magnetization of iron core, in parallel, improving the encapsulation of carbon shell are the two major challenges in the synthesis of CEMNs. Inspired by efficient cellulose-dissolving system, carbon encapsulated magnetic nano-Fe3O4 particles (Fe3O4@C) with ∼10.0nm Fe3O4 cores and 1.9-3.3nm carbon shell, were successfully one-pot synthesized via a novel hydrothermal carbonization (HTC) process. The dissolving process in ionic liquids ([Emim]Ac and [Amim]Cl) completely cleaved the intra- and intermolecular H-bonds in cellulose, and favored the incorporation of Fe3O4 nanoparticles into the cellulose H-bonds systems during the regeneration process. Some stable linkages were formed in Fe3O4@C, taking Fe3O4 nanoparticles as a structure guiding agent. The morphology and properties of Fe3O4@C depended strongly on the type of carbon precursors and pyrolysis temperature. Well encapsulated nanostructure was obtained at HTC temperature 280°C, when [Emim]Ac-treated holocellulose was used as the carbon source. Meanwhile, the thickness of the amorphous shell and magnetization increased with HTC temperature. More importantly, a novel elements for understanding the growth mechanism for the Fe3O4@C composite under HTC conditions was proposed.
Collapse
|
8
|
Cho JS, Park JS, Kang YC. Preparation of Hollow Fe 2O 3 Nanorods and Nanospheres by Nanoscale Kirkendall Diffusion, and Their Electrochemical Properties for Use in Lithium-Ion Batteries. Sci Rep 2016; 6:38933. [PMID: 27958368 PMCID: PMC5153625 DOI: 10.1038/srep38933] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 11/15/2016] [Indexed: 12/13/2022] Open
Abstract
A novel process for the preparation of aggregate-free metal oxide nanopowders with spherical (0D) and non-spherical (1D) hollow nanostructures was introduced. Carbon nanofibers embedded with iron selenide (FeSe) nanopowders with various nanostructures are prepared via the selenization of electrospun nanofibers. Ostwald ripening occurs during the selenization process, resulting in the formation of a FeSe-C composite nanofiber exhibiting a hierarchical structure. These nanofibers transform into aggregate-free hollow Fe2O3 powders via the complete oxidation of FeSe and combustion of carbon. Indeed, the zero- (0D) and one-dimensional (1D) FeSe nanocrystals transform into the hollow-structured Fe2O3 nanopowders via a nanoscale Kirkendall diffusion process, thus conserving their overall morphology. The discharge capacities for the 1000th cycle of the hollow-structured Fe2O3 nanopowders obtained from the FeSe-C composite nanofibers prepared at selenization temperatures of 500, 800, and 1000 °C at a current density of 1 A g−1 are 932, 767, and 544 mA h g−1, respectively; and their capacity retentions from the second cycle are 88, 92, and 78%, respectively. The high structural stabilities of these hollow Fe2O3 nanopowders during repeated lithium insertion/desertion processes result in superior lithium-ion storage performances.
Collapse
Affiliation(s)
- Jung Sang Cho
- Department of Materials Science and Engineering, Korea University, Anam-Dong, Seongbuk-Gu, Seoul 136-713, Republic of Korea.,Department of Engineering Chemistry, Chungbuk National University, Chungbuk 361-763, Republic of Korea
| | - Jin-Sung Park
- Department of Materials Science and Engineering, Korea University, Anam-Dong, Seongbuk-Gu, Seoul 136-713, Republic of Korea
| | - Yun Chan Kang
- Department of Materials Science and Engineering, Korea University, Anam-Dong, Seongbuk-Gu, Seoul 136-713, Republic of Korea
| |
Collapse
|
9
|
Yang X, Sun H, Zhang L, Zhao L, Lian J, Jiang Q. High Efficient Photo-Fenton Catalyst of α-Fe2O3/MoS2 Hierarchical Nanoheterostructures: Reutilization for Supercapacitors. Sci Rep 2016; 6:31591. [PMID: 27526965 PMCID: PMC4985694 DOI: 10.1038/srep31591] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 07/19/2016] [Indexed: 12/02/2022] Open
Abstract
A novel three-dimensional (3D) α-Fe2O3/MoS2 hierarchical nanoheterostructure is effectively synthesized via a facile hydrothermal method. The zero-dimensional (0D) Fe2O3 nanoparticles guide the growth of two-dimensional (2D) MoS2 nanosheets and formed 3D flower-like structures, while MoS2 facilitates the good dispersion of porous Fe2O3 with abundant oxygen vacancies. This charming 3D-structure with perfect match of non-equal dimension exhibits high recyclable photo-Fenton catalytic activity for Methyl orange pollutant and nice specific capacity in reusing as supercapacitor after catalysis. The synergistic effect between Fe2O3 and MoS2, the intermediate nanointerfaces, the 3D porous structures, and the abundant oxygen vacancies both contribute to highly active catalysis, nice electrochemical performance and stable cycling. This strategy is simple, cheap, and feasible for maximizing the value of the materials, as well as eliminating the secondary pollution.
Collapse
Affiliation(s)
- Xijia Yang
- Key Lab of Automobile Materials, Ministry of Education, College of Materials Science and Engineering, Jilin University, Nanling Campus, Changchun, 130025, P.R. China
| | - Haiming Sun
- Key Lab of Automobile Materials, Ministry of Education, College of Materials Science and Engineering, Jilin University, Nanling Campus, Changchun, 130025, P.R. China
| | - Lishu Zhang
- Key Lab of Automobile Materials, Ministry of Education, College of Materials Science and Engineering, Jilin University, Nanling Campus, Changchun, 130025, P.R. China
| | - Lijun Zhao
- Key Lab of Automobile Materials, Ministry of Education, College of Materials Science and Engineering, Jilin University, Nanling Campus, Changchun, 130025, P.R. China
| | - Jianshe Lian
- Key Lab of Automobile Materials, Ministry of Education, College of Materials Science and Engineering, Jilin University, Nanling Campus, Changchun, 130025, P.R. China
| | - Qing Jiang
- Key Lab of Automobile Materials, Ministry of Education, College of Materials Science and Engineering, Jilin University, Nanling Campus, Changchun, 130025, P.R. China
| |
Collapse
|