1
|
Altgilbers S, Dierks C, Klein S, Weigend S, Kues WA. Quantitative analysis of CRISPR/Cas9-mediated provirus deletion in blue egg layer chicken PGCs by digital PCR. Sci Rep 2022; 12:15587. [PMID: 36114266 PMCID: PMC9481566 DOI: 10.1038/s41598-022-19861-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 09/06/2022] [Indexed: 11/08/2022] Open
Abstract
Primordial germ cells (PGCs), the precursors of sperm and oocytes, pass on the genetic material to the next generation. The previously established culture system of chicken PGCs holds many possibilities for functional genomics studies and the rapid introduction of desired traits. Here, we established a CRISPR/Cas9-mediated genome editing protocol for the genetic modification of PGCs derived from chickens with blue eggshell color. The sequence targeted in the present report is a provirus (EAV-HP) insertion in the 5'-flanking region of the SLCO1B3 gene on chromosome 1 in Araucana chickens, which is supposedly responsible for the blue eggshell color. We designed pairs of guide RNAs (gRNAs) targeting the entire 4.2 kb provirus region. Following transfection of PGCs with the gRNA, genomic DNA was isolated and analyzed by mismatch cleavage assay (T7EI). For absolute quantification of the targeting efficiencies in homozygous blue-allele bearing PGCs a digital PCR was established, which revealed deletion efficiencies of 29% when the wildtype Cas9 was used, and 69% when a high-fidelity Cas9 variant was employed. Subsequent single cell dilutions of edited PGCs yielded 14 cell clones with homozygous deletion of the provirus. A digital PCR assay proved the complete absence of this provirus in cell clones. Thus, we demonstrated the high efficiency of the CRISPR/Cas9 system in introducing a large provirus deletion in chicken PGCs. Our presented workflow is a cost-effective and rapid solution for screening the editing success in transfected PGCs.
Collapse
Affiliation(s)
- Stefanie Altgilbers
- Department of Biotechnology, Stem Cell Physiology, Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, 31535, Neustadt, Germany.
| | - Claudia Dierks
- Department of Breeding and Genetic Resources, Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, 31535, Neustadt, Germany
| | - Sabine Klein
- Department of Biotechnology, Stem Cell Physiology, Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, 31535, Neustadt, Germany
| | - Steffen Weigend
- Department of Breeding and Genetic Resources, Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, 31535, Neustadt, Germany
| | - Wilfried A Kues
- Department of Biotechnology, Stem Cell Physiology, Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, 31535, Neustadt, Germany
| |
Collapse
|
2
|
Kojabad AA, Farzanehpour M, Galeh HEG, Dorostkar R, Jafarpour A, Bolandian M, Nodooshan MM. Droplet digital PCR of viral DNA/RNA, current progress, challenges, and future perspectives. J Med Virol 2021; 93:4182-4197. [PMID: 33538349 PMCID: PMC8013307 DOI: 10.1002/jmv.26846] [Citation(s) in RCA: 149] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 02/01/2021] [Indexed: 12/18/2022]
Abstract
High-throughput droplet-based digital PCR (ddPCR) is a refinement of the conventional polymerase chain reaction (PCR) methods. In ddPCR, DNA/RNA is encapsulated stochastically inside the microdroplets as reaction chambers. A small percentage of the reaction chamber contains one or fewer copies of the DNA or RNA. After PCR amplification, concentrations are determined based on the proportion of nonfluorescent partitions through the Poisson distribution. Some of the main features of ddPCR include high sensitivity and specificity, absolute quantification without a standard curve, high reproducibility, good tolerance to PCR inhibitor, and high efficacy compared to conventional molecular methods. These advantages make ddPCR a valuable addition to the virologist's toolbox. The following review outlines the recent technological advances in ddPCR methods and their applications in viral identification.
Collapse
Affiliation(s)
- Amir Asri Kojabad
- Applied Virology Research CenterBaqiyatallah University of Medical SciencesTehranIran
| | - Mahdieh Farzanehpour
- Applied Virology Research CenterBaqiyatallah University of Medical SciencesTehranIran
| | | | - Ruhollah Dorostkar
- Applied Virology Research CenterBaqiyatallah University of Medical SciencesTehranIran
| | - Ali Jafarpour
- Research Center for Clinical VirologyTehran University of Medical SciencesTehranIran
| | - Masoumeh Bolandian
- Applied Virology Research CenterBaqiyatallah University of Medical SciencesTehranIran
| | | |
Collapse
|
3
|
MORON-LOPEZ S, KIM P, SøGAARD OS, TOLSTRUP M, WONG JK, YUKL SA. Characterization of the HIV-1 transcription profile after romidepsin administration in ART-suppressed individuals. AIDS 2019; 33:425-431. [PMID: 30531314 PMCID: PMC6374101 DOI: 10.1097/qad.0000000000002083] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
OBJECTIVES Reversing HIV-1 latency has been suggested as a strategy to eradicate HIV-1. We investigated the effect of romidepsin on the HIV transcription profile in participants from the REDUC part B clinical trial. DESIGN Seventeen participants on suppressive antiretroviral therapy were vaccinated with six doses of the therapeutic vaccine Vacc-4x followed by treatment with three doses of romidepsin. Samples from nine study participants were available for HIV transcription profile analysis. METHODS Read-through, total (TAR), elongated (longLTR), polyadenylated (polyA) and multiply-spliced (Tat-Rev) HIV transcripts and total HIV DNA were quantified at baseline (visit 1) and 4 h after the second (visit 10b) and third (visit 11b) romidepsin infusions. RESULTS Read-through, total, elongated, and polyadenylated HIV transcripts increased after romidepsin infusion (P = 0.020, P = 0.0078, P = 0.0039, P = 0.027, respectively), but no changes were observed in multiply-spliced HIV RNA or HIV DNA. No change was observed in the ratio of read-through/total HIV transcripts. The ratio of elongated/total HIV RNA increased after romidepsin (P = 0.016), whereas the ratio of polyadenylated/elongated HIV decreased. Both elongated HIV transcripts and total HIV DNA correlated negatively with the time to viral rebound after interruption of ART. CONCLUSIONS In these patients, romidepsin increased early events in HIV transcription (initiation and especially elongation), but had less effect on later stages (completion, multiple splicing) that may be required for comprehensive latency reversal and cell killing. Without cell death, increased HIV transcription before or after latency reversal may hasten viral rebound after therapy interruption.
Collapse
Affiliation(s)
- Sara MORON-LOPEZ
- San Francisco Veterans Affairs (VA) Medical Center and University of California San Francisco (UCSF), 4150 Clement Street, 111W, San Francisco, CA 94121, USA
| | - Peggy KIM
- San Francisco Veterans Affairs (VA) Medical Center and University of California San Francisco (UCSF), 4150 Clement Street, 111W, San Francisco, CA 94121, USA
| | - Ole S. SøGAARD
- The Department of Infectious Diseases, Aarhus University Hospital, Aarhus 8200, Denmark
- Institute of Clinical Medicine, Aarhus University, Aarhus 8200, Denmark
| | - Martin TOLSTRUP
- The Department of Infectious Diseases, Aarhus University Hospital, Aarhus 8200, Denmark
- Institute of Clinical Medicine, Aarhus University, Aarhus 8200, Denmark
| | - Joseph K. WONG
- San Francisco Veterans Affairs (VA) Medical Center and University of California San Francisco (UCSF), 4150 Clement Street, 111W, San Francisco, CA 94121, USA
| | - Steven A. YUKL
- San Francisco Veterans Affairs (VA) Medical Center and University of California San Francisco (UCSF), 4150 Clement Street, 111W, San Francisco, CA 94121, USA
| |
Collapse
|
4
|
|
5
|
Germini D, Tsfasman T, Zakharova VV, Sjakste N, Lipinski M, Vassetzky Y. A Comparison of Techniques to Evaluate the Effectiveness of Genome Editing. Trends Biotechnol 2018; 36:147-159. [PMID: 29157536 DOI: 10.1016/j.tibtech.2017.10.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 10/17/2017] [Accepted: 10/18/2017] [Indexed: 12/21/2022]
Abstract
Genome editing using engineered nucleases (meganucleases, zinc finger nucleases, transcription activator-like effector nucleases) has created many recent breakthroughs. Prescreening for efficiency and specificity is a critical step prior to using any newly designed genome editing tool for experimental purposes. The current standard screening methods of evaluation are based on DNA sequencing or use mismatch-sensitive endonucleases. They can be time-consuming and costly or lack reproducibility. Here, we review and critically compare standard techniques with those more recently developed in terms of reliability, time, cost, and ease of use.
Collapse
Affiliation(s)
- Diego Germini
- UMR 8126, Université Paris Sud - Paris Saclay, CNRS, Institut Gustave Roussy, 94805 Villejuif, France; LIA 1066, French-Russian Joint Cancer Research Laboratory, 94805 Villejuif, France; The first two authors contributed equally to this work
| | - Tatiana Tsfasman
- UMR 8126, Université Paris Sud - Paris Saclay, CNRS, Institut Gustave Roussy, 94805 Villejuif, France; LIA 1066, French-Russian Joint Cancer Research Laboratory, 94805 Villejuif, France; The first two authors contributed equally to this work
| | - Vlada V Zakharova
- UMR 8126, Université Paris Sud - Paris Saclay, CNRS, Institut Gustave Roussy, 94805 Villejuif, France; LIA 1066, French-Russian Joint Cancer Research Laboratory, 94805 Villejuif, France
| | | | - Marс Lipinski
- UMR 8126, Université Paris Sud - Paris Saclay, CNRS, Institut Gustave Roussy, 94805 Villejuif, France; LIA 1066, French-Russian Joint Cancer Research Laboratory, 94805 Villejuif, France
| | - Yegor Vassetzky
- UMR 8126, Université Paris Sud - Paris Saclay, CNRS, Institut Gustave Roussy, 94805 Villejuif, France; LIA 1066, French-Russian Joint Cancer Research Laboratory, 94805 Villejuif, France; Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia.
| |
Collapse
|
6
|
Abstract
The amphibian Xenopus laevis has long been used as a model for studying vertebrate cell and developmental biology largely due to the easiness to manipulate this system in vivo and in vitro. While most of the developmental studies have been on Xenopus embryogenesis, considerable efforts have been made to understand its metamorphosis, a process mimicking postembryonic development in mammals when many organs mature into their adult forms in the presence of high levels of thyroid hormone (T3). Amphibian metamorphosis is totally dependent on T3 and offers a number of advantages for experimental analyses compared to the late stage, uterus-enclosed mammalian embryos. Earlier studies on metamorphosis in Xenopus laevis have revealed dual functions of T3 receptors (TR) during premetamorphic development and metamorphosis as well as important roles of TR-interacting corepressors and coactivators during these two periods, respectively. The development of gene-editing technologies that functions in amphibians in recent years has made possible for the first time to study function of endogenous TRs, especially in the highly related diploid anuran species Xenopus tropicalis. Here, we first review the current mechanistic understanding of the regulation of metamorphosis by T3 and TR, and then describe a detailed method to use TALEN to knock out TRα for studying its role in gene regulation by T3 in vivo and Xenopus development.
Collapse
Affiliation(s)
- Liezhen Fu
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Luan Wen
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Yun-Bo Shi
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, USA.
| |
Collapse
|
7
|
Droplet volume variability as a critical factor for accuracy of absolute quantification using droplet digital PCR. Anal Bioanal Chem 2017; 409:6689-6697. [PMID: 28921124 PMCID: PMC5670190 DOI: 10.1007/s00216-017-0625-y] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 08/30/2017] [Accepted: 09/05/2017] [Indexed: 11/13/2022]
Abstract
Accurate and precise nucleic-acid quantification is crucial for clinical and diagnostic decisions, as overestimation or underestimation can lead to misguided treatment of a disease or incorrect labelling of the products. Digital PCR is one of the best tools for absolute nucleic-acid copy-number determination. However, digital PCR needs to be well characterised in terms of accuracy and sources of uncertainty. With droplet digital PCR, discrepancies between the droplet volume assigned by the manufacturer and measured by independent laboratories have already been shown in previous studies. In the present study, we report on the results of an inter-laboratory comparison of different methods for droplet volume determination that is based on optical microscopy imaging and is traceable to the International System of Units. This comparison was conducted on the same DNA material, with the examination of the influence of parameters such as droplet generators, supermixes, operators, inter-cartridge and intra-cartridge variability, and droplet measuring protocol. The mean droplet volume was measured using a QX200™ AutoDG™ Droplet Digital™ PCR system and two QX100™ Droplet Digital™ PCR systems. The data show significant volume differences between these two systems, as well as significant differences in volume when different supermixes are used. We also show that both of these droplet generator systems produce droplets with significantly lower droplet volumes (13.1%, 15.9%, respectively) than stated by the manufacturer and previously measured by other laboratories. This indicates that to ensure precise quantification, the droplet volumes should be assessed for each system.
Collapse
|
8
|
Werther R, Hallinan JP, Lambert AR, Havens K, Pogson M, Jarjour J, Galizi R, Windbichler N, Crisanti A, Nolan T, Stoddard BL. Crystallographic analyses illustrate significant plasticity and efficient recoding of meganuclease target specificity. Nucleic Acids Res 2017; 45:8621-8634. [PMID: 28637173 PMCID: PMC5737575 DOI: 10.1093/nar/gkx544] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 06/02/2017] [Accepted: 06/12/2017] [Indexed: 12/11/2022] Open
Abstract
The retargeting of protein-DNA specificity, outside of extremely modular DNA binding proteins such as TAL effectors, has generally proved to be quite challenging. Here, we describe structural analyses of five different extensively retargeted variants of a single homing endonuclease, that have been shown to function efficiently in ex vivo and in vivo applications. The redesigned proteins harbor mutations at up to 53 residues (18%) of their amino acid sequence, primarily distributed across the DNA binding surface, making them among the most significantly reengineered ligand-binding proteins to date. Specificity is derived from the combined contributions of DNA-contacting residues and of neighboring residues that influence local structural organization. Changes in specificity are facilitated by the ability of all those residues to readily exchange both form and function. The fidelity of recognition is not precisely correlated with the fraction or total number of residues in the protein-DNA interface that are actually involved in DNA contacts, including directional hydrogen bonds. The plasticity of the DNA-recognition surface of this protein, which allows substantial retargeting of recognition specificity without requiring significant alteration of the surrounding protein architecture, reflects the ability of the corresponding genetic elements to maintain mobility and persistence in the face of genetic drift within potential host target sites.
Collapse
Affiliation(s)
- Rachel Werther
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N., Seattle, WA 98109, USA
| | - Jazmine P. Hallinan
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N., Seattle, WA 98109, USA
| | - Abigail R. Lambert
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N., Seattle, WA 98109, USA
| | - Kyle Havens
- Bluebird Bio Inc., Suite 207 1616 Eastlake Ave. E., Seattle, WA 98102, USA
| | - Mark Pogson
- Bluebird Bio Inc., Suite 207 1616 Eastlake Ave. E., Seattle, WA 98102, USA
| | - Jordan Jarjour
- Bluebird Bio Inc., Suite 207 1616 Eastlake Ave. E., Seattle, WA 98102, USA
| | - Roberto Galizi
- Imperial College of London, Department of Life Sciences, South Kensington Campus, London SW7 2AZ, UK
| | - Nikolai Windbichler
- Imperial College of London, Department of Life Sciences, South Kensington Campus, London SW7 2AZ, UK
| | - Andrea Crisanti
- Imperial College of London, Department of Life Sciences, South Kensington Campus, London SW7 2AZ, UK
| | - Tony Nolan
- Imperial College of London, Department of Life Sciences, South Kensington Campus, London SW7 2AZ, UK
| | - Barry L. Stoddard
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N., Seattle, WA 98109, USA
| |
Collapse
|
9
|
Abstract
PURPOSE OF REVIEW Highly active antiretroviral treatment has dramatically improved the prognosis for people living with HIV by preventing AIDS-related morbidity and mortality through profound suppression of viral replication. However, a long-lived viral reservoir persists in latently infected cells that harbor replication-competent HIV genomes. If therapy is discontinued, latently infected memory cells inevitably reactivate and produce infectious virus, resulting in viral rebound. The reservoir is the biggest obstacle to a cure of HIV. RECENT FINDINGS This review summarizes significant advances of the past year in the development of cellular and gene therapies for HIV cure. In particular, we highlight work done on suppression or disruption of HIV coreceptors, vectored delivery of antibodies and antibody-like molecules, T-cell therapies and HIV genome disruption. SUMMARY Several recent advancements in cellular and gene therapies have emerged at the forefront of HIV cure research, potentially having broad implications for the future of HIV treatment.
Collapse
|
10
|
Niyonzima N, Lambert AR, Werther R, De Silva Feelixge H, Roychoudhury P, Greninger AL, Stone D, Stoddard BL, Jerome KR. Tuning DNA binding affinity and cleavage specificity of an engineered gene-targeting nuclease via surface display, flow cytometry and cellular analyses. Protein Eng Des Sel 2017; 30:503-522. [PMID: 28873986 PMCID: PMC5914421 DOI: 10.1093/protein/gzx037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 06/19/2017] [Accepted: 07/06/2017] [Indexed: 11/14/2022] Open
Abstract
The combination of yeast surface display and flow cytometric analyses and selections is being used with increasing frequency to alter specificity of macromolecular recognition, including both protein-protein and protein-nucleic acid interactions. Here we describe the use of yeast surface display and cleavage-dependent flow cytometric assays to increase the specificity of an engineered meganuclease. The re-engineered meganuclease displays a significantly tightened specificity profile, while binding its cognate target site with a slightly lower, but still sub-nanomolar affinity. When incorporated into otherwise identical megaTAL protein scaffolds, these two nucleases display significantly different activity and toxicity profiles in cellulo. The structural basis for reprogrammed DNA cleavage specificity was further examined via high-resolution X-ray crystal structures of both enzymes. This analysis illustrated the altered protein-DNA contacts produced by mutagenesis and selection, that resulted both in altered readout of those based and a necessary reduction in DNA binding affinity that were necessary to improve specificity across the target site. The results of this study provide an illustrative example of the potential (and the challenges) associated with the use of surface display and flow cytometry for the retargeting and optimization of enzymes that act on nucleic acid substrates in a sequence-specific manner.
Collapse
Affiliation(s)
- Nixon Niyonzima
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N., Seattle, WA 98109, USA
| | - Abigail R. Lambert
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N., Seattle, WA 98109, USA
| | - Rachel Werther
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N., Seattle, WA 98109, USA
| | - Harshana De Silva Feelixge
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N., Seattle, WA 98109, USA
| | - Pavitra Roychoudhury
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N., Seattle, WA 98109, USA
| | - Alexander L. Greninger
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N., Seattle, WA 98109, USA
- Virology Division, Department of Laboratory Medicine, University of Washington, 1616 Eastlake Ave. E, Seattle WA 98102, USA
| | - Daniel Stone
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N., Seattle, WA 98109, USA
| | - Barry L. Stoddard
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N., Seattle, WA 98109, USA
| | - Keith R. Jerome
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N., Seattle, WA 98109, USA
- Virology Division, Department of Laboratory Medicine, University of Washington, 1616 Eastlake Ave. E, Seattle WA 98102, USA
| |
Collapse
|
11
|
Abstract
Digital PCR (dPCR) is an important new tool for use in the clinical microbiology laboratory. Its advantages over quantitative PCR (qPCR), including absolute quantification without a standard curve, improved precision, improved accuracy in the presence of inhibitors, and more accurate quantitation when amplification efficiency is low, make dPCR the assay of choice for several specimen testing applications. This minireview will discuss the advantages and disadvantages of dPCR compared to qPCR, its applications in clinical microbiology, and considerations for implementation of the method in a clinical laboratory.
Collapse
|
12
|
Germini D, Bou Saada Y, Tsfasman T, Osina K, Robin C, Lomov N, Rubtsov M, Sjakste N, Lipinski M, Vassetzky Y. A One-Step PCR-Based Assay to Evaluate the Efficiency and Precision of Genomic DNA-Editing Tools. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2017; 5:43-50. [PMID: 28480303 PMCID: PMC5415314 DOI: 10.1016/j.omtm.2017.03.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 03/03/2017] [Indexed: 12/16/2022]
Abstract
Despite rapid progress, many problems and limitations persist and limit the applicability of gene-editing techniques. Making use of meganucleases, TALENs, or CRISPR/Cas9-based tools requires an initial step of pre-screening to determine the efficiency and specificity of the designed tools. This step remains time consuming and material consuming. Here we propose a simple, cheap, reliable, time-saving, and highly sensitive method to evaluate a given gene-editing tool based on its capacity to induce chromosomal translocations when combined with a reference engineered nuclease. In the proposed technique, designated engineered nuclease-induced translocations (ENIT), a plasmid coding for the DNA-editing tool to be tested is co-transfected into carefully chosen target cells along with that for an engineered nuclease of known specificity and efficiency. If the new enzyme efficiently cuts within the desired region, then specific chromosomal translocations will be generated between the two targeted genomic regions and be readily detectable by a one-step PCR or qPCR assay. The PCR product thus obtained can be directly sequenced, thereby determining the exact position of the double-strand breaks induced by the gene-editing tools. As a proof of concept, ENIT was successfully tested in different cell types and with different meganucleases, TALENs, and CRISPR/Cas9-based editing tools.
Collapse
Affiliation(s)
- Diego Germini
- UMR8126, Université Paris Sud - Paris Saclay, CNRS, Institut Gustave Roussy, 94805 Villejuif, France.,LIA 1066, French-Russian Joint Cancer Research Laboratory, 94805 Villejuif, France.,Department of Biophysics, Institute of Physics, Nanotechnology, and Telecommunications, Peter the Great St. Petersburg Polytechnic University, St. Petersburg 195251, Russia
| | - Yara Bou Saada
- UMR8126, Université Paris Sud - Paris Saclay, CNRS, Institut Gustave Roussy, 94805 Villejuif, France.,LIA 1066, French-Russian Joint Cancer Research Laboratory, 94805 Villejuif, France
| | - Tatiana Tsfasman
- UMR8126, Université Paris Sud - Paris Saclay, CNRS, Institut Gustave Roussy, 94805 Villejuif, France.,LIA 1066, French-Russian Joint Cancer Research Laboratory, 94805 Villejuif, France
| | - Kristina Osina
- UMR8126, Université Paris Sud - Paris Saclay, CNRS, Institut Gustave Roussy, 94805 Villejuif, France.,University of Latvia, 1586 Riga, Latvia
| | - Chloé Robin
- UMR8126, Université Paris Sud - Paris Saclay, CNRS, Institut Gustave Roussy, 94805 Villejuif, France
| | - Nikolay Lomov
- UMR8126, Université Paris Sud - Paris Saclay, CNRS, Institut Gustave Roussy, 94805 Villejuif, France.,LIA 1066, French-Russian Joint Cancer Research Laboratory, 94805 Villejuif, France.,M.V. Lomonosov Moscow State University, Moscow 119991, Russia
| | - Mikhail Rubtsov
- LIA 1066, French-Russian Joint Cancer Research Laboratory, 94805 Villejuif, France.,M.V. Lomonosov Moscow State University, Moscow 119991, Russia.,Department of Biochemistry and Strategic Management Department, I.M. Sechenov First Moscow State Medical University, Moscow 119048, Russia
| | | | - Mar Lipinski
- UMR8126, Université Paris Sud - Paris Saclay, CNRS, Institut Gustave Roussy, 94805 Villejuif, France.,LIA 1066, French-Russian Joint Cancer Research Laboratory, 94805 Villejuif, France
| | - Yegor Vassetzky
- UMR8126, Université Paris Sud - Paris Saclay, CNRS, Institut Gustave Roussy, 94805 Villejuif, France.,LIA 1066, French-Russian Joint Cancer Research Laboratory, 94805 Villejuif, France.,M.V. Lomonosov Moscow State University, Moscow 119991, Russia
| |
Collapse
|
13
|
Novel AIDS therapies based on gene editing. Cell Mol Life Sci 2017; 74:2439-2450. [PMID: 28210784 DOI: 10.1007/s00018-017-2479-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 01/20/2017] [Accepted: 01/30/2017] [Indexed: 01/03/2023]
Abstract
HIV/AIDS remains a major public health issue. In 2014, it was estimated that 36.9 million people are living with HIV worldwide, including 2.6 million children. Since the advent of combination antiretroviral therapy (cART), in the 1990s, treatment has been so successful that in many parts of the world, HIV has become a chronic condition in which progression to AIDS has become increasingly rare. However, while people with HIV can expect to live a normal life span with cART, lifelong medication is required and cardiovascular, renal, liver, and neurologic diseases are still possible, which continues to prompt research for a cure for HIV. Infected reservoir cells, such as CD4+ T cells and myeloid cells, allow persistence of HIV as an integrated DNA provirus and serve as a potential source for the re-emergence of virus. Attempts to eradicate HIV from these cells have focused mainly on the so-called "shock and kill" approach, where cellular reactivation is induced so as to trigger the purging of virus-producing cells by cytolysis or immune attack. This approach has several limitations and its usefulness in clinical applications remains to be assessed. Recent advances in gene-editing technology have allowed the use of this approach for inactivating integrated proviral DNA in the genome of latently infected cells or knocking out HIV receptors. Here, we review this strategy and its potential to eliminate the latent HIV reservoir resulting in a sterile cure of AIDS.
Collapse
|
14
|
Bateman AC, Greninger AL, Atienza EE, Limaye AP, Jerome KR, Cook L. Quantification of BK Virus Standards by Quantitative Real-Time PCR and Droplet Digital PCR Is Confounded by Multiple Virus Populations in the WHO BKV International Standard. Clin Chem 2017; 63:761-769. [PMID: 28100494 DOI: 10.1373/clinchem.2016.265512] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 12/20/2016] [Indexed: 11/06/2022]
Abstract
BACKGROUND The WHO recently released a BK virus (BKV) international standard. This study evaluated the WHO international standard and commercially available BKV standards by quantitative real-time PCR (qPCR) and droplet digital PCR (ddPCR). METHODS WHO, Exact Diagnostics, Acrometrix, and Zeptometrix BKV standards were tested by qPCR and ddPCR. Two preparations of NIST BKV clones were also tested. Nucleic acid was extracted with the Roche MP96 and MPLC, followed by quantification in duplicate. To resolve discrepancies, we sequenced the WHO and NIST materials. RESULTS Manufacturers' expected copies/mL were close to WHO IU/mL: linear regression of qPCR data revealed 1.12 Exact copies/IU, 0.76 Acrometrix copies/IU, and 0.70 Zeptometrix copies/IU. For ddPCR, similar concentrations were measured when either the VP1 region or the T region was targeted, and concentrations were almost 2-fold higher when both regions were targeted simultaneously. ddPCR results for the VP1 and T regions were similar for all commercial standards, but targeting the T region of the WHO standard led to a 4-fold lower result than the VP1 region. Next-generation sequencing revealed no primer or probe mismatches. However, large differences in coverage across the WHO standard and junctional reads were observed, indicating subpopulations of the WHO standard with deletions in the T region. CONCLUSIONS BKV standards showed concordance among providers, but the WHO standard contains subpopulations of viruses with various deletions in the T region. PCR results will vary depending on which region of the WHO standard is targeted.
Collapse
Affiliation(s)
| | | | | | - Ajit P Limaye
- Division of Allergy and Infectious Diseases, University of Washington, Seattle, WA
| | - Keith R Jerome
- Department of Laboratory Medicine and.,Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Linda Cook
- Department of Laboratory Medicine and.,Fred Hutchinson Cancer Research Center, Seattle, WA
| |
Collapse
|
15
|
Jerome KR. Disruption or Excision of Provirus as an Approach to HIV Cure. AIDS Patient Care STDS 2016; 30:551-555. [PMID: 27855263 DOI: 10.1089/apc.2016.0232] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
An effective approach to HIV cure will almost certainly require a combination of strategies, including some means of reducing the latent HIV reservoir. Because the integrated HIV provirus represents the major source of viral persistence and reactivation, one attractive approach is the direct targeting of provirus for disruption or excision using targeted endonucleases, such as CRISPR/Cas9, zinc finger nucleases, TAL effector nucleases, or meganucleases (homing endonucleases). This article highlights some of the challenges for successful endonuclease therapy for HIV, including optimization of enzyme activity and specificity, the possible emergence of viral resistance, and most importantly, efficient in vivo delivery of the enzymes to a sufficient portion of the latent reservoir.
Collapse
Affiliation(s)
- Keith R. Jerome
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
- Virology Division, Department of Laboratory Medicine, University of Washington, Seattle, Washington
| |
Collapse
|
16
|
Fu L, Wen L, Luu N, Shi YB. A simple and efficient method to visualize and quantify the efficiency of chromosomal mutations from genome editing. Sci Rep 2016; 6:35488. [PMID: 27748423 PMCID: PMC5066342 DOI: 10.1038/srep35488] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 09/30/2016] [Indexed: 12/21/2022] Open
Abstract
Genome editing with designer nucleases such as TALEN and CRISPR/Cas enzymes has broad applications. Delivery of these designer nucleases into organisms induces various genetic mutations including deletions, insertions and nucleotide substitutions. Characterizing those mutations is critical for evaluating the efficacy and specificity of targeted genome editing. While a number of methods have been developed to identify the mutations, none other than sequencing allows the identification of the most desired mutations, i.e., out-of-frame insertions/deletions that disrupt genes. Here we report a simple and efficient method to visualize and quantify the efficiency of genomic mutations induced by genome-editing. Our approach is based on the expression of a two-color fusion protein in a vector that allows the insertion of the edited region in the genome in between the two color moieties. We show that our approach not only easily identifies developing animals with desired mutations but also efficiently quantifies the mutation rate in vivo. Furthermore, by using LacZα and GFP as the color moieties, our approach can even eliminate the need for a fluorescent microscope, allowing the analysis with simple bright field visualization. Such an approach will greatly simplify the screen for effective genome-editing enzymes and identify the desired mutant cells/animals.
Collapse
Affiliation(s)
- Liezhen Fu
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), 18 Library Dr., Bethesda, Maryland, 20892, United States
| | - Luan Wen
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), 18 Library Dr., Bethesda, Maryland, 20892, United States
| | - Nga Luu
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), 18 Library Dr., Bethesda, Maryland, 20892, United States
| | - Yun-Bo Shi
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), 18 Library Dr., Bethesda, Maryland, 20892, United States
| |
Collapse
|
17
|
Aubert M, Madden EA, Loprieno M, DeSilva Feelixge HS, Stensland L, Huang ML, Greninger AL, Roychoudhury P, Niyonzima N, Nguyen T, Magaret A, Galleto R, Stone D, Jerome KR. In vivo disruption of latent HSV by designer endonuclease therapy. JCI Insight 2016; 1. [PMID: 27642635 DOI: 10.1172/jci.insight.88468] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
A large portion of the global population carries latent herpes simplex virus (HSV), which can periodically reactivate, resulting in asymptomatic shedding or formation of ulcerative lesions. Current anti-HSV drugs do not eliminate latent virus from sensory neurons where HSV resides, and therefore do not eliminate the risk of transmission or recurrent disease. Here, we report the ability of HSV-specific endonucleases to induce mutations of essential HSV genes both in cultured neurons and in latently infected mice. In neurons, viral genomes are susceptible to endonuclease-mediated mutagenesis, regardless of the time of treatment after HSV infection, suggesting that both HSV lytic and latent forms can be targeted. Mutagenesis frequency after endonuclease exposure can be increased nearly 2-fold by treatment with a histone deacetylase (HDAC) inhibitor. Using a mouse model of latent HSV infection, we demonstrate that a targeted endonuclease can be delivered to viral latency sites via an adeno-associated virus (AAV) vector, where it is able to induce mutation of latent HSV genomes. These data provide the first proof-of-principle to our knowledge for the use of a targeted endonuclease as an antiviral agent to treat an established latent viral infection in vivo.
Collapse
Affiliation(s)
- Martine Aubert
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Emily A Madden
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Michelle Loprieno
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | | | - Laurence Stensland
- Department of Laboratory Medicine, University of Washington, Seattle, Washington, USA
| | - Meei-Li Huang
- Department of Laboratory Medicine, University of Washington, Seattle, Washington, USA
| | - Alexander L Greninger
- Department of Laboratory Medicine, University of Washington, Seattle, Washington, USA
| | - Pavitra Roychoudhury
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Nixon Niyonzima
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Thuy Nguyen
- Department of Laboratory Medicine, University of Washington, Seattle, Washington, USA
| | - Amalia Magaret
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA; Department of Laboratory Medicine, University of Washington, Seattle, Washington, USA
| | | | - Daniel Stone
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Keith R Jerome
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA; Department of Laboratory Medicine, University of Washington, Seattle, Washington, USA
| |
Collapse
|
18
|
Shigeta M, Sakane Y, Iida M, Suzuki M, Kashiwagi K, Kashiwagi A, Fujii S, Yamamoto T, Suzuki KIT. Rapid and efficient analysis of gene function using CRISPR-Cas9 inXenopus tropicalisfounders. Genes Cells 2016; 21:755-71. [DOI: 10.1111/gtc.12379] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Accepted: 04/22/2016] [Indexed: 12/26/2022]
Affiliation(s)
- Mitsuki Shigeta
- Department of Mathematical and Life Sciences; Hiroshima University; 1-3-1 Kagamiyama Higashi-Hiroshima Hiroshima 739-8526 Japan
| | - Yuto Sakane
- Department of Mathematical and Life Sciences; Hiroshima University; 1-3-1 Kagamiyama Higashi-Hiroshima Hiroshima 739-8526 Japan
| | - Midori Iida
- Department of Bioscience and Bioinformatics; Kyushu Institute of Technology; 680-4 Kawazu Iizuka Fukuoka 820-8502 Japan
| | - Miyuki Suzuki
- Department of Mathematical and Life Sciences; Hiroshima University; 1-3-1 Kagamiyama Higashi-Hiroshima Hiroshima 739-8526 Japan
| | - Keiko Kashiwagi
- Institute for Amphibian Biology; Graduate School of Science; Hiroshima University; 1-3-1 Kagamiyama Higashi-Hiroshima Hiroshima 739-8526 Japan
| | - Akihiko Kashiwagi
- Institute for Amphibian Biology; Graduate School of Science; Hiroshima University; 1-3-1 Kagamiyama Higashi-Hiroshima Hiroshima 739-8526 Japan
| | - Satoshi Fujii
- Department of Bioscience and Bioinformatics; Kyushu Institute of Technology; 680-4 Kawazu Iizuka Fukuoka 820-8502 Japan
| | - Takashi Yamamoto
- Department of Mathematical and Life Sciences; Hiroshima University; 1-3-1 Kagamiyama Higashi-Hiroshima Hiroshima 739-8526 Japan
| | - Ken-ichi T. Suzuki
- Department of Mathematical and Life Sciences; Hiroshima University; 1-3-1 Kagamiyama Higashi-Hiroshima Hiroshima 739-8526 Japan
| |
Collapse
|
19
|
Roychoudhury P, De Silva Feelixge HS, Pietz HL, Stone D, Jerome KR, Schiffer JT. Pharmacodynamics of anti-HIV gene therapy using viral vectors and targeted endonucleases. J Antimicrob Chemother 2016; 71:2089-99. [PMID: 27090632 DOI: 10.1093/jac/dkw104] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 02/29/2016] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVES A promising curative approach for HIV is to use designer endonucleases that bind and cleave specific target sequences within latent genomes, resulting in mutations that render the virus replication incompetent. We developed a mathematical model to describe the expression and activity of endonucleases delivered to HIV-infected cells using engineered viral vectors in order to guide dose selection and predict therapeutic outcomes. METHODS We developed a mechanistic model that predicts the number of transgene copies expressed at a given dose in individual target cells from fluorescence of a reporter gene. We fitted the model to flow cytometry datasets to determine the optimal vector serotype, promoter and dose required to achieve maximum expression. RESULTS We showed that our model provides a more accurate measure of transduction efficiency compared with gating-based methods, which underestimate the percentage of cells expressing reporter genes. We identified that gene expression follows a sigmoid dose-response relationship and that the level of gene expression saturation depends on vector serotype and promoter. We also demonstrated that significant bottlenecks exist at the level of viral uptake and gene expression: only ∼1 in 220 added vectors enter a cell and, of these, depending on the dose and promoter used, between 1 in 15 and 1 in 1500 express transgene. CONCLUSIONS Our model provides a quantitative method of dose selection and optimization that can be readily applied to a wide range of other gene therapy applications. Reducing bottlenecks in delivery will be key to reducing the number of doses required for a functional cure.
Collapse
Affiliation(s)
- Pavitra Roychoudhury
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | | | - Harlan L Pietz
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA Department of Microbiology, University of Washington, Seattle, WA, USA Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Daniel Stone
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Keith R Jerome
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA Department of Microbiology, University of Washington, Seattle, WA, USA Department of Laboratory Medicine, University of Washington, Seattle, WA, USA
| | - Joshua T Schiffer
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA Department of Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|