1
|
Lang J, Jiang H, Cheng M, Wang M, Gu J, Dong H, Li M, Guo X, Chen Q, Wang J. Variation of TaMyb10 and their function on grain color and pre-harvest sprouting resistance of wheat. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:1388-1399. [PMID: 38407913 DOI: 10.1111/tpj.16676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 12/26/2023] [Accepted: 01/29/2024] [Indexed: 02/27/2024]
Abstract
Pre-harvest sprouting (PHS) is a significant threat to global food security due to its association with losses in both yield and quality. Among the genes involved in PHS resistance in wheat, PHS-3D (TaMyb10-D) plays a crucial role. Here, we characterized the sequence variations of TaMyb10 genes in 416 bread wheat and 302 Aegilops tauschii accessions. Within TaMyb10-A sequences, we identified a deletion ranging from 214 to 305 bp in the signal and amino acid coding region, present in 61.3% of the accessions. Similarly, 79.3% of the TaMyb10-B sequences within the third exon region exhibited a 19 bp deletion. Additionally, 40.8% of the accessions lacked the 2.4 Mb fragment (in/del mutations) on Chr3D, where TaMyb10-D/PHS-3D was located. Interestingly, the geographical distribution of accessions showed little correlation with the divergence of TaMyb10. TaMyb10-A-IIIDele, TaMyb10-B-IVDele, and TaMyb10-D-VDele genotypes were prevalent in wheat populations across continents. Despite their structural variations, the five distinct protein types exhibited comparable ability to bind the promoters of downstream genes in the flavonoid and ABA pathways, such as CHS, DFR, and NCED. Furthermore, the combination of TaMyb10 homologs was significantly associated with grain color and germination percentages. Accessions exclusively harboring TaMyb10-D displayed red seed color and reduced germination percentages, indicating the predominant role of TaMyb10-D compared to TaMyb10-A and TaMyb10-B. This comprehensive investigation enhances our understanding of the structural variations and functional divergence of TaMyb10, providing valuable insights and resources for improving PHS resistance in wheat.
Collapse
Affiliation(s)
- Jing Lang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Huayu Jiang
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Mengping Cheng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Mingwei Wang
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jing Gu
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Huixue Dong
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Maolian Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - XiaoJiang Guo
- Ministry of Education Key Laboratory for Crop Genetic Resources and Improvement in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qian Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jirui Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
- Ministry of Education Key Laboratory for Crop Genetic Resources and Improvement in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| |
Collapse
|
2
|
The Different Metabolic Responses of Resistant and Susceptible Wheats to Fusarium graminearum Inoculation. Metabolites 2022; 12:metabo12080727. [PMID: 36005599 PMCID: PMC9413380 DOI: 10.3390/metabo12080727] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/29/2022] [Accepted: 07/31/2022] [Indexed: 11/23/2022] Open
Abstract
Fusarium head blight (FHB) is a serious wheat disease caused by Fusarium graminearum (Fg) Schwabe. FHB can cause huge loss in wheat yield. In addition, trichothecene mycotoxins produced by Fg are harmful to the environment and humans. In our previous study, we obtained two mutants TPS1− and TPS2−. Neither of these mutants could synthesize trehalose, and they produced fewer mycotoxins. To understand the complex interaction between Fg and wheat, we systematically analyzed the metabolic responses of FHB-susceptible and -resistant wheat to ddH2O, the TPS− mutants and wild type (WT) using NMR combined with multivariate analysis. More than 40 metabolites were identified in wheat extracts including sugars, amino acids, organic acids, choline metabolites and other metabolites. When infected by Fg, FHB-resistant and -susceptible wheat plants showed different metabolic responses. For FHB-resistant wheat, there were clear metabolic differences between inoculation with mutants (TPS1−/TPS2−) and with ddH2O/WT. For the susceptible wheat, there were obvious metabolic differences between inoculation with mutant (TPS1−/TPS2−) and inoculation with ddH2O; however, there were no significant metabolic differences between inoculation with TPS− mutants and with WT. Specifically, compared with ddH2O, resistant wheat increased the levels of Phe, p-hydroxy cinnamic acid (p-HCA), and chlorogenic acid in response to TPS− mutants; however, susceptible wheat did not. Shikimate-mediated secondary metabolism was activated in the FHB-resistant wheat to inhibit the growth of Fg and reduce the production of mycotoxins. These results can be helpful for the development of FHB-resistant wheat varieties, although the molecular relationship between the trehalose biosynthetic pathway in Fg and shikimate-mediated secondary metabolism in wheat remains to be further studied.
Collapse
|
3
|
Rabieyan E, Bihamta MR, Moghaddam ME, Mohammadi V, Alipour H. Genome-wide association mapping and genomic prediction for pre‑harvest sprouting resistance, low α-amylase and seed color in Iranian bread wheat. BMC PLANT BIOLOGY 2022; 22:300. [PMID: 35715737 PMCID: PMC9204952 DOI: 10.1186/s12870-022-03628-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 05/05/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Pre-harvest sprouting (PHS) refers to a phenomenon, in which the physiologically mature seeds are germinated on the spike before or during the harvesting practice owing to high humidity or prolonged period of rainfall. Pre-harvest sprouting (PHS) remarkably decreases seed quality and yield in wheat; hence it is imperative to uncover genomic regions responsible for PHS tolerance to be used in wheat breeding. A genome-wide association study (GWAS) was carried out using 298 bread wheat landraces and varieties from Iran to dissect the genomic regions of PHS tolerance in a well-irrigated environment. Three different approaches (RRBLUP, GBLUP and BRR) were followed to estimate prediction accuracies in wheat genomic selection. RESULTS Genomes B, A, and D harbored the largest number of significant marker pairs (MPs) in both landraces (427,017, 328,006, 92,702 MPs) and varieties (370,359, 266,708, 63,924 MPs), respectively. However, the LD levels were found the opposite, i.e., genomes D, A, and B have the highest LD, respectively. Association mapping by using GLM and MLM models resulted in 572 and 598 marker-trait associations (MTAs) for imputed SNPs (- log10 P > 3), respectively. Gene ontology exhibited that the pleitropic MPs located on 1A control seed color, α-Amy activity, and PHS. RRBLUP model indicated genetic effects better than GBLUP and BRR, offering a favorable tool for wheat genomic selection. CONCLUSIONS Gene ontology exhibited that the pleitropic MPs located on 1A can control seed color, α-Amy activity, and PHS. The verified markers in the current work can provide an opportunity to clone the underlying QTLs/genes, fine mapping, and genome-assisted selection.Our observations uncovered key MTAs related to seed color, α-Amy activity, and PHS that can be exploited in the genome-mediated development of novel varieties in wheat.
Collapse
Affiliation(s)
- Ehsan Rabieyan
- Department of Agronomy and Plant Breeding, Faculty of Agricultural Sciences and Engineering, University of Tehran, Karaj, Iran
| | - Mohammad Reza Bihamta
- Department of Agronomy and Plant Breeding, Faculty of Agricultural Sciences and Engineering, University of Tehran, Karaj, Iran
| | | | - Valiollah Mohammadi
- Department of Agronomy and Plant Breeding, Faculty of Agricultural Sciences and Engineering, University of Tehran, Karaj, Iran
| | - Hadi Alipour
- Department of Plant Production and Genetics, Faculty of Agriculture, Urmia University, Urmia, Iran
| |
Collapse
|
4
|
Comparison of Physicochemical Properties and Metabolite Profiling Using 1H NMR Spectroscopy of Korean Wheat Malt. Foods 2020; 9:foods9101436. [PMID: 33050552 PMCID: PMC7600480 DOI: 10.3390/foods9101436] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/05/2020] [Accepted: 10/06/2020] [Indexed: 12/27/2022] Open
Abstract
The objective of this study was to compare the physicochemical, enzymatic, and metabolic properties of two control wheat malts imported from Germany and the US to those of malts made from three Korean wheat varieties: Triticumaestivum L., var. Anzunbaengi, Jokyung, and Keumkang. The qualities and enzyme activities of the Korean wheat malts were generally similar to those of the control wheat malts. The Korean wheat malts had slightly lower diastatic power and enzyme activities related to saccharification. The analysis of metabolites in the wheat malt samples was performed using 1H nuclear magnetic resonance (NMR) metabolomics, which identified 32 metabolites that differed significantly among the samples. Most amino acids and lipids were more abundant in the Korean wheat malts than in the control wheat malts. These differences among malts could influence the quality and flavor of wheat beers. Further brewing studies are necessary to identify the association between beer quality and individual malt metabolites.
Collapse
|
5
|
Wang Y, Wu X, An Y, Xie H, Hao F, Tang H. Quantitative Metabonomic Phenotypes in Different Structures of Mung Bean ( Vigna radiata) Seeds and Their Germination-Associated Dynamic Changes. J Proteome Res 2020; 19:3352-3363. [PMID: 32498518 DOI: 10.1021/acs.jproteome.0c00236] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Plant seed germination involving dynamic water uptakes and biochemical changes is essential for preservation of plant germplasm resource and worldwide food supply. To understand the germination-associated compartmental biochemistry changes, we quantitatively analyzed the metabolite composition (metabonome) for embryonic axes, cotyledons, and testae of mung bean (Vigna radiata) seeds in three germination phases using the NMR-based metabonomics approach. We found that three structures of mung bean seeds had distinct metabonomic phenotypes dominated by 53 metabolites including amino acids, carbohydrates, organic acids, choline metabolites, nucleotides/nucleosides, and shikimate-mediated secondary metabolites together with calcium and magnesium cations. During germination, all three seed structures had outstanding but distinct metabonomic changes. Both embryonic axis and cotyledon showed remarkable metabolic changes related to degradation of carbohydrates and proteins, metabolism of amino acids, nucleotides/nucleosides, and choline together with energy metabolism and shikimate-mediated plant secondary metabolism. The metabonomic changes in these two structures were mostly related to multiple functions for biochemical activities in the former and nutrient mobilizations in the latter. In contrast, testa metabonomic changes mainly reflected the metabolite leakages from the other two structures. Phase 1 of germination was featured with degradation of oligosaccharides and proteins and recycling of stored nucleic acids together with anaerobic metabolisms, whereas phase 2 was dominated by energy metabolism, biosynthesis of osmolytes, and plant secondary metabolites. These provided essential metabolic information for understanding the biochemistry associated with early events of seed germination and possible metabolic functions of different seed structures for plant development.
Collapse
Affiliation(s)
- Yunlong Wang
- State Key Laboratory of Genetic Engineering, Zhongshan Hospital and School of Life Sciences, Human Phenome Institute, Metabonomics and Systems Biology Laboratory at Shanghai International Centre for Molecular Phenomics, Fudan University, Shanghai 200438, China
| | - Xiangyu Wu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Yanpeng An
- State Key Laboratory of Genetic Engineering, Zhongshan Hospital and School of Life Sciences, Human Phenome Institute, Metabonomics and Systems Biology Laboratory at Shanghai International Centre for Molecular Phenomics, Fudan University, Shanghai 200438, China
| | - Hui Xie
- State Key Laboratory of Genetic Engineering, Zhongshan Hospital and School of Life Sciences, Human Phenome Institute, Metabonomics and Systems Biology Laboratory at Shanghai International Centre for Molecular Phenomics, Fudan University, Shanghai 200438, China
| | - Fuhua Hao
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Huiru Tang
- State Key Laboratory of Genetic Engineering, Zhongshan Hospital and School of Life Sciences, Human Phenome Institute, Metabonomics and Systems Biology Laboratory at Shanghai International Centre for Molecular Phenomics, Fudan University, Shanghai 200438, China.,State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
| |
Collapse
|
6
|
Wu X, Wang Y, Tang H. Quantitative Metabonomic Analysis Reveals the Germination-Associated Dynamic and Systemic Biochemical Changes for Mung-Bean ( Vigna radiata) Seeds. J Proteome Res 2020; 19:2457-2470. [PMID: 32393034 DOI: 10.1021/acs.jproteome.0c00181] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Seed germination is essential for plant survival, germplasm resource preservation, and worldwide food supplies, although the germination-associated seed biochemical variations are not fully understood. With the NMR-based metabonomics, we quantitatively analyzed the comprehensive metabolite composition (metabonome) of mung-bean (Vigna radiata) seeds at eight time points of germination covering all three phases. We found that mung-bean seed metabonomes were dominated by 63 metabolites including lipids, amino acids, oligo-/monosaccharides, cyclitols, cholines, organic acids, nucleotides/-sides, nicotinates, and the shikimate pathway-mediated secondary metabolites. During germination, metabolic changes included mainly the degradation of proteins and raffinose family oligosaccharides, glycolysis, tricarboxylic acid (TCA) cycle, anaerobic respiration, biosynthesis of osmolytes and antioxidants together with the metabolisms of nucleotides/-sides, nicotinates, and amino acids. Oligosaccharide degradation was the primary energy source for germination, which coupled with the mobilization of starch and protein storages to produce sugars and amino acids for biomaterial and energy generations. Osmotic and redox regulations were prerequisites for seed germination together with mitochondrial reparations and generations to enable TCA cycle. During the postgermination growth stage (phase-3), the use of small molecules including amino acids and saccharides was switched to meet the growth demands of radicle cells. Small metabolites passed freely through seed testa leaking into the culture media during early germination but were reabsorbed by seed cells around the postgermination growth stage. Extra after-ripening accelerated these metabolic processes of seeds in phase-1, especially the biosynthesis of cyclitols, choline, and nicotinates, increasing the germination uniformity in terms of speed and percentage. Germination-resistant seeds were incapable of activating the germination-associated metabolic processes.
Collapse
Affiliation(s)
- Xiangyu Wu
- State Key Laboratory of Genetic Engineering, Zhongshan Hospital and School of Life Sciences, Human Phenome Institute, Metabonomics and Systems Biology Laboratory at Shanghai International Centre for Molecular Phenomics, Fudan University, Shanghai 200438, P. R. China.,CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, CAS, Wuhan 430071, P. R. China
| | - Yunlong Wang
- State Key Laboratory of Genetic Engineering, Zhongshan Hospital and School of Life Sciences, Human Phenome Institute, Metabonomics and Systems Biology Laboratory at Shanghai International Centre for Molecular Phenomics, Fudan University, Shanghai 200438, P. R. China
| | - Huiru Tang
- State Key Laboratory of Genetic Engineering, Zhongshan Hospital and School of Life Sciences, Human Phenome Institute, Metabonomics and Systems Biology Laboratory at Shanghai International Centre for Molecular Phenomics, Fudan University, Shanghai 200438, P. R. China
| |
Collapse
|
7
|
Systems Metabolic Alteration in a Semi-Dwarf Rice Mutant Induced by OsCYP96B4 Gene Mutation. Int J Mol Sci 2020; 21:ijms21061924. [PMID: 32168953 PMCID: PMC7139402 DOI: 10.3390/ijms21061924] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 03/07/2020] [Accepted: 03/08/2020] [Indexed: 02/06/2023] Open
Abstract
Dwarfism and semi-dwarfism are among the most valuable agronomic traits in crop breeding, which were adopted by the “Green Revolution”. Previously, we reported a novel semi-dwarf rice mutant (oscyp96b4) derived from the insertion of a single copy of Dissociator (Ds) transposon into the gene OsCYP96B4. However, the systems metabolic effect of the mutation is not well understood, which is important for understanding the gene function and developing new semi-dwarf mutants. Here, the metabolic phenotypes in the semi-dwarf mutant (M) and ectopic expression (ECE) rice line were compared to the wild-type (WT) rice, by using nuclear magnetic resonance (NMR) metabolomics and quantitative real-time polymerase chain reaction (qRT-PCR). Compared with WT, ECE of the OsCYP96B4 gene resulted in significant increase of γ-aminobutyrate (GABA), glutamine, and alanine, but significant decrease of glutamate, aromatic and branched-chain amino acids, and some other amino acids. The ECE caused significant increase of monosaccharides (glucose, fructose), but significant decrease of disaccharide (sucrose); induced significant changes of metabolites involved in choline metabolism (phosphocholine, ethanolamine) and nucleotide metabolism (adenosine, adenosine monophosphate, uridine). These metabolic profile alterations were accompanied with changes in the gene expression levels of some related enzymes, involved in GABA shunt, glutamate and glutamine metabolism, choline metabolism, sucrose metabolism, glycolysis/gluconeogenesis pathway, tricarboxylic acid (TCA) cycle, nucleotide metabolism, and shikimate-mediated secondary metabolism. The semi-dwarf mutant showed corresponding but less pronounced changes, especially in the gene expression levels. It indicates that OsCYP96B4 gene mutation in rice causes significant alteration in amino acid metabolism, carbohydrate metabolism, nucleotide metabolism, and shikimate-mediated secondary metabolism. The present study will provide essential information for the OsCYP96B4 gene function analysis and may serve as valuable reference data for the development of new semi-dwarf mutants.
Collapse
|
8
|
Liu C, Chen F, Zhang J, Liu L, Lei H, Li H, Wang Y, Liao YC, Tang H. Metabolic Changes of Fusarium graminearum Induced by TPS Gene Deletion. J Proteome Res 2019; 18:3317-3327. [PMID: 31241341 DOI: 10.1021/acs.jproteome.9b00259] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Fusarium head blight (FHB) mainly resulting from Fusarium graminearum (Fg) Schwabe is a notorious wheat disease causing huge losses in wheat production globally. Fg also produces mycotoxins, which are harmful to human and domestic animals. In our previous study, we obtained two Fg mutants, TPS1- and TPS2-, respectively, with a single deletion of trehalose 6-phosphate synthase (TPS1) and trehalose 6-phosphate phosphatase (TPS2) compared with the wild type (WT). Both mutants were unable to synthesize trehalose and produced fewer mycotoxins. To understand the other biochemical changes induced by TPS gene deletion in Fg, we comprehensively analyzed the metabolomic differences between TPS- mutants and the WT using NMR together with gas chromatography-flame ionization detection/mass spectrometry. The expression of some relevant genes was also quantified. The results showed that TPS1- and TPS2- mutants shared some common metabolic feature such as decreased levels for trehalose, Val, Thr, Lys, Asp, His, Trp, malonate, citrate, uridine, guanosine, inosine, AMP, C10:0, and C16:1 compared with the WT. Both mutants also shared some common expressional patterns for most of the relevant genes. This suggests that apart from the reduced trehalose biosynthesis, both TPS1 and TPS2 have roles in inhibiting glycolysis and the tricarboxylic acid cycle but promoting the phosphopentose pathway and nucleotide synthesis; the depletion of either TPS gene reduces the acetyl-CoA-mediated mycotoxin biosynthesis. TPS2- mutants produced more fatty acids than TPS1- mutants, suggesting different roles for TPS1 and TPS2, with TPS2- mutants having impaired trehalose biosynthesis and trehalose 6-phosphate accumulation. This may offer opportunities for developing new fungicides targeting trehalose biosynthesis in Fg for FHB control and mycotoxin reduction in the FHB-affected cereals.
Collapse
Affiliation(s)
- Caixiang Liu
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan , Wuhan Institute of Physics and Mathematics , Wuhan 430071 , P. R. China
| | - Fangfang Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, School of Life Sciences , Hubei University , Wuhan 430062 , P. R. China.,Molecular Biotechnology Laboratory of Triticeae Crops, College of Plant Science and Technology , Huazhong Agricultural University , Wuhan 430070 , P. R. China
| | - Jingtao Zhang
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan , Wuhan Institute of Physics and Mathematics , Wuhan 430071 , P. R. China
| | - Laixing Liu
- School of Management , Wuhan Institute of Technology , Wuhan 430205 , P. R. China
| | - Hehua Lei
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan , Wuhan Institute of Physics and Mathematics , Wuhan 430071 , P. R. China
| | - Heping Li
- Molecular Biotechnology Laboratory of Triticeae Crops, College of Plant Science and Technology , Huazhong Agricultural University , Wuhan 430070 , P. R. China
| | - Yulan Wang
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan , Wuhan Institute of Physics and Mathematics , Wuhan 430071 , P. R. China.,Singapore Phenome Centre, Lee Kong Chian School of Medicine, School of Biological Sciences , Nanyang Technological University , Nanyang , Singapore
| | - Yu-Cai Liao
- Molecular Biotechnology Laboratory of Triticeae Crops, College of Plant Science and Technology , Huazhong Agricultural University , Wuhan 430070 , P. R. China
| | - Huiru Tang
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan , Wuhan Institute of Physics and Mathematics , Wuhan 430071 , P. R. China.,State Key Laboratory of Genetic Engineering, Zhongshan Hospital and School of Life Sciences, Metabolomics and Systems Biology Laboratory in Human Phenome Institute, Collaborative Innovation Center for Genetics and Development , Fudan University , Shanghai 200433 , P. R. China
| |
Collapse
|
9
|
Redox poise and metabolite changes in bread wheat seeds are advanced by priming with hot steam. Biochem J 2018; 475:3725-3743. [PMID: 30401685 DOI: 10.1042/bcj20180632] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 10/24/2018] [Accepted: 11/02/2018] [Indexed: 12/20/2022]
Abstract
Fast and uniform germination is key to agricultural production and can be achieved by seed 'priming' techniques. Here, we characterised the responses of bread wheat (Triticum aestivum L.) seeds to a hot steam treatment ('BioFlash'), which accelerated water uptake, resulting in faster germination and seedling growth, typical traits of primed seed. Before the completion of germination, metabolite profiling of seeds revealed advanced accumulation of several amino acids (especially cysteine and serine), sugars (ribose, glucose), and organic acids (glycerate, succinate) in hot steam-treated seeds, whereas sugar alcohols (e.g. arabitol, mannitol) and trehalose decreased in all seeds. Tocochromanols (the 'vitamin E family') rose independently of the hot steam treatment. We further assessed shifts in the half-cell reduction potentials of low-molecular-weight (LMW) thiol-disulfide redox couples [i.e. glutathione disulfide (GSSG)/glutathione (GSH) and cystine/cysteine], alongside the activities of the reactive oxygen species (ROS)-processing enzyme superoxide dismutase, catalase, ascorbate peroxidase, and glutathione reductase. Upon the first 4 h of imbibition, a rapid conversion of LMW disulfides to thiols occurred. Completion of germination was associated with a re-oxidation of the LMW thiol-disulfide cellular redox environment, before more reducing conditions were re-established during seedling growth, accompanied by an increase in all ROS-processing enzyme activities. Furthermore, changes in the thiol-disulfide cellular redox state were associated to specific stages of wheat seed germination. In conclusion, the priming effect of the hot steam treatment advanced the onset of seed metabolism, including redox shifts associated with germination and seedling growth.
Collapse
|
10
|
Ishibashi Y, Yuasa T, Iwaya-Inoue M. Mechanisms of Maturation and Germination in Crop Seeds Exposed to Environmental Stresses with a Focus on Nutrients, Water Status, and Reactive Oxygen Species. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1081:233-257. [DOI: 10.1007/978-981-13-1244-1_13] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
11
|
Wang Q, Zeng S, Wu X, Lei H, Wang Y, Tang H. Interspecies Developmental Differences in Metabonomic Phenotypes of Lycium ruthenicum and L. barbarum Fruits. J Proteome Res 2018; 17:3223-3236. [DOI: 10.1021/acs.jproteome.8b00349] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Qi Wang
- State Key Laboratory of Genetic Engineering, Zhongshan Hospital and School of Life Sciences, Human Phenome Institute, Metabonomics and Systems Biology Laboratory at Shanghai International Centre for Molecular Phenomics, Fudan University, Shanghai 200438, China
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, University of Chinese Academy of Sciences, Wuhan, Hubei 430071, China
| | - Shaohua Zeng
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong 510650, China
| | - Xiangyu Wu
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, University of Chinese Academy of Sciences, Wuhan, Hubei 430071, China
| | - Hehua Lei
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, University of Chinese Academy of Sciences, Wuhan, Hubei 430071, China
| | - Ying Wang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong 510650, China
| | - Huiru Tang
- State Key Laboratory of Genetic Engineering, Zhongshan Hospital and School of Life Sciences, Human Phenome Institute, Metabonomics and Systems Biology Laboratory at Shanghai International Centre for Molecular Phenomics, Fudan University, Shanghai 200438, China
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, University of Chinese Academy of Sciences, Wuhan, Hubei 430071, China
| |
Collapse
|
12
|
Nakamura S. Grain dormancy genes responsible for preventing pre-harvest sprouting in barley and wheat. BREEDING SCIENCE 2018; 68:295-304. [PMID: 30100796 PMCID: PMC6081298 DOI: 10.1270/jsbbs.17138] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 01/31/2018] [Indexed: 05/04/2023]
Abstract
Pre-harvest sprouting (PHS) remains a long-standing problem for the production of barley (Hordeum vulgare) and wheat (Triticum aestivum) worldwide. Grain dormancy, a key trait for the prevention of PHS, controls the timing of germination. Discovery of the causal sequence polymorphisms (CSPs) that produce naturally occurring variation in dormancy will help improve PHS tolerance. The identification of CSPs for dormancy remains difficult, especially for barley and wheat, because they are the last major cereals to have their genomes sequenced. However, recent work has identified several important CSPs that play pivotal roles in fine-tuning the dormancy levels in barley and wheat cultivars. This review summarizes these recent advances, which can be directly applied in breeding programs to improve PHS tolerance. These recent findings indicate the possibility that barley and wheat cultivars grown in East Asia, where much rain falls during the harvest season, will be rich sources of alleles that confer strong dormancy, since these cultivars have been selected to cope with the regional climate. The newly discovered dormant alleles will be useful for improving PHS tolerance around the world, just as Reduced-height (Rht) alleles from Japanese wheat varieties contributed to yield increases for the Green Revolution.
Collapse
|
13
|
de Simone A, Hubbard R, de la Torre NV, Velappan Y, Wilson M, Considine MJ, Soppe WJJ, Foyer CH. Redox Changes During the Cell Cycle in the Embryonic Root Meristem of Arabidopsis thaliana. Antioxid Redox Signal 2017; 27:1505-1519. [PMID: 28457165 PMCID: PMC5678362 DOI: 10.1089/ars.2016.6959] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
AIMS The aim of this study was to characterize redox changes in the nuclei and cytosol occurring during the mitotic cell cycle in the embryonic roots of germinating Arabidopsis seedlings, and to determine how redox cycling was modified in mutants with a decreased capacity for ascorbate synthesis. RESULTS Using an in vivo reduction-oxidation (redox) reporter (roGFP2), we show that transient oxidation of the cytosol and the nuclei occurred at G1 in the synchronized dividing cells of the Arabidopsis root apical meristem, with reduction at G2 and mitosis. This redox cycle was absent from low ascorbate mutants in which nuclei were significantly more oxidized than controls. The cell cycle-dependent increase in nuclear size was impaired in the ascorbate-deficient mutants, which had fewer cells per unit area in the root proliferation zone. The transcript profile of the dry seeds and size of the imbibed seeds was strongly influenced by low ascorbate but germination, dormancy release and seed aging characteristics were unaffected. INNOVATION These data demonstrate the presence of a redox cycle within the plant cell cycle and that the redox state of the nuclei is an important factor in cell cycle progression. CONCLUSIONS Controlled oxidation is a key feature of the early stages of the plant cell cycle. However, sustained mild oxidation restricts nuclear functions and impairs progression through the cell cycle leading to fewer cells in the root apical meristem. Antioxid. Redox Signal. 27, 1505-1519.
Collapse
Affiliation(s)
- Ambra de Simone
- 1 Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds , Leeds, United Kingdom
| | - Rachel Hubbard
- 1 Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds , Leeds, United Kingdom
| | - Natanael Viñegra de la Torre
- 2 Department of Plant Breeding and Genetics, Max Planck Institute for Plant Breeding Research , Cologne, Germany
| | - Yazhini Velappan
- 1 Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds , Leeds, United Kingdom .,3 School of Agriculture and Environment, The University of Western Australia , Perth, Australia
| | - Michael Wilson
- 1 Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds , Leeds, United Kingdom
| | - Michael J Considine
- 1 Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds , Leeds, United Kingdom .,3 School of Agriculture and Environment, The University of Western Australia , Perth, Australia .,4 School of Molecular Sciences, The University of Western Australia , Perth, Australia .,5 The UWA Institute of Agriculture, The University of Western Australia , Perth, Australia .,6 The Department of Agriculture and Food Western Australia, South Perth, Australia
| | - Wim J J Soppe
- 2 Department of Plant Breeding and Genetics, Max Planck Institute for Plant Breeding Research , Cologne, Germany .,7 Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn , Bonn, Germany
| | - Christine H Foyer
- 1 Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds , Leeds, United Kingdom .,4 School of Molecular Sciences, The University of Western Australia , Perth, Australia
| |
Collapse
|
14
|
Dale Z, Jie H, Luyu H, Cancan Z, Yun Z, Yarui S, Suoping L. An Advanced Backcross Population through Synthetic Octaploid Wheat as a "Bridge": Development and QTL Detection for Seed Dormancy. FRONTIERS IN PLANT SCIENCE 2017; 8:2123. [PMID: 29321790 PMCID: PMC5733556 DOI: 10.3389/fpls.2017.02123] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 11/29/2017] [Indexed: 05/21/2023]
Abstract
The seed dormancy characteristic is regarded as one of the most critical factors for pre-harvest sprouting (PHS) resistance. As a wild wheat relative species, Aegilops tauschii is a potential genetic resource for improving common wheat. In this study, an advanced backcross population (201 strains) containing only Ae. tauschii segments was developed by means of synthetic octaploid wheat (hexaploid wheat Zhoumai 18 × Ae. tauschii T093). Subsequently, seed dormancy rate (Dor) in the advanced backcross population was evaluated on the day 3, 5 and 7, in which 2 major QTLs (QDor-2D and QDor-3D) were observed on chromosomes 2D and 3D with phenotypic variance explained values (PVEs) of 10.25 and 20.40%, respectively. Further investigation revealed significant correlation between QDor-3D and Tamyb10 gene, while no association was found between the former and TaVp1 gene, implying that QDor-3D site could be of closer position to Tamyb10. The obtained quantitative trait locus sites (QTLs) in this work could be applied to develop wheat cultivars with PHS resistance.
Collapse
Affiliation(s)
- Zhang Dale
- School of Life Science, Henan University, Kaifeng, China
- Institute of Plant Stress Biology, Henan University, Kaifeng, China
| | - He Jie
- School of Life Science, Henan University, Kaifeng, China
| | - Huang Luyu
- School of Life Science, Henan University, Kaifeng, China
| | - Zhang Cancan
- School of Life Science, Henan University, Kaifeng, China
| | - Zhou Yun
- School of Life Science, Henan University, Kaifeng, China
- Institute of Plant Stress Biology, Henan University, Kaifeng, China
| | - Su Yarui
- School of Life Science, Henan University, Kaifeng, China
| | - Li Suoping
- School of Life Science, Henan University, Kaifeng, China
- Institute of Plant Stress Biology, Henan University, Kaifeng, China
| |
Collapse
|
15
|
Liu C, Du B, Hao F, Lei H, Wan Q, He G, Wang Y, Tang H. Dynamic metabolic responses of brown planthoppers towards susceptible and resistant rice plants. PLANT BIOTECHNOLOGY JOURNAL 2017; 15:1346-1357. [PMID: 28278368 PMCID: PMC5595709 DOI: 10.1111/pbi.12721] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 02/19/2017] [Accepted: 03/06/2017] [Indexed: 05/05/2023]
Abstract
Brown planthopper (Nilaparvata lugens Stål, BPH) causes huge economic losses in rice-growing regions, and new strategies for combating BPH are required. To understand how BPHs respond towards BPH-resistant plants, we systematically analysed the metabolic differences between BPHs feeding on the resistant and susceptible plants using NMR and GC-FID/MS. We also measured the expression of some related genes involving glycolysis and biosyntheses of trehalose, amino acids, chitin and fatty acids using real-time PCR. BPH metabonome was dominated by more than 60 metabolites including fatty acids, amino acids, carbohydrates, nucleosides/nucleotides and TCA cycle intermediates. After initial 12 h, BPHs feeding on the resistant plants had lower levels of amino acids, glucose, fatty acids and TCA cycle intermediates than on the susceptible ones. The levels of these metabolites recovered after 24 h feeding. This accompanied with increased level in trehalose, choline metabolites and nucleosides/nucleotides compared with BPH feeding on the susceptible plants. Decreased levels of BPH metabolites at the early feeding probably resulted from less BPH uptakes of sap from resistant plants and recovery of BPH metabolites at the later stage probably resulted from their adaptation to the adverse environment with their increased hopping frequency to ingest more sap together with contributions from yeast-like symbionts in BPHs. Throughout 96 h, BPH feeding on the resistant plants showed significant up-regulation of chitin synthase catalysing biosynthesis of chitin for insect exoskeleton, peritrophic membrane lining gut and tracheae. These findings provided useful metabolic information for understanding the BPH-rice interactions and perhaps for developing new BPH-combating strategies.
Collapse
Affiliation(s)
- Caixiang Liu
- CAS Key Laboratory of Magnetic Resonance in Biological SystemsState Key Laboratory of Magnetic Resonance and Atomic and Molecular PhysicsNational Centre for Magnetic Resonance in WuhanWuhan Institute of Physics and Mathematics, the Chinese Academy of SciencesWuhanChina
| | - Ba Du
- State Key Laboratory of Hybrid RiceCollege of Life SciencesWuhan UniversityWuhanChina
| | - Fuhua Hao
- CAS Key Laboratory of Magnetic Resonance in Biological SystemsState Key Laboratory of Magnetic Resonance and Atomic and Molecular PhysicsNational Centre for Magnetic Resonance in WuhanWuhan Institute of Physics and Mathematics, the Chinese Academy of SciencesWuhanChina
| | - Hehua Lei
- CAS Key Laboratory of Magnetic Resonance in Biological SystemsState Key Laboratory of Magnetic Resonance and Atomic and Molecular PhysicsNational Centre for Magnetic Resonance in WuhanWuhan Institute of Physics and Mathematics, the Chinese Academy of SciencesWuhanChina
| | - Qianfen Wan
- CAS Key Laboratory of Magnetic Resonance in Biological SystemsState Key Laboratory of Magnetic Resonance and Atomic and Molecular PhysicsNational Centre for Magnetic Resonance in WuhanWuhan Institute of Physics and Mathematics, the Chinese Academy of SciencesWuhanChina
- State Key Laboratory of Genetic EngineeringZhongshan Hospital and School of Life SciencesFudan UniversityCollaborative Innovation Center for Genetics and DevelopmentMetabonomics and Systems Biology Laboratory at Shanghai International Centre for Molecular PhenomicsShanghaiChina
| | - Guangcun He
- State Key Laboratory of Hybrid RiceCollege of Life SciencesWuhan UniversityWuhanChina
| | - Yulan Wang
- CAS Key Laboratory of Magnetic Resonance in Biological SystemsState Key Laboratory of Magnetic Resonance and Atomic and Molecular PhysicsNational Centre for Magnetic Resonance in WuhanWuhan Institute of Physics and Mathematics, the Chinese Academy of SciencesWuhanChina
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesZhejiang UniversityHangzhouChina
| | - Huiru Tang
- CAS Key Laboratory of Magnetic Resonance in Biological SystemsState Key Laboratory of Magnetic Resonance and Atomic and Molecular PhysicsNational Centre for Magnetic Resonance in WuhanWuhan Institute of Physics and Mathematics, the Chinese Academy of SciencesWuhanChina
- State Key Laboratory of Genetic EngineeringZhongshan Hospital and School of Life SciencesFudan UniversityCollaborative Innovation Center for Genetics and DevelopmentMetabonomics and Systems Biology Laboratory at Shanghai International Centre for Molecular PhenomicsShanghaiChina
| |
Collapse
|
16
|
Das A, Kim DW, Khadka P, Rakwal R, Rohila JS. Unraveling Key Metabolomic Alterations in Wheat Embryos Derived from Freshly Harvested and Water-Imbibed Seeds of Two Wheat Cultivars with Contrasting Dormancy Status. FRONTIERS IN PLANT SCIENCE 2017; 8:1203. [PMID: 28747920 PMCID: PMC5506182 DOI: 10.3389/fpls.2017.01203] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 06/26/2017] [Indexed: 05/20/2023]
Abstract
Untimely rains in wheat fields during harvest season can cause pre-harvest sprouting (PHS), which deteriorates the yield and quality of wheat crop. Metabolic homeostasis of the embryo plays a role in seed dormancy, determining the status of the maturing grains either as dormant (PHS-tolerant) or non-dormant (PHS-susceptible). Very little is known for direct measurements of global metabolites in embryonic tissues of dormant and non-dormant wheat seeds. In this study, physiologically matured and freshly harvested wheat seeds of PHS-tolerant (cv. Sukang, dormant) and PHS-susceptible (cv. Baegjoong, non-dormant) cultivars were water-imbibed, and the isolated embryos were subjected to high-throughput, global non-targeted metabolomic profiling. A careful comparison of identified metabolites between Sukang and Baegjoong embryos at 0 and 48 h after imbibition revealed that several key metabolic pathways [such as: lipids, fatty acids, oxalate, hormones, the raffinose family of oligosaccharides (RFOs), and amino acids] and phytochemicals were differentially regulated between dormant and non-dormant varieties. Most of the membrane lipids were highly reduced in Baegjoong compared to Sukang, which indicates that the cell membrane instability in response to imbibition could also be a key factor in non-dormant wheat varieties for their untimely germination. This study revealed that several key marker metabolites (e.g., RFOs: glucose, fructose, maltose, and verbascose), were highly expressed in Baegjoong after imbibition. Furthermore, the data showed that the key secondary metabolites and phytochemicals (vitexin, chrysoeriol, ferulate, salidroside and gentisic acid), with known antioxidant properties, were comparatively low at basal levels in PHS-susceptible, non-dormant cultivar, Baegjoong. In conclusion, the results of this investigation revealed that after imbibition the metabolic homeostasis of dormant wheat is significantly less affected compared to non-dormant wheat. The inferences from this study combined with proteomic and transcriptomic studies will advance the molecular understanding of the pathways and enzyme regulations during PHS.
Collapse
Affiliation(s)
- Aayudh Das
- Department of Plant Biology, University of Vermont, BurlingtonVT, United States
- Department of Biology and Microbiology, South Dakota State University, BrookingsSD, United States
| | - Dea-Wook Kim
- National Institute of Crop Science, Rural Development AdministrationWanju-gun, South Korea
| | - Pramod Khadka
- Department of Biology and Microbiology, South Dakota State University, BrookingsSD, United States
| | - Randeep Rakwal
- Faculty of Health and Sport Sciences, University of TsukubaTsukuba, Japan
| | - Jai S. Rohila
- Department of Biology and Microbiology, South Dakota State University, BrookingsSD, United States
| |
Collapse
|
17
|
Considine MJ, Diaz-Vivancos P, Kerchev P, Signorelli S, Agudelo-Romero P, Gibbs DJ, Foyer CH. Learning To Breathe: Developmental Phase Transitions in Oxygen Status. TRENDS IN PLANT SCIENCE 2017; 22:140-153. [PMID: 27986423 DOI: 10.1016/j.tplants.2016.11.013] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 11/01/2016] [Accepted: 11/20/2016] [Indexed: 05/04/2023]
Abstract
Plants are developmentally disposed to significant changes in oxygen availability, but our understanding of the importance of hypoxia is almost entirely limited to stress biology. Differential patterns of the abundance of oxygen, nitric oxide (•NO), and reactive oxygen species (ROS), as well as of redox potential, occur in organs and meristems, and examples are emerging in the literature of mechanistic relationships of these to development. We describe here the convergence of these cues in meristematic and reproductive tissues, and discuss the evidence for regulated hypoxic niches within which oxygen-, ROS-, •NO-, and redox-dependent signalling curate developmental transitions in plants.
Collapse
Affiliation(s)
- Michael J Considine
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6009, Australia; Department of Agriculture and Food Western Australia, South Perth, WA 6151, Australia; Centre for Plant Sciences, School of Biology, University of Leeds, Leeds LS2 9JT, UK.
| | - Pedro Diaz-Vivancos
- Group of Fruit Biotechnology, Department of Plant Breeding, Centro de Edafología y Biología Aplicada del Segura (CEBAS)-Consejo Superior de Investigaciones Científicas (CSIC), Campus Universitario de Espinardo, Murcia 30100, Spain
| | - Pavel Kerchev
- Vlaams Instituut voor Biotechnologie (VIB) Department of Plant Systems Biology, University of Gent Technologiepark 927, Gent, 9052 Belgium
| | - Santiago Signorelli
- School of Plant Biology, The University of Western Australia, Perth, WA 6009, Australia
| | - Patricia Agudelo-Romero
- Australian Research Council (ARC) Centre of Excellence in Plant Energy Biology, The University of Western Australia, Perth, WA 6009, Australia
| | - Daniel J Gibbs
- School of Biosciences, University of Birmingham, Edgbaston B15 2TT, UK
| | - Christine H Foyer
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6009, Australia; Centre for Plant Sciences, School of Biology, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|