1
|
Ciobotaru GV, Goje ID, Dehelean CA, Danciu C, Magyari-Pavel IZ, Moacă EA, Muntean D, Imbrea IM, Sărățeanu V, Pop G. Analysis of the Antioxidant and Antimicrobial Activity, Cytotoxic, and Anti-Migratory Properties of the Essential Oils Obtained from Cultivated Medicinal Lamiaceae Species. PLANTS (BASEL, SWITZERLAND) 2025; 14:846. [PMID: 40265807 PMCID: PMC11944916 DOI: 10.3390/plants14060846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/24/2025] [Accepted: 03/01/2025] [Indexed: 04/24/2025]
Abstract
This study aims to highlight the therapeutic potential of some Lamiacea essential oils (EOs). For this purpose, eight EOs, including two from Lavandula angustifolia Mill. cultivated in Romania and Spain (LA1 and LA2), Salvia officinalis L. (SO), Lavandula hybrida Balb. ex Ging (LH), Salvia sclarea L. (SS), Mentha smithiana L. (MS), Perovskia atriplicifolia Benth. (PA), and Mentha x piperita L. (MP), were evaluated in vitro in terms of antioxidant, cytotoxic, antimicrobial, and anti-migratory activities. As regards the antioxidant capacity, expressed as the EO concentration that produces 50% of the maximum effect (IC50 value), the EOs obtained from the cultivated plants of the Lamiaceae family are ordered as follows: LA2 ˃ LA1 ˃ LH > MP > MS > SO > SS > PA. For the determination of antimicrobial activity, the reference strains used for testing were Salmonella enterica serotype typhimurium, Shigella flexneri serotype 2b, Enterococcus faecalis, Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Staphylococcus aureus, Candida albicans, and Candida parapsilosis. The most intense inhibitory effect was observed in EOs of MS and MP on all tested microbial strains. The cytotoxic and anti-migratory activity of EOs was tested on two melanoma cell lines (A375 and B164A5) and on a healthy keratinocyte line (HaCaT). EOs LA1 and MP manifested the highest selectivity on the analysed tumoural cells, by reducing their migration in comparison with the control, proving to have therapeutic potential.
Collapse
Affiliation(s)
- Gabriela Valentina Ciobotaru
- Medical Semiology Clinic, Department V. Internal Medicine 2, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, 2 Eftimie Murgu Sq., 300041 Timisoara, Romania; (G.V.C.); (D.M.)
- Municipal Clinical Emergency Hospital, 5 Gh. Dima, 300079 Timisoara, Romania
| | - Iacob-Daniel Goje
- Medical Semiology Clinic, Department V. Internal Medicine 2, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, 2 Eftimie Murgu Sq., 300041 Timisoara, Romania; (G.V.C.); (D.M.)
- Municipal Clinical Emergency Hospital, 5 Gh. Dima, 300079 Timisoara, Romania
| | - Cristina Adriana Dehelean
- Department of Toxicology, Drug Industry, Management and Legislation, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy, 2 Eftimie Murgu Sq., 300041 Timisoara, Romania; (C.A.D.); (E.-A.M.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania
| | - Corina Danciu
- Department of Pharmacognosy-Phytotherapy, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; (C.D.); (I.Z.M.-P.)
- Research and Processing Center for Medicinal and Aromatic Plants, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
| | - Ioana Zinuca Magyari-Pavel
- Department of Pharmacognosy-Phytotherapy, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; (C.D.); (I.Z.M.-P.)
- Research and Processing Center for Medicinal and Aromatic Plants, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
| | - Elena-Alina Moacă
- Department of Toxicology, Drug Industry, Management and Legislation, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy, 2 Eftimie Murgu Sq., 300041 Timisoara, Romania; (C.A.D.); (E.-A.M.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania
| | - Delia Muntean
- Medical Semiology Clinic, Department V. Internal Medicine 2, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, 2 Eftimie Murgu Sq., 300041 Timisoara, Romania; (G.V.C.); (D.M.)
| | - Ilinca Merima Imbrea
- Faculty of Engineering and Applied Technologies, University of Life Sciences “King Mihai I” from Timisoara, Calea Aradului 119, 300645 Timisoara, Romania;
| | - Veronica Sărățeanu
- Department of Crop Science, Faculty of Agriculture, University of Life Sciences “King Mihai I” from Timisoara, Calea Aradului 119, 300645 Timisoara, Romania;
| | - Georgeta Pop
- Department of Crop Science, Faculty of Agriculture, University of Life Sciences “King Mihai I” from Timisoara, Calea Aradului 119, 300645 Timisoara, Romania;
| |
Collapse
|
2
|
Zhang C, Kwon SH, Dong L. Piezoelectric Hydrogels: Hybrid Material Design, Properties, and Biomedical Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310110. [PMID: 38329191 DOI: 10.1002/smll.202310110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/12/2024] [Indexed: 02/09/2024]
Abstract
Hydrogels show great potential in biomedical applications due to their inherent biocompatibility, high water content, and resemblance to the extracellular matrix. However, they lack self-powering capabilities and often necessitate external stimulation to initiate cell regenerative processes. In contrast, piezoelectric materials offer self-powering potential but tend to compromise flexibility. To address this, creating a novel hybrid biomaterial of piezoelectric hydrogels (PHs), which combines the advantageous properties of both materials, offers a systematic solution to the challenges faced by these materials when employed separately. Such innovative material system is expected to broaden the horizons of biomedical applications, such as piezocatalytic medicinal and health monitoring applications, showcasing its adaptability by endowing hydrogels with piezoelectric properties. Unique functionalities, like enabling self-powered capabilities and inducing electrical stimulation that mimics endogenous bioelectricity, can be achieved while retaining hydrogel matrix advantages. Given the limited reported literature on PHs, here recent strategies concerning material design and fabrication, essential properties, and distinctive applications are systematically discussed. The review is concluded by providing perspectives on the remaining challenges and the future outlook for PHs in the biomedical field. As PHs emerge as a rising star, a comprehensive exploration of their potential offers insights into the new hybrid biomaterials.
Collapse
Affiliation(s)
- Chi Zhang
- Department of Mechanical and Industrial Engineering, New Jersey Institute of Technology, Newark, NJ, 07114, USA
| | - Sun Hwa Kwon
- Department of Mechanical and Industrial Engineering, New Jersey Institute of Technology, Newark, NJ, 07114, USA
| | - Lin Dong
- Department of Mechanical and Industrial Engineering, New Jersey Institute of Technology, Newark, NJ, 07114, USA
| |
Collapse
|
3
|
Daniello V, De Leo V, Lasalvia M, Hossain MN, Carbone A, Catucci L, Zefferino R, Ingrosso C, Conese M, Di Gioia S. Solanum lycopersicum (Tomato)-Derived Nanovesicles Accelerate Wound Healing by Eliciting the Migration of Keratinocytes and Fibroblasts. Int J Mol Sci 2024; 25:2452. [PMID: 38473700 DOI: 10.3390/ijms25052452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/11/2024] [Accepted: 02/16/2024] [Indexed: 03/14/2024] Open
Abstract
Plant-derived nanovesicles have been considered interesting in medicine for their breakthrough biological effects, including those relevant to wound healing. However, tomato-derived nanovesicles (TDNVs) have not been studied for their effects on wound closure yet. TDNVs were isolated from Solanum lycopersicum (var. Piccadilly) ripe tomatoes by ultracentrifugation. Extract (collected during the isolation procedure) and NVs (pellet) were characterized by transmission electron microscopy and laser Doppler electrophoresis. Wound healing in the presence of Extract or NVs was analyzed by a scratch assay with monocultures of human keratinocytes (HUKE) or NIH-3T3 mouse fibroblasts. Cell proliferation and migration were studied by MTT and agarose spot assay, respectively. The vesicles in the Extract and NV samples were nanosized with a similar mean diameter of 115 nm and 130 nm, respectively. Both Extract and NVs had already accelerated wound closure of injured HUKE and NIH-3T3 monocultures by 6 h post-injury. Although neither sample exerted a cytotoxic effect on HUKE and NIH-3T3 fibroblasts, they did not augment cell proliferation. NVs and the Extract increased cell migration of both cell types. NVs from tomatoes may accelerate wound healing by increasing keratinocyte and fibroblast migration. These results indicate the potential therapeutic usefulness of TDNVs in the treatment of chronic or hard-to-heal ulcers.
Collapse
Affiliation(s)
- Valeria Daniello
- Department of Clinical and Experimental Medicine, University of Foggia, Via Napoli 121, 71122 Foggia, Italy
| | - Vincenzo De Leo
- Department of Chemistry, University of Bari "Aldo Moro", Via Orabona 4, 70126 Bari, Italy
| | - Maria Lasalvia
- Department of Clinical and Experimental Medicine, University of Foggia, Via Napoli 121, 71122 Foggia, Italy
| | - Md Niamat Hossain
- Department of Clinical and Experimental Medicine, University of Foggia, Via Napoli 121, 71122 Foggia, Italy
| | - Annalucia Carbone
- Department of Clinical and Experimental Medicine, University of Foggia, Via Napoli 121, 71122 Foggia, Italy
| | - Lucia Catucci
- Department of Chemistry, University of Bari "Aldo Moro", Via Orabona 4, 70126 Bari, Italy
| | - Roberto Zefferino
- Department of Medical and Surgical Sciences, University of Foggia, Via Napoli 121, 71122 Foggia, Italy
| | - Chiara Ingrosso
- Institute for Chemical and Physical Processes of National Research Council (CNR-IPCF), S.S. Bari, c/o Department of Chemistry, University of Bari "Aldo Moro", Via Orabona 4, 70126 Bari, Italy
| | - Massimo Conese
- Department of Clinical and Experimental Medicine, University of Foggia, Via Napoli 121, 71122 Foggia, Italy
| | - Sante Di Gioia
- Department of Clinical and Experimental Medicine, University of Foggia, Via Napoli 121, 71122 Foggia, Italy
| |
Collapse
|
4
|
Rengarajan V, Clyde A, Pontsler J, Valiente J, Peel A, Huang Y. Assessing Leachable Cytotoxicity of 3D-Printed Polymers and Facile Detoxification Methods. 3D PRINTING AND ADDITIVE MANUFACTURING 2023; 10:1110-1121. [PMID: 37873063 PMCID: PMC10593418 DOI: 10.1089/3dp.2021.0216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Additive manufacturing of polymers is gaining momentum in health care industries by providing rapid 3D printing of customizable designs. Yet, little is explored about the cytotoxicity of leachable toxins that the 3D printing process introduced into the final product. We studied three printable materials, which have various mechanical properties and are widely used in stereolithography 3D printing. We evaluated the cytotoxicity of these materials through exposing two fibroblast cell lines (human and mouse derived) to the 3D-printed parts, using overlay indirect contact assays. All the 3D-printed parts were measured toxic to the cells in a leachable manner, with flexible materials more toxic than rigid materials. Furthermore, we attempted to reduce the toxicity of the 3D-printed material by employing three treatment methods (further curing, passivation coating, and Soxhlet solvent extraction). The Soxhlet solvent extraction method was the most effective in removing the leachable toxins, resulting in the eradication of the material's toxicity. Passivation coating and further curing showed moderate and little detoxification, respectively. Additionally, mechanical testing of the materials treated with extraction methods revealed no significant impacts on its mechanical performances. As leachable toxins are broadly present in 3D-printed polymers, our cytotoxicity evaluation and reduction methods could aid in extending the selections of biocompatible materials and pave the way for the translational use of 3D printing.
Collapse
Affiliation(s)
| | - Angela Clyde
- Department of Biological Engineering, Utah State University, Logan, Utah, USA
- Institute of Antiviral Research, Utah State University, Logan, Utah, USA
| | - Jefferson Pontsler
- Department of Biological Engineering, Utah State University, Logan, Utah, USA
| | - Jonathan Valiente
- Department of Biological Engineering, Utah State University, Logan, Utah, USA
| | - Adreann Peel
- Department of Biological Engineering, Utah State University, Logan, Utah, USA
| | - Yu Huang
- Department of Biological Engineering, Utah State University, Logan, Utah, USA
| |
Collapse
|
5
|
Balcão VM, Belline BG, Silva EC, Almeida PFFB, Baldo DÂ, Amorim LRP, Oliveira Júnior JM, Vila MMDC, Del Fiol FS. Isolation and Molecular Characterization of Two Novel Lytic Bacteriophages for the Biocontrol of Escherichia coli in Uterine Infections: In Vitro and Ex Vivo Preliminary Studies in Veterinary Medicine. Pharmaceutics 2022; 14:2344. [PMID: 36365162 PMCID: PMC9692438 DOI: 10.3390/pharmaceutics14112344] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 10/23/2022] [Accepted: 10/27/2022] [Indexed: 09/18/2023] Open
Abstract
E. coli is one of the etiological agents responsible for pyometra in female dogs, with conventional treatment involving ovariohysterectomy. Here, we report the isolation and full characterization of two novel lytic phages, viz. vB_EcoM_Uniso11 (ph0011) and vB_EcoM_Uniso21 (ph0021). Both phages belong to the order Caudovirales and present myovirus-like morphotypes, with phage ph0011 being classified as Myoviridae genus Asteriusvirus and phage ph0021 being classified as Myoviridae genus Tequatrovirus, based on their complete genome sequences. The 348,288 bp phage ph0011 and 165,222 bp phage ph0021 genomes do not encode toxins, integrases or antimicrobial resistance genes neither depolymerases related sequences. Both phages were shown to be effective against at least twelve E. coli clinical isolates in in vitro antibacterial activity assays. Based on their features, both phages have potential for controlling pyometra infections caused by E. coli. Phage ph0011 (reduction of 4.24 log CFU/mL) was more effective than phage ph0021 (reduction of 1.90 log CFU/mL) after 12 h of incubation at MOI 1000. As a cocktail, the two phages were highly effective in reducing the bacterial load (reduction of 5.57 log CFU/mL) at MOI 100, after 12 h of treatment. Both phages were structurally and functionally stabilized in vaginal egg formulations.
Collapse
Affiliation(s)
- Victor M. Balcão
- PhageLab, Laboratory of Biofilms and Bacteriophages, University of Sorocaba, Sorocaba 18023-000, Brazil
- Department of Biology and CESAM, Campus Universitário de Santiago, University of Aveiro, P-3810-193 Aveiro, Portugal
| | - Bianca G. Belline
- PhageLab, Laboratory of Biofilms and Bacteriophages, University of Sorocaba, Sorocaba 18023-000, Brazil
| | - Erica C. Silva
- PhageLab, Laboratory of Biofilms and Bacteriophages, University of Sorocaba, Sorocaba 18023-000, Brazil
| | - Pablo F. F. B. Almeida
- PhageLab, Laboratory of Biofilms and Bacteriophages, University of Sorocaba, Sorocaba 18023-000, Brazil
| | - Denicezar Â. Baldo
- PhageLab, Laboratory of Biofilms and Bacteriophages, University of Sorocaba, Sorocaba 18023-000, Brazil
| | - Lara R. P. Amorim
- Department of Education, Faculty of Sciences, University of Porto, P-4169-007 Porto, Portugal
| | - José M. Oliveira Júnior
- PhageLab, Laboratory of Biofilms and Bacteriophages, University of Sorocaba, Sorocaba 18023-000, Brazil
| | - Marta M. D. C. Vila
- PhageLab, Laboratory of Biofilms and Bacteriophages, University of Sorocaba, Sorocaba 18023-000, Brazil
| | - Fernando S. Del Fiol
- PhageLab, Laboratory of Biofilms and Bacteriophages, University of Sorocaba, Sorocaba 18023-000, Brazil
| |
Collapse
|
6
|
Curcumin-Loaded Mesoporous Silica Nanoparticles Dispersed in Thermo-Responsive Hydrogel as Potential Alzheimer Disease Therapy. Pharmaceutics 2022; 14:pharmaceutics14091976. [PMID: 36145723 PMCID: PMC9504573 DOI: 10.3390/pharmaceutics14091976] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/10/2022] [Accepted: 09/13/2022] [Indexed: 11/30/2022] Open
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disorder characterized by cognitive and behavioral impairment. Curcumin-loaded mesoporous silica nanoparticles (MSN-CCM) can overcome the drawbacks related to the free curcumin (CCM) clinical application, such as water insolubility and low bioavailability, besides acting over the main causes associated to AD. A thermo-responsive hydrogel is an interesting approach for facilitating the administration of the nanosystem via a nasal route, as well as for overcoming mucociliary clearance mechanisms. In light of this, MSN-CCM were dispersed in the hydrogel and evaluated through in vitro and in vivo assays. The MSNs and MSN-CCM were successfully characterized by physicochemical analysis and a high value of the CCM encapsulation efficiency (EE%, 87.70 ± 0.05) was achieved. The designed thermo-responsive hydrogel (HG) was characterized by rheology, texture profile analysis, and ex vivo mucoadhesion, showing excellent mechanical and mucoadhesive properties. Ex vivo permeation studies of MSN-CCM and HG@MSN-CCM showed high permeation values (12.46 ± 1.08 and 28.40 ± 1.88 μg cm−2 of CCM, respectively) in porcine nasal mucosa. In vivo studies performed in a streptozotocin-induced AD model confirmed that HG@MSN-CCM reverted the cognitive deficit in mice, acting as a potential formulation in the treatment of AD.
Collapse
|
7
|
Pironi AM, Melero A, Eloy JO, Guillot AJ, Pini Santos K, Chorilli M. Solid dipersions included in poloxamer hydrogels have favorable rheological properties for topical application and enhance the in vivo antiinflammatory effect of ursolic acid. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
8
|
Hafez E, Shaban SM, Kim MH, Elbalaawy AY, Pyun DG, Kim DH. Fabrication of activated carbon fiber functionalized core–shell silver nanoparticles based in situ and low-cost technology for wound dressings with an enhanced antimicrobial activity and cell viability. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
9
|
Boscariol R, Oliveira Junior JM, Baldo DA, Balcão VM, Vila MM. Transdermal permeation of curcumin promoted by choline geranate ionic liquid: Potential for the treatment of skin diseases. Saudi Pharm J 2022; 30:382-397. [PMID: 35527836 PMCID: PMC9068761 DOI: 10.1016/j.jsps.2022.01.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 01/29/2022] [Indexed: 12/25/2022] Open
Abstract
The transdermal permeation of curcumin aided by choline and geranic acid ionic liquid (CAGE-IL) was addressed as a potential treatment for skin diseases. An in-depth analysis of the effect of CAGE-IL concentration in the enhancement of transdermal permeation of curcumin was performed, and the results were modelled via nonlinear regression analysis. The results obtained showed that a low percentage of CAGE-IL (viz. 2.0%, w/w) was effective in disrupting the skin structure in a transient fashion, facilitating the passage of curcumin dissolved in it.
Collapse
Affiliation(s)
- Rodrigo Boscariol
- PhageLab – Laboratory of Biofilms and Bacteriophages, University of Sorocaba, 18023-000 Sorocaba, SP, Brazil
| | - José M. Oliveira Junior
- PhageLab – Laboratory of Biofilms and Bacteriophages, University of Sorocaba, 18023-000 Sorocaba, SP, Brazil
| | - Denicezar A. Baldo
- PhageLab – Laboratory of Biofilms and Bacteriophages, University of Sorocaba, 18023-000 Sorocaba, SP, Brazil
| | - Victor M. Balcão
- PhageLab – Laboratory of Biofilms and Bacteriophages, University of Sorocaba, 18023-000 Sorocaba, SP, Brazil
- Department of Biology and CESAM, University of Aveiro, Campus Universitário de Santiago, P-3810-193 Aveiro, Portugal
| | - Marta M.D.C. Vila
- PhageLab – Laboratory of Biofilms and Bacteriophages, University of Sorocaba, 18023-000 Sorocaba, SP, Brazil
| |
Collapse
|
10
|
Squinca P, Berglund L, Hanna K, Rakar J, Junker J, Khalaf H, Farinas CS, Oksman K. Multifunctional Ginger Nanofiber Hydrogels with Tunable Absorption: The Potential for Advanced Wound Dressing Applications. Biomacromolecules 2021; 22:3202-3215. [PMID: 34254779 PMCID: PMC8382245 DOI: 10.1021/acs.biomac.1c00215] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 07/01/2021] [Indexed: 11/30/2022]
Abstract
In this study, ginger residue from juice production was evaluated as a raw material resource for preparation of nanofiber hydrogels with multifunctional properties for advanced wound dressing applications. Alkali treatment was applied to adjust the chemical composition of ginger fibers followed by TEMPO (2,2,6,6-tetramethylpiperidine-1-oxyl radical)-mediated oxidation prior to nanofiber isolation. The effect of alkali treatment on hydrogel properties assembled through vacuum filtration without addition of any chemical cross-linker was evaluated. An outstanding absorption ability of 6200% combined with excellent mechanical properties, tensile strength of 2.1 ± 0.2 MPa, elastic modulus of 15.3 ± 0.3 MPa, and elongation at break of 25.1%, was achieved without alkali treatment. Furthermore, the absorption capacity was tunable by applying alkali treatment at different concentrations and by adjusting the hydrogel grammage. Cytocompatibility evaluation of the hydrogels showed no significant effect on human fibroblast proliferation in vitro. Ginger essential oil was used to functionalize the hydrogels by providing antimicrobial activity, furthering their potential as a multifunctional wound dressing.
Collapse
Affiliation(s)
- Paula Squinca
- Division
of Materials Science, Department of Engineering Sciences and Mathematics, Luleå University of Technology, SE-971 87 Luleå, Sweden
- Embrapa
Instrumentation, Rua
XV de Novembro 1452, 13561-206 São Carlos, SP, Brazil
- Graduate
Program of Chemical Engineering, Federal
University of São Carlos, Rod. Washington Luís-km 235, 13565-905 São Carlos, SP, Brazil
| | - Linn Berglund
- Division
of Materials Science, Department of Engineering Sciences and Mathematics, Luleå University of Technology, SE-971 87 Luleå, Sweden
| | - Kristina Hanna
- Center
for Disaster Medicine and Traumatology, Department of Biomedical and
Clinical Sciences, Linköping University, SE-581 85 Linköping, Sweden
| | - Jonathan Rakar
- Center
for Disaster Medicine and Traumatology, Department of Biomedical and
Clinical Sciences, Linköping University, SE-581 85 Linköping, Sweden
| | - Johan Junker
- Center
for Disaster Medicine and Traumatology, Department of Biomedical and
Clinical Sciences, Linköping University, SE-581 85 Linköping, Sweden
| | - Hazem Khalaf
- Cardiovascular
Research Centre, School of Medical Sciences, Örebro University, SE-703 62 Örebro, Sweden
| | - Cristiane S. Farinas
- Embrapa
Instrumentation, Rua
XV de Novembro 1452, 13561-206 São Carlos, SP, Brazil
- Graduate
Program of Chemical Engineering, Federal
University of São Carlos, Rod. Washington Luís-km 235, 13565-905 São Carlos, SP, Brazil
| | - Kristiina Oksman
- Division
of Materials Science, Department of Engineering Sciences and Mathematics, Luleå University of Technology, SE-971 87 Luleå, Sweden
- Mechanical
& Industrial Engineering, University
of Toronto, 5 King’s
College Road, Toronto, Ontario M5S 3G8, Canada
| |
Collapse
|
11
|
Aina T, Danyuo Y, Oparah J, Obayemi JD, Dozie‐Nwachukwu S, Onodugo CD, Ani CJ, Odusanya O, Soboyejo WO. Release kinetics of fungicidal antimicrobials into packaged foods. J Food Saf 2021. [DOI: 10.1111/jfs.12904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Toyin Aina
- Department of Materials Science and Engineering African University of Science and Technology Abuja Federal Capital Territory (FCT) Nigeria
| | - Yiporo Danyuo
- Department of Materials Science and Engineering African University of Science and Technology Abuja Federal Capital Territory (FCT) Nigeria
- Department of Mechanical Engineering Ashesi University Berekuso‐Accra Ghana
| | - Josephine Oparah
- Department of Materials Science and Engineering African University of Science and Technology Abuja Federal Capital Territory (FCT) Nigeria
| | - John D. Obayemi
- Department of Mechanical Engineering Worcester Polytechnic Institute Worcester Massachusetts USA
| | - Stella Dozie‐Nwachukwu
- Biotechnology and Genetic Engineering Advanced Laboratory Sheda Science and Technology Complex, Federal Capital Territory Abuja, Federal Capital Territory (FCT) Nigeria
| | - Chinweoma D. Onodugo
- Biotechnology and Genetic Engineering Advanced Laboratory Sheda Science and Technology Complex, Federal Capital Territory Abuja, Federal Capital Territory (FCT) Nigeria
| | - Chukwuemeka J. Ani
- Department of Materials Science and Engineering African University of Science and Technology Abuja Federal Capital Territory (FCT) Nigeria
- Department of Civil Engineering Nile University of Nigeria Abuja, Federal Capital Territory (FCT) Nigeria
| | - Olushola Odusanya
- Biotechnology and Genetic Engineering Advanced Laboratory Sheda Science and Technology Complex, Federal Capital Territory Abuja, Federal Capital Territory (FCT) Nigeria
| | - Winston O. Soboyejo
- Department of Materials Science and Engineering African University of Science and Technology Abuja Federal Capital Territory (FCT) Nigeria
- Department of Mechanical Engineering Ashesi University Berekuso‐Accra Ghana
| |
Collapse
|
12
|
He Y, Abdi M, Trindade GF, Begines B, Dubern J, Prina E, Hook AL, Choong GYH, Ledesma J, Tuck CJ, Rose FRAJ, Hague RJM, Roberts CJ, De Focatiis DSA, Ashcroft IA, Williams P, Irvine DJ, Alexander MR, Wildman RD. Exploiting Generative Design for 3D Printing of Bacterial Biofilm Resistant Composite Devices. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2100249. [PMID: 34050725 PMCID: PMC8336490 DOI: 10.1002/advs.202100249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/22/2021] [Indexed: 05/25/2023]
Abstract
As the understanding of disease grows, so does the opportunity for personalization of therapies targeted to the needs of the individual. To bring about a step change in the personalization of medical devices it is shown that multi-material inkjet-based 3D printing can meet this demand by combining functional materials, voxelated manufacturing, and algorithmic design. In this paper composite structures designed with both controlled deformation and reduced biofilm formation are manufactured using two formulations that are deposited selectively and separately. The bacterial biofilm coverage of the resulting composites is reduced by up to 75% compared to commonly used silicone rubbers, without the need for incorporating bioactives. Meanwhile, the composites can be tuned to meet user defined mechanical performance with ±10% deviation. Device manufacture is coupled to finite element modelling and a genetic algorithm that takes the user-specified mechanical deformation and computes the distribution of materials needed to meet this under given load constraints through a generative design process. Manufactured products are assessed against the mechanical and bacterial cell-instructive specifications and illustrate how multifunctional personalization can be achieved using generative design driven multi-material inkjet based 3D printing.
Collapse
Affiliation(s)
- Yinfeng He
- Faculty of EngineeringUniversity of NottinghamUniversity ParkNottinghamNG7 2RDUK
| | - Meisam Abdi
- School of Engineering and Sustainable DevelopmentDe Montfort UniversityLeicesterLE1 9BHUK
| | - Gustavo F. Trindade
- Faculty of EngineeringUniversity of NottinghamUniversity ParkNottinghamNG7 2RDUK
- Advanced Materials and Healthcare TechnologiesSchool of PharmacyUniversity of NottinghamUniversity ParkNottinghamNG7 2RDUK
| | - Belén Begines
- Department of Organic and Medicinal ChemistrySchool of PharmacyUniversity of SevilleSeville41012Spain
| | - Jean‐Frédéric Dubern
- National Biofilms Innovation CentreUniversity of Nottingham Biodiscovery InstituteSchool of Life SciencesUniversity of NottinghamUniversity ParkNottinghamNG7 2RDUK
| | - Elisabetta Prina
- Advanced Materials and Healthcare TechnologiesSchool of PharmacyUniversity of NottinghamUniversity ParkNottinghamNG7 2RDUK
| | - Andrew L. Hook
- Advanced Materials and Healthcare TechnologiesSchool of PharmacyUniversity of NottinghamUniversity ParkNottinghamNG7 2RDUK
| | - Gabriel Y. H. Choong
- Faculty of EngineeringUniversity of NottinghamUniversity ParkNottinghamNG7 2RDUK
| | - Javier Ledesma
- Faculty of EngineeringUniversity of NottinghamUniversity ParkNottinghamNG7 2RDUK
| | - Christopher J. Tuck
- Faculty of EngineeringUniversity of NottinghamUniversity ParkNottinghamNG7 2RDUK
| | - Felicity R. A. J. Rose
- University of Nottingham Biodiscovery InstituteSchool of PharmacyUniversity of NottinghamUniversity ParkNottinghamNG7 2RDUK
| | - Richard J. M. Hague
- Faculty of EngineeringUniversity of NottinghamUniversity ParkNottinghamNG7 2RDUK
| | - Clive J. Roberts
- Advanced Materials and Healthcare TechnologiesSchool of PharmacyUniversity of NottinghamUniversity ParkNottinghamNG7 2RDUK
| | | | - Ian A. Ashcroft
- Faculty of EngineeringUniversity of NottinghamUniversity ParkNottinghamNG7 2RDUK
| | - Paul Williams
- National Biofilms Innovation CentreUniversity of Nottingham Biodiscovery InstituteSchool of Life SciencesUniversity of NottinghamUniversity ParkNottinghamNG7 2RDUK
| | - Derek J. Irvine
- Faculty of EngineeringUniversity of NottinghamUniversity ParkNottinghamNG7 2RDUK
| | - Morgan R. Alexander
- Advanced Materials and Healthcare TechnologiesSchool of PharmacyUniversity of NottinghamUniversity ParkNottinghamNG7 2RDUK
| | - Ricky D. Wildman
- Faculty of EngineeringUniversity of NottinghamUniversity ParkNottinghamNG7 2RDUK
| |
Collapse
|
13
|
Aquino FLTD, Silva JPD, Ferro JNDS, Lagente V, Barreto E. trans-Cinnamic acid, but not p-coumaric acid or methyl cinnamate, induces fibroblast migration through PKA- and p38-MAPK signalling pathways. J Tissue Viability 2021; 30:363-371. [PMID: 34052086 DOI: 10.1016/j.jtv.2021.05.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 04/17/2021] [Accepted: 05/12/2021] [Indexed: 12/18/2022]
Abstract
AIM Hydroxycinnamic acids their derivatives have various pharmacological properties. The hydroxycinnamic acid derivatives, methyl cinnamate, trans-cinnamic, and p-coumaric acids have been the object of study in the treatment of skin wounds. However, it is unclear whether these derivatives exert a direct beneficial effect on fibroblast function. In this study, we evaluated the effects of methyl cinnamate, trans-cinnamic, and p-coumaric acids on fibroblast migration in vitro. MATERIALS AND METHODS NIH 3T3 and L929 fibroblast cell lines were exposed to each drug at several concentrations and the effect on cell viability, cell cycle, and extracellular matrix production were assessed by MTT assay, flow cytometry, and immunofluorescence staining, respectively. The effect on cell migration was examined using scratch assay. RESULTS The results showed that hydroxycinnamic acid derivatives not affect cell viability, but increase fibroblast migration in the in vitro scratch-wound healing assay. They also induced an increase in S and G2/M phases accompanied by a decrease in the G0/G1 phase of the cell cycle. The cell proliferation inhibitor mitomycin C abolished the effect induced by p-coumaric acid and methyl cinnamate, indicating that only the trans-cinnamic acid stimulated migration. A transwell migration assay confirmed that trans-cinnamic acid-treated fibroblasts exhibited increased migration compared with untreated cells. trans-Cinnamic acid-induced fibroblast migration was decreased by PKA inhibitor and p38-MAPK inhibitor but not by JNK inhibitor. Additionally, trans-cinnamic acid-treated fibroblasts showed an increase in the production of laminin and collagen type I. CONCLUSION Our study showed that trans-cinnamic acid improves fibroblast migration and modulates extracellular matrix synthesis, indicating its potential for accelerating the healing process.
Collapse
Affiliation(s)
| | | | | | - Vincent Lagente
- NuMeCan Institute (Nutrition, Metabolism and Cancer), Université de Rennes, INSERM, INRA, F-35000, Rennes, France
| | - Emiliano Barreto
- Laboratory of Cell Biology, Federal University of Alagoas, 57072-900, Maceió, Brazil.
| |
Collapse
|
14
|
Meschini S, Pellegrini E, Maestri CA, Condello M, Bettotti P, Condello G, Scarpa M. In vitro toxicity assessment of hydrogel patches obtained by cation‐induced cross‐linking of rod‐like cellulose nanocrystals. J Biomed Mater Res B Appl Biomater 2019; 108:687-697. [DOI: 10.1002/jbm.b.34423] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 05/06/2019] [Accepted: 05/09/2019] [Indexed: 12/18/2022]
Affiliation(s)
- Stefania Meschini
- National Center for Drug Research and EvaluationIstituto Superiore di Sanità Rome Italy
| | - Evelin Pellegrini
- National Center for Drug Research and EvaluationIstituto Superiore di Sanità Rome Italy
| | - Cecilia Ada Maestri
- Nanoscience Laboratory, Department of PhysicsUniversity of Trento Trento Italy
- Centre for Integrative BiologyUniversity of Trento Trento Italy
| | - Maria Condello
- National Center for Drug Research and EvaluationIstituto Superiore di Sanità Rome Italy
| | - Paolo Bettotti
- Nanoscience Laboratory, Department of PhysicsUniversity of Trento Trento Italy
| | - Giancarlo Condello
- Graduate Institute of Sports Training, Institute of Sports SciencesUniversity of Taipei Taipei Taiwan
| | - Marina Scarpa
- Nanoscience Laboratory, Department of PhysicsUniversity of Trento Trento Italy
| |
Collapse
|
15
|
Rodero CF, Fioramonti Calixto GM, Cristina Dos Santos K, Sato MR, Aparecido Dos Santos Ramos M, Miró MS, Rodríguez E, Vigezzi C, Bauab TM, Sotomayor CE, Chorilli M. Curcumin-Loaded Liquid Crystalline Systems for Controlled Drug Release and Improved Treatment of Vulvovaginal Candidiasis. Mol Pharm 2018; 15:4491-4504. [PMID: 30184431 DOI: 10.1021/acs.molpharmaceut.8b00507] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Vulvovaginal candidiasis (VVC) is the most common infection caused by Candida albicans and greatly reduces the quality of life of women affected by it. Due to the ineffectiveness of conventional treatments, there is growing interest in research involving compounds of natural origin. One such compound is curcumin (CUR), which has been proven to be effective against this microorganism. However, some of CUR's physicochemical properties, especially its low aqueous solubility, make the therapeutic application of this compound difficult. Thus, the incorporation of CUR in mucoadhesive liquid crystalline systems (MLCSs) for vaginal administration may be an efficient strategy for the treatment of VVC. MLCSs are capable of potentiating the compound's action, releasing it in a controlled manner, and can enable longer exposure at the site of infection. In this study, MLCSs consisting of oleic acid and ergosterol 5:1 (w/w) as the oily phase, PPG-5-CETETH-20 as the surfactant, and a polymer dispersion of 1% chitosan as the aqueous phase, were developed for the application of CUR (MLCS-CUR) in VVC treatment. The formulations were characterized by polarized light microscopy (PLM), small-angle X-ray scattering (SAXS), oscillatory rheometry, continuous shear rheometry, texture profile analysis, and in vitro mucoadhesion. In addition, the antimicrobial activity was evaluated in vitro, and the effects on local fungal burden and cytokine profiles were investigated in a murine model of VVC. PLM and SAXS showed that the developed formulations presented a characteristic of a microemulsion. However, after the addition of artificial vaginal mucus (AVM), PLM showed that the formulations had structures similar to the "Maltese cross" characteristic of lamellar MLCS. Mucoadhesive test results showed an increase in the mucoadhesive strength of these formulations. Rheology analyses suggested long-lasting action of the formulation at the infected site. The in vitro antimicrobial activity assays suggested that CUR possesses antifungal activity against Candida albicans, determined after its incorporation into the MLCS. Further, MLCS-CUR was also more effective in vivo in the control of vaginal infection than treatment with fluconazole. Immunological assays showed that the ratio of pro-inflammatory (IL-1β) to anti-inflammatory (TGF-β) cytokines has decreased and that there is a reduction in the number of polymorphonuclear neutrophils recruited to the vaginal lumen, showing that treatment with MLCS-CUR was effective in modulating the inflammatory reaction associated with the infection. The results suggest that MLCSs could potentially be used in the treatment of VVC with CUR.
Collapse
Affiliation(s)
- Camila Fernanda Rodero
- Department of Drugs and Medicine, School of Pharmaceutical Sciences , São Paulo State University , Araraquara , Sao Paulo 01049-010 , Brazil
| | - Giovana Maria Fioramonti Calixto
- Department of Drugs and Medicine, School of Pharmaceutical Sciences , São Paulo State University , Araraquara , Sao Paulo 01049-010 , Brazil
| | - Karen Cristina Dos Santos
- Department of Drugs and Medicine, School of Pharmaceutical Sciences , São Paulo State University , Araraquara , Sao Paulo 01049-010 , Brazil
| | - Mariana Rillo Sato
- Department of Drugs and Medicine, School of Pharmaceutical Sciences , São Paulo State University , Araraquara , Sao Paulo 01049-010 , Brazil
| | - Matheus Aparecido Dos Santos Ramos
- Department of Biological Sciences, School of Pharmaceutical Sciences , São Paulo State University , Araraquara , Sao Paulo 01049-010 , Brazil
| | - Maria Soledad Miró
- Department Clinical Biochemistry, Laboratory of Innate Immunity to Fungal Pathogens, CIBICI-CONICET, Faculty of Chemical Sciences , National University of Cordoba , Córdoba , Argentina
| | - Emilse Rodríguez
- Department Clinical Biochemistry, Laboratory of Innate Immunity to Fungal Pathogens, CIBICI-CONICET, Faculty of Chemical Sciences , National University of Cordoba , Córdoba , Argentina
| | - Cecilia Vigezzi
- Department Clinical Biochemistry, Laboratory of Innate Immunity to Fungal Pathogens, CIBICI-CONICET, Faculty of Chemical Sciences , National University of Cordoba , Córdoba , Argentina
| | - Tais Maria Bauab
- Department of Biological Sciences, School of Pharmaceutical Sciences , São Paulo State University , Araraquara , Sao Paulo 01049-010 , Brazil
| | - Claudia Elena Sotomayor
- Department Clinical Biochemistry, Laboratory of Innate Immunity to Fungal Pathogens, CIBICI-CONICET, Faculty of Chemical Sciences , National University of Cordoba , Córdoba , Argentina
| | - Marlus Chorilli
- Department of Drugs and Medicine, School of Pharmaceutical Sciences , São Paulo State University , Araraquara , Sao Paulo 01049-010 , Brazil
| |
Collapse
|