1
|
Rahman SMA, Ruhi RA, Maruf MMH, Shariar MR, Shehab MN, Sujon KM, Islam MS, Aziz MA, Ahmed F, Saha AK, Bhuiya MAK, Reza MA. Green synthesis of silver nanoparticles using the BT5 tea cultivar of Bangladesh: unveiling molecular mechanisms of anti-cancer activity in mice model. NANOSCALE ADVANCES 2025; 7:3375-3386. [PMID: 40242199 PMCID: PMC11997863 DOI: 10.1039/d5na00115c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Accepted: 03/25/2025] [Indexed: 04/18/2025]
Abstract
Silver nanoparticles (AgNPs) have sparked widespread interest due to their remarkable physiochemical capabilities, and they are now being used as a beneficial tool in the biomedical field. However, typical synthesis processes generate dangerous compounds that raise environmental and safety concerns. This is one of the main reasons for choosing a greener synthesis approach. The BT5 cultivar of green tea, which is high in phenolic and flavonoid compounds and has strong antioxidant activity (IC50 ≈ 97.8 μg mL-1), was used in an eco-friendly way to produce AgNPs. The green synthesis approach was confirmed by the rapid color change (light to dark brown) of AgNO3 solution upon the addition of the BT5 extract. Several methods were performed to characterize the synthesized BT5-AgNPs, using UV-vis spectroscopy (λ max = 424 nm), FTIR, DLS, zeta potential (-39.8 ± 0.45 mV), TGA, XRD (crystalline size = 11.25 nm), and FE-SEM (35 ± 8.36 nm). BT5-AgNPs showed strong antiproliferative properties inimical to Ehrlich-Lettre ascites carcinoma cells (EAC) of the Swiss albino variety of mice model, with low-concentration treatment (1 mg kg-1) resulting in 52.15% cell growth inhibition. Fluorescence microscopy using DAPI staining revealed morphological alterations via heterochromatization and karyorrhexis. Gene expression analysis revealed upregulation of hallmark genes p53 and BAX and Bcl2 downregulation in the low- and high-concentration groups, indicating activation of the apoptotic pathway. Most likely due to cytotoxic effects and altered cellular responses, a higher dosage (5 mg kg-1) resulted in slightly lower efficacy.
Collapse
Affiliation(s)
- Sk Md Atiqur Rahman
- Institute of Environmental Science, University of Rajshahi Dr M A Wazed Miah Academic Building, Level # 1 Rajshahi-6205 Bangladesh
- Molecular Biology and Protein Science Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi Sir Jagadish Chandra Bose Academic Building, Level # 4 Rajshahi-6205 Bangladesh
- Bio & Nanotechnology Research Lab, Department of Materials Science and Engineering, University of Rajshahi DrM A Wazed Miah Academic Building, Level # 3 Rajshahi-6205 Bangladesh
- Genetics and Molecular Biology Lab, Department of Zoology, University of Rajshahi Sir Jagadish Chandra Bose Academic Building, Level # 2 Rajshahi-6205 Bangladesh
| | - Rokshana Ara Ruhi
- Institute of Environmental Science, University of Rajshahi Dr M A Wazed Miah Academic Building, Level # 1 Rajshahi-6205 Bangladesh
- Molecular Biology and Protein Science Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi Sir Jagadish Chandra Bose Academic Building, Level # 4 Rajshahi-6205 Bangladesh
- Bio & Nanotechnology Research Lab, Department of Materials Science and Engineering, University of Rajshahi DrM A Wazed Miah Academic Building, Level # 3 Rajshahi-6205 Bangladesh
- Genetics and Molecular Biology Lab, Department of Zoology, University of Rajshahi Sir Jagadish Chandra Bose Academic Building, Level # 2 Rajshahi-6205 Bangladesh
| | - Md Mahmudul Hasan Maruf
- Molecular Biology and Protein Science Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi Sir Jagadish Chandra Bose Academic Building, Level # 4 Rajshahi-6205 Bangladesh
| | - Md Ragib Shariar
- Molecular Biology and Protein Science Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi Sir Jagadish Chandra Bose Academic Building, Level # 4 Rajshahi-6205 Bangladesh
| | - Mobasshir Noor Shehab
- Molecular Biology and Protein Science Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi Sir Jagadish Chandra Bose Academic Building, Level # 4 Rajshahi-6205 Bangladesh
| | - Khaled Mahmud Sujon
- Molecular Biology and Protein Science Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi Sir Jagadish Chandra Bose Academic Building, Level # 4 Rajshahi-6205 Bangladesh
| | - Mohammad Saiful Islam
- Molecular Biology and Protein Science Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi Sir Jagadish Chandra Bose Academic Building, Level # 4 Rajshahi-6205 Bangladesh
| | - Md Abdul Aziz
- Botany Division, Bangladesh Tea Research Institute Sreemangal 3210 Moulvibazar Bangladesh
| | - Firoz Ahmed
- BCSIR Laboratories Rajshahi, Bangladesh Council of Scientific and Industrial Research (BCSIR) Rajshahi 6206 Bangladesh
| | - Ananda Kumar Saha
- Genetics and Molecular Biology Lab, Department of Zoology, University of Rajshahi Sir Jagadish Chandra Bose Academic Building, Level # 2 Rajshahi-6205 Bangladesh
| | - Md Anwarul Kabir Bhuiya
- Bio & Nanotechnology Research Lab, Department of Materials Science and Engineering, University of Rajshahi DrM A Wazed Miah Academic Building, Level # 3 Rajshahi-6205 Bangladesh
| | - Md Abu Reza
- Molecular Biology and Protein Science Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi Sir Jagadish Chandra Bose Academic Building, Level # 4 Rajshahi-6205 Bangladesh
| |
Collapse
|
2
|
Andre V, Abdel-Mottaleb M, Shotbolt M, Chen S, Ramezini Z, Zhang E, Conlan S, Telisman O, Liang P, Bryant JM, Chomko R, Khizroev S. Foundational insights for theranostic applications of magnetoelectric nanoparticles. NANOSCALE HORIZONS 2025; 10:699-718. [PMID: 39898755 PMCID: PMC11789716 DOI: 10.1039/d4nh00560k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 01/22/2025] [Indexed: 02/04/2025]
Abstract
Reviewing emerging biomedical applications of MagnetoElectric NanoParticles (MENPs), this paper presents basic physics considerations to help understand the possibility of future theranostic applications. Currently emerging applications include wireless non-surgical neural modulation and recording, functional brain mapping, high-specificity cell electroporation for targeted cancer therapies, targeted drug delivery, early screening and diagnostics, and others. Using an ab initio analysis, each application is discussed from the perspective of its fundamental limitations. Furthermore, the review identifies the most eminent challenges and offers potential engineering solutions on the pathway to implement each application and combine the therapeutic and diagnostic capabilities of the nanoparticles.
Collapse
Affiliation(s)
- Victoria Andre
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL, USA
| | | | - Max Shotbolt
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL, USA
| | - Shawnus Chen
- Department of Chemical, Environmental and Materials Engineering, University of Miami, Coral Gables, FL, USA
| | - Zeinab Ramezini
- Department of Electrical and Computer Engineering, University of Miami, Coral Gables, FL, USA.
| | - Elric Zhang
- Department of Electrical and Computer Engineering, University of Miami, Coral Gables, FL, USA.
| | - Skye Conlan
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL, USA
| | - Ozzie Telisman
- Department of Chemistry, University of Miami, Coral Gables, FL, USA
| | | | - John M Bryant
- H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Roman Chomko
- Department of Electrical and Computer Engineering, University of California, Riverside, CA, USA
| | - Sakhrat Khizroev
- Department of Electrical and Computer Engineering, University of Miami, Coral Gables, FL, USA.
- The Miami Project to Cure Paralysis, Department of Biochemistry and Molecular Biology, University of Miami, Miami, FL, USA
| |
Collapse
|
3
|
Shotbolt M, Zhu E, Andre V, Zhang E, Duran I, Bryant J, El-Rifai W, Liang P, Khizroev S. Catalytic Degradation of Organic Dyes Indicates Anti-Proliferative Effects of Magnetoelectric Nanoparticles. JOURNAL OF ELECTRONIC MATERIALS 2025; 54:5529-5538. [PMID: 40491600 PMCID: PMC12145325 DOI: 10.1007/s11664-025-11843-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 02/13/2025] [Indexed: 06/11/2025]
Abstract
Over the past decade, magnetoelectric nanoparticles (MENPs) have proven effective in generating local electric fields in response to stimulation with a magnetic field. The applications of such nanoparticles are many and varied, with examples of prior research including use for on-demand drug release, wireless modulation and recording of neural activity, and organic dye degradation. This study investigates the potential for organic dye degradation to be used as a rapid and efficient screening tool to detect the magnetoelectric effect of MENPs, and how the results of such a test mirror the antiproliferative effect of said nanoparticles. Trypan blue was selected as an azo dye to test for dye degradation. Vials of the dye were treated with CoFe2O4@BaTiO3 core-shell MENPs of varying characteristics, both with and without concurrent 1-kHz 250-Oe magnetic stimulation. Dye degradation was measured using ultraviolet (UV)-vis spectroscopy. Dye degradation efficacy varied with varying nanoparticle synthesis parameters. As controls, nanoparticles of the same composition, but with an insignificant magnetoelectric effect, were used. SKOV-3 ovarian cancer cells were then treated with the same nanoparticles, and viability was measured with an adenosine triphosphate (ATP) assay. These measurements show a decrease in cell viability up to 60.3% of control (p = 0.0052), which mirrored the efficacy of dye degradation of up to 69.8% (p = 0.0037) in each of the particle variants, demonstrating the value of azo dye degradation as a simple screening test for MENPs, and showing the potential of MENPs used as wirelessly controlled nanodevices to allow targeted electric field-based treatments.
Collapse
Affiliation(s)
- Max Shotbolt
- University of Miami, McArthur Engineering Building, Memorial Dr, Coral Gables, FL 33146 USA
| | - Emily Zhu
- University of Miami, McArthur Engineering Building, Memorial Dr, Coral Gables, FL 33146 USA
| | - Victoria Andre
- University of Miami, McArthur Engineering Building, Memorial Dr, Coral Gables, FL 33146 USA
| | - Elric Zhang
- University of Miami, McArthur Engineering Building, Memorial Dr, Coral Gables, FL 33146 USA
| | - Isabelle Duran
- Miami Palmetto Highschool, 7431 SW 120th St, Pinecrest, FL 33156 USA
| | - John Bryant
- MOFFITT Cancer Center, 603 N Flamingo Rd # 151, Pembroke Pines, FL 33028 USA
| | - Wael El-Rifai
- University of Miami, McArthur Engineering Building, Memorial Dr, Coral Gables, FL 33146 USA
| | - Ping Liang
- Cellular Nanomed, Irvine at 8 Corporate Park, Irvine, CA 93606 USA
| | - Sakhrat Khizroev
- University of Miami, McArthur Engineering Building, Memorial Dr, Coral Gables, FL 33146 USA
| |
Collapse
|
4
|
Huang H, Wang K, Liu X, Liu X, Wang J, Suo M, Wang H, Chen S, Chen X, Li Z. Piezoelectric biomaterials for providing electrical stimulation in bone tissue engineering: Barium titanate. J Orthop Translat 2025; 51:94-107. [PMID: 39991455 PMCID: PMC11847244 DOI: 10.1016/j.jot.2024.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 11/30/2024] [Accepted: 12/23/2024] [Indexed: 02/25/2025] Open
Abstract
With the increasing clinical demand for orthopedic implants, bone tissue engineering based on a variety of bioactive materials has shown promising applications in bone repair. And various physiological cues, such as mechanical, electrical, and magnetic stimulation, can influence cell fate and participate in bone regeneration. Natural bone has a piezoelectric effect due to the non-centrosymmetric nature of collagen, which can aid in cell adhesion, proliferation and differentiation, and bone growth by converting mechanical stimuli into electrical stimuli. Piezoelectric materials have the same piezoelectric effect as human bone, and they are able to deform in response to physiological movement, thus providing electrical stimulation to cells or damaged tissue without the need for an external power source. Among them, Barium titanate (BaTiO3) is widely used in tumor therapy, tissue engineering, health detection and drug delivery because of its good biocompatibility, low cytotoxicity and good piezoelectric properties. This review describes the piezoelectric effect of natural bone and the characteristics of various types of piezoelectric materials, from the synthesis and physicochemical characteristics of BaTiO3 and its application in biomedicine. And it highlights the great potential of BaTiO3 as piezoelectric biomaterials in the field of bone tissue engineering in anticipation of providing new ideas and opportunities for researchers. The translational potential of this article: This review systematically discusses barium titanate, a bioactive material that can mimic the piezoelectric effect of natural bone tissue, which can intervene in the regenerative repair of bone by providing a sustained electrical microenvironment for bone repair scaffolds. This may help to solve the current problem of poor osteogenic properties of bioactive materials by utilizing barium titanate.
Collapse
Affiliation(s)
- Huagui Huang
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Kaizhong Wang
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xiangyan Liu
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xin Liu
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jinzuo Wang
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Moran Suo
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Hui Wang
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Shuang Chen
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xin Chen
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, China
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Zhonghai Li
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Liaoning Province, China
| |
Collapse
|
5
|
Andre M, Kolishetti N, Yndart A, Vashist A, Nair M, Raymond AD. Magnetoelectric Extracellular Vesicle Latency-Targeting (MELT) Nanotherapeutic for the Block-Lock-and-Kill HIV Eradication Strategy. Biomedicines 2025; 13:147. [PMID: 39857731 PMCID: PMC11762476 DOI: 10.3390/biomedicines13010147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 12/13/2024] [Accepted: 12/17/2024] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND Human immunodeficiency virus (HIV) establishes latent infections in cellular reservoirs, including microglia. HC69 cells, a microglial model of HIV latency, contain an HIV promoter long terminal repeat (LTR)-GFP reporter and were used for testing the efficacy of a two-step magnetoelectric nanoparticle (MENP) and extracellular vesicle (xEV) latency-targeting (MELT) nanotherapeutic. GFP expression in HC69 at rest is low (GFPLo), and upon exposure to LTR, transcription-activating agents (i.e., TNF-α) are induced to be high expressing (GFPHi). METHODS The first step of MELT utilized ZL0580, an HIV Tat inhibitor loaded into EVs (80%) via incubation. ZL0580-EVs were taken up by GFPLo and blocked LTR transcriptional reactivation by 50% and were 90% less toxic than ZL0580 alone. The second step in MELT involved conjugation of monomethyl auristatin E (MMAE) to MENPs. HPLC measurements showed 80% MMAE attachment to MENPs. Flow cytometry-based measurements of the membrane potential indicated that the membranes of GFPHi HC69 were 60% more polarized than GFPLo HC69 cells. More MMAE-MENPs were internalized by GFPLo HC69. RESULTS Using a mixed-cell blood-brain barrier (BBB) Transwell model, we demonstrated that 20% of MELT crossed the BBB, was taken up by HC69 cells, and reduced LTR reactivation by 10%. CONCLUSIONS Overall, this study demonstrated that MELT can potentially be utilized as a nanotherapeutic to target HIV latency in microglia.
Collapse
Affiliation(s)
- Mickensone Andre
- Herbert Wertheim College of Medicine, Cellular and Molecular Medicine, Florida International University, Miami, FL 33199, USA; (M.A.); (A.Y.); (A.V.); (M.N.)
| | - Nagesh Kolishetti
- Herbert Wertheim College of Medicine, Cellular and Molecular Medicine, Florida International University, Miami, FL 33199, USA; (M.A.); (A.Y.); (A.V.); (M.N.)
| | - Adriana Yndart
- Herbert Wertheim College of Medicine, Cellular and Molecular Medicine, Florida International University, Miami, FL 33199, USA; (M.A.); (A.Y.); (A.V.); (M.N.)
| | - Arti Vashist
- Herbert Wertheim College of Medicine, Cellular and Molecular Medicine, Florida International University, Miami, FL 33199, USA; (M.A.); (A.Y.); (A.V.); (M.N.)
| | - Madhavan Nair
- Herbert Wertheim College of Medicine, Cellular and Molecular Medicine, Florida International University, Miami, FL 33199, USA; (M.A.); (A.Y.); (A.V.); (M.N.)
- Institute of Neuroimmune Pharmacology, Florida International University, Miami, FL 33199, USA
| | - Andrea D. Raymond
- Herbert Wertheim College of Medicine, Cellular and Molecular Medicine, Florida International University, Miami, FL 33199, USA; (M.A.); (A.Y.); (A.V.); (M.N.)
- Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, USA
| |
Collapse
|
6
|
Bryant JM, Stimphil E, Andre V, Shotbolt M, Zhang E, Estrella V, Husain K, Weygand J, Marchion D, Lopez AS, Abrahams D, Chen S, Abdel-Mottaleb M, Conlan S, Oraiqat I, Khatri V, Guevara JA, Pilon-Thomas S, Redler G, Latifi K, Raghunand N, Yamoah K, Hoffe S, Costello J, Frakes JM, Liang P, Khizroev S, Gatenby RA, Malafa M. Nanoparticles use magnetoelectricity to target and eradicate cancer cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.13.618075. [PMID: 39464093 PMCID: PMC11507724 DOI: 10.1101/2024.10.13.618075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
This study presents the first in vivo and in vitro evidence of an externally controlled, predictive, MRI-based nanotheranostic agent capable of cancer cell specific targeting and killing via irreversible electroporation (IRE) in solid tumors. The rectangular-prism-shaped magnetoelectric nanoparticle is a smart nanoparticle that produces a local electric field in response to an externally applied magnetic field. When externally activated, MENPs are preferentially attracted to the highly conductive cancer cell membranes, which occurs in cancer cells because of dysregulated ion flux across their membranes. In a pancreatic adenocarcinoma murine model, MENPs activated by external magnetic fields during magnetic resonance imaging (MRI) resulted in a mean three-fold tumor volume reduction (62.3% vs 188.7%; P < .001) from a single treatment. In a longitudinal confirmatory study, 35% of mice treated with activated MENPs achieved a durable complete response for 14 weeks after one treatment. The degree of tumor volume reduction correlated with a decrease in MRI T 2 * relaxation time ( r = .351; P = .039) which suggests that MENPs have a potential to serve as a predictive nanotheranostic agent at time of treatment. There were no discernable toxicities associated with MENPs at any timepoint or on histopathological analysis of major organs. MENPs are a noninvasive alternative modality for the treatment of cancer. Summary We investigated the theranostic capabilities of magnetoelectric nanoparticles (MENPs) combined with MRI via a murine model of pancreatic adenocarcinoma. MENPs leverage the magnetoelectric effect to convert an applied magnetic field into local electric fields, which can induce irreversible electroporation of tumor cell membranes when activated by MRI. Additionally, MENPs modulate MRI relaxivity, which can be used to predict the degree of tumor ablation. Through a pilot study (n=21) and a confirmatory study (n=27), we demonstrated that, ≥300 µg of MRI-activated MENPs significantly reduced tumor volumes, averaging a three-fold decrease as compared to controls. Furthermore, there was a direct correlation between the reduction in tumor T 2 relaxation times and tumor volume reduction, highlighting the predictive prognostic value of MENPs. Six of 17 mice in the confirmatory study's experimental arms achieved a durable complete response, showcasing the potential for durable treatment outcomes. Importantly, the administration of MENPs was not associated with any evident toxicities. This study presents the first in vivo evidence of an externally controlled, MRI-based, theranostic agent that effectively targets and treats solid tumors via irreversible electroporation while sparing normal tissues, offering a new and promising approach to cancer therapy.
Collapse
|
7
|
Gu Q, Zhu L. Heating Induced Nanoparticle Migration and Enhanced Delivery in Tumor Treatment Using Nanotechnology. Bioengineering (Basel) 2024; 11:900. [PMID: 39329642 PMCID: PMC11428587 DOI: 10.3390/bioengineering11090900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/16/2024] [Accepted: 09/04/2024] [Indexed: 09/28/2024] Open
Abstract
Nanoparticles have been developed as imaging contrast agents, heat absorbers to confine energy into targeted tumors, and drug carriers in advanced cancer treatment. It is crucial to achieve a minimal concentration of drug-carrying nanostructures or to induce an optimized nanoparticle distribution in tumors. This review is focused on understanding how local or whole-body heating alters transport properties in tumors, therefore leading to enhanced nanoparticle delivery or optimized nanoparticle distributions in tumors. First, an overview of cancer treatment and the development of nanotechnology in cancer therapy is introduced. Second, the importance of particle distribution in one of the hyperthermia approaches using nanoparticles in damaging tumors is discussed. How intensive heating during nanoparticle hyperthermia alters interstitial space structure to induce nanoparticle migration in tumors is evaluated. The next section reviews major obstacles in the systemic delivery of therapeutic agents to targeted tumors due to unique features of tumor microenvironments. Experimental observations on how mild local or whole-body heating boosts systemic nanoparticle delivery to tumors are presented, and possible physiological mechanisms are explored. The end of this review provides the current challenges facing clinicians and researchers in designing effective and safe heating strategies to maximize the delivery of therapeutic agents to tumors.
Collapse
Affiliation(s)
- Qimei Gu
- Mechanical Engineering Department, University of Maryland Baltimore County, Baltimore, MD 21250, USA
| | - Liang Zhu
- Mechanical Engineering Department, University of Maryland Baltimore County, Baltimore, MD 21250, USA
| |
Collapse
|
8
|
Mohanan S, Guan X, Liang M, Karakoti A, Vinu A. Stimuli-Responsive Silica Silanol Conjugates: Strategic Nanoarchitectonics in Targeted Drug Delivery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2301113. [PMID: 36967548 DOI: 10.1002/smll.202301113] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/28/2023] [Indexed: 06/18/2023]
Abstract
The design of novel drug delivery systems is exceptionally critical in disease treatments. Among the existing drug delivery systems, mesoporous silica nanoparticles (MSNs) have shown profuse promise owing to their structural stability, tunable morphologies/sizes, and ability to load different payload chemistry. Significantly, the presence of surface silanol groups enables functionalization with relevant drugs, imaging, and targeting agents, promoting their utility and popularity among researchers. Stimuli-responsive silanol conjugates have been developed as a novel, more effective way to conjugate, deliver, and release therapeutic drugs on demand and precisely to the selected location. Therefore, it is urgent to summarize the current understanding and the surface silanols' role in making MSN a versatile drug delivery platform. This review provides an analytical understanding of the surface silanols, chemistry, identification methods, and their property-performance correlation. The chemistry involved in converting surface silanols to a stimuli-responsive silica delivery system by endogenous/exogenous stimuli, including pH, redox potential, temperature, and hypoxia, is discussed in depth. Different chemistries for converting surface silanols to stimuli-responsive bonds are discussed in the context of drug delivery. The critical discussion is culminated by outlining the challenges in identifying silanols' role and overcoming the limitations in synthesizing stimuli-responsive mesoporous silica-based drug delivery systems.
Collapse
Affiliation(s)
- Shan Mohanan
- Global Innovative Centre for Advanced Nanomaterials, The School of Engineering, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, 2308, Australia
| | - Xinwei Guan
- Global Innovative Centre for Advanced Nanomaterials, The School of Engineering, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, 2308, Australia
| | - Mingtao Liang
- School of Biomedical Sciences and Pharmacy, College of Health Medicine and Wellbeing, The University of Newcastle, Callaghan, 2308, Australia
| | - Ajay Karakoti
- Global Innovative Centre for Advanced Nanomaterials, The School of Engineering, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, 2308, Australia
| | - Ajayan Vinu
- Global Innovative Centre for Advanced Nanomaterials, The School of Engineering, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, 2308, Australia
| |
Collapse
|
9
|
Murali N, Rainu SK, Sharma A, Siddhanta S, Singh N, Betal S. Remotely Controlled Surface Charge Modulation of Magnetoelectric Nanogenerators for Swift and Efficient Drug Delivery. ACS OMEGA 2024; 9:28937-28950. [PMID: 38973906 PMCID: PMC11223158 DOI: 10.1021/acsomega.4c03825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/14/2024] [Accepted: 05/17/2024] [Indexed: 07/09/2024]
Abstract
We have developed a highly efficient technique of magnetically controlled swift loading and release of doxorubicin (DOX) drug using a magnetoelectric nanogenerator (MENG). Core-shell nanostructured MENG with a magnetostrictive core and piezoelectric shell act as field-responsive nanocarriers and possess the capability of field-triggered drug release in a cancerous environment. MENGs generate a surface electric dipole when subjected to a magnetic field due to the strain-mediated magnetoelectric effect. The capability of directional magnetic field-assisted modulation of the surface electrical dipole of MENG provides a mechanism to create/break ionic bonds with DOX molecules, which facilitates efficient drug attachment and on-demand swift detachment of the drug at a targeted site. The magnetic field-assisted drug-loading mechanism was minutely analyzed using spectrophotometry and Raman spectroscopy. The detailed time-dependent analysis of controlled drug release by the MENG under unidirectional and rotating magnetic field excitation was conducted using field-emission scanning electron microscopy, energy-dispersive X-ray, and atomic force microscopic measurements. In vitro, experiments validate the cytocompatibility and magnetically assisted on-demand and swift DOX drug delivery by the MENG near MCF-7 breast cancer cells, which results in a significant enhancement of cancer cell killing efficiency. A state-of-the-art experiment was performed to visualize the nanoscale magnetoelectric effect of MENG using off-axis electron holography under Lorentz conditions.
Collapse
Affiliation(s)
- Nandan Murali
- Department
of Electrical Engineering, Indian Institute
of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Simran Kaur Rainu
- Center
for Biomedical Engineering, Indian Institute
of Technology Delhi, Hauz Khas, New Delhi110016, India
| | - Arti Sharma
- Department
of Chemistry, Indian Institute of Technology
Delhi, Hauz Khas, New Delhi110016, India
| | - Soumik Siddhanta
- Department
of Chemistry, Indian Institute of Technology
Delhi, Hauz Khas, New Delhi110016, India
| | - Neetu Singh
- Center
for Biomedical Engineering, Indian Institute
of Technology Delhi, Hauz Khas, New Delhi110016, India
| | - Soutik Betal
- Department
of Electrical Engineering, Indian Institute
of Technology Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
10
|
Ramezani Z, André V, Khizroev S. Modeling the effect of magnetoelectric nanoparticles on neuronal electrical activity: An analog circuit approach. Biointerphases 2024; 19:031001. [PMID: 38738941 DOI: 10.1116/5.0199163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/22/2024] [Indexed: 05/14/2024] Open
Abstract
This paper introduces a physical neuron model that incorporates magnetoelectric nanoparticles (MENPs) as an essential electrical circuit component to wirelessly control local neural activity. Availability of such a model is important as MENPs, due to their magnetoelectric effect, can wirelessly and noninvasively modulate neural activity, which, in turn, has implications for both finding cures for neurological diseases and creating a wireless noninvasive high-resolution brain-machine interface. When placed on a neuronal membrane, MENPs act as magnetic-field-controlled finite-size electric dipoles that generate local electric fields across the membrane in response to magnetic fields, thus allowing to controllably activate local ion channels and locally initiate an action potential. Herein, the neuronal electrical characteristic description is based on ion channel activation and inhibition mechanisms. A MENP-based memristive Hodgkin-Huxley circuit model is extracted by combining the Hodgkin-Huxley model and an equivalent circuit model for a single MENP. In this model, each MENP becomes an integral part of the neuron, thus enabling wireless local control of the neuron's electric circuit itself. Furthermore, the model is expanded to include multiple MENPs to describe collective effects in neural systems.
Collapse
Affiliation(s)
- Zeinab Ramezani
- Department of Electrical and Computer Engineering, College of Engineering, University of Miami, Miami, Florida 33146
| | - Victoria André
- Department of Biomedical Engineering, College of Engineering, University of Miami, Miami, Florida 33146
| | - Sakhrat Khizroev
- Department of Electrical and Computer Engineering, College of Engineering, University of Miami, Miami, Florida 33146
| |
Collapse
|
11
|
Rahman S, Sadaf S, Hoque ME, Mishra A, Mubarak NM, Malafaia G, Singh J. Unleashing the promise of emerging nanomaterials as a sustainable platform to mitigate antimicrobial resistance. RSC Adv 2024; 14:13862-13899. [PMID: 38694553 PMCID: PMC11062400 DOI: 10.1039/d3ra05816f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 04/02/2024] [Indexed: 05/04/2024] Open
Abstract
The emergence and spread of antibiotic-resistant (AR) bacterial strains and biofilm-associated diseases have heightened concerns about exploring alternative bactericidal methods. The WHO estimates that at least 700 000 deaths yearly are attributable to antimicrobial resistance, and that number could increase to 10 million annual deaths by 2050 if appropriate measures are not taken. Therefore, the increasing threat of AR bacteria and biofilm-related infections has created an urgent demand for scientific research to identify novel antimicrobial therapies. Nanomaterials (NMs) have emerged as a promising alternative due to their unique physicochemical properties, and ongoing research holds great promise for developing effective NMs-based treatments for bacterial and viral infections. This review aims to provide an in-depth analysis of NMs based mechanisms combat bacterial infections, particularly those caused by acquired antibiotic resistance. Furthermore, this review examines NMs design features and attributes that can be optimized to enhance their efficacy as antimicrobial agents. In addition, plant-based NMs have emerged as promising alternatives to traditional antibiotics for treating multidrug-resistant bacterial infections due to their reduced toxicity compared to other NMs. The potential of plant mediated NMs for preventing AR is also discussed. Overall, this review emphasizes the importance of understanding the properties and mechanisms of NMs for the development of effective strategies against antibiotic-resistant bacteria.
Collapse
Affiliation(s)
- Sazedur Rahman
- Department of Mechanical and Production Engineering, Ahsanullah University of Science and Technology Dhaka Bangladesh
| | - Somya Sadaf
- Department of Civil and Environmental Engineering, Birla Institute of Technology Mesra Ranchi 835215 Jharkhand India
| | - Md Enamul Hoque
- Department of Biomedical Engineering, Military Institute of Science and Technology Dhaka Bangladesh
| | - Akash Mishra
- Department of Civil and Environmental Engineering, Birla Institute of Technology Mesra Ranchi 835215 Jharkhand India
| | - Nabisab Mujawar Mubarak
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei Bandar Seri Begawan BE1410 Brunei Darussalam
- Department of Chemistry, School of Chemical Engineering and Physical Sciences, Lovely Professional University Jalandhar Punjab India
| | - Guilherme Malafaia
- Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute Urutaí GO Brazil
| | - Jagpreet Singh
- Department of Chemistry, University Centre for Research and Development, Chandigarh University Mohali-140413 India
| |
Collapse
|
12
|
Li Y, Lv C, Li Z, Chen C, Cheng Y. Magnetic modulation of lysosomes for cancer therapy. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1947. [PMID: 38488191 DOI: 10.1002/wnan.1947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 03/19/2024]
Abstract
Lysosomes play a central role in biochemical signal transduction and oxidative stress in cells. Inducing lysosome membrane penetration (LMP) to cause lysosomal-dependent cell death (LCD) in tumor cells is an effective strategy for cancer therapy. Chemical drugs can destroy the stability of lysosomes by neutralizing protons within the lysosomes or enhancing the fragility of the lysosomal membranes. However, there remain several unsolved problems of traditional drugs in LMP induction due to insufficient lysosomal targeting, fast metabolism, and toxicity in normal cells. With the development of nanotechnology, magnetic nanoparticles have been demonstrated to target lysosomes naturally, providing a versatile tool for lysosomal modulation. Combined with excellent tissue penetration and spatiotemporal manipulability of magnetic fields, magnetic modulation of lysosomes progresses rapidly in inducing LMP and LCD for cancer therapy. This review comprehensively discussed the strategies of magnetic modulation of lysosomes for cancer therapy. The intrinsic mechanisms of LMP-induced LCD were first introduced. Then, the modulation of lysosomes by diverse physical outputs of magnetic fields was emphatically discussed. Looking forward, this review will shed the light on the prospect of magnetic modulation of lysosomes, inspiring future research of magnetic modulation strategy in cancer therapy. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Nanotechnology Approaches to Biology > Nanoscale Systems in Biology.
Collapse
Affiliation(s)
- Yingze Li
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, School of Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, Tongji University, Shanghai, China
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Cheng Lv
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, School of Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, Tongji University, Shanghai, China
| | - Zhenguang Li
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, School of Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, Tongji University, Shanghai, China
| | - Chang Chen
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yu Cheng
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, School of Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, Tongji University, Shanghai, China
| |
Collapse
|
13
|
Narayanan RP, Khaleghi A, Veletić M, Balasingham I. Multiphysics simulation of magnetoelectric micro core-shells for wireless cellular stimulation therapy via magnetic temporal interference. PLoS One 2024; 19:e0297114. [PMID: 38271467 PMCID: PMC10834063 DOI: 10.1371/journal.pone.0297114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 12/28/2023] [Indexed: 01/27/2024] Open
Abstract
This paper presents an innovative approach to wireless cellular stimulation therapy through the design of a magnetoelectric (ME) microdevice. Traditional electrophysiological stimulation techniques for neural and deep brain stimulation face limitations due to their reliance on electronics, electrode arrays, or the complexity of magnetic induction. In contrast, the proposed ME microdevice offers a self-contained, controllable, battery-free, and electronics-free alternative, holding promise for targeted precise stimulation of biological cells and tissues. The designed microdevice integrates core shell ME materials with remote coils which applies magnetic temporal interference (MTI) signals, leading to the generation of a bipolar local electric stimulation current operating at low frequencies which is suitable for precise stimulation. The nonlinear property of the magnetostrictive core enables the demodulation of remotely applied high-frequency electromagnetic fields, resulting in a localized, tunable, and manipulatable electric potential on the piezoelectric shell surface. This potential, triggers electrical spikes in neural cells, facilitating stimulation. Rigorous computational simulations support this concept, highlighting a significantly high ME coupling factor generation of 550 V/m·Oe. The high ME coupling is primarily attributed to the operation of the device in its mechanical resonance modes. This achievement is the result of a carefully designed core shell structure operating at the MTI resonance frequencies, coupled with an optimal magnetic bias, and predetermined piezo shell thickness. These findings underscore the potential of the engineered ME core shell as a candidate for wireless and minimally invasive cellular stimulation therapy, characterized by high resolution and precision. These results open new avenues for injectable material structures capable of delivering effective cellular stimulation therapy, carrying implications across neuroscience medical devices, and regenerative medicine.
Collapse
Affiliation(s)
- Ram Prasadh Narayanan
- Institute of Electronic Systems, Norwegian University of Science and Technology, Trondheim, Norway
| | - Ali Khaleghi
- Institute of Electronic Systems, Norwegian University of Science and Technology, Trondheim, Norway
- Intervention Center, Oslo University Hospital, Oslo, Norway
| | - Mladen Veletić
- Institute of Electronic Systems, Norwegian University of Science and Technology, Trondheim, Norway
- Intervention Center, Oslo University Hospital, Oslo, Norway
| | - Ilangko Balasingham
- Institute of Electronic Systems, Norwegian University of Science and Technology, Trondheim, Norway
- Intervention Center, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
14
|
Koshev N, Kapralov P, Evstigneeva S, Lutsenko O, Shilina P, Zharkov M, Pyataev N, Darwish A, Timin A, Ostras M, Radchenko I, Sukhorukov G, Vetoshko P. Yttrium-Iron Garnet Film Magnetometer for Registration of Magnetic Nano- and Submicron Particles: In Vitro and In Vivo Studies. IEEE Trans Biomed Eng 2024; 71:122-129. [PMID: 37506012 DOI: 10.1109/tbme.2023.3293553] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
Abstract
In the current article, we present a new kind of magnetometer for quantitative detection of magnetic objects (magnetic nano- and submicron particles) in biological fluids and tissues. The sensor is based on yttrium-iron garnet film with optical signal registration system. Inheriting the working principle of a fluxgate magnetometers, the sensor works at a room-temperature, its wide dynamic range allows the measurements in an unshielded environment. A small size of sensitive element combined with a short recovery time after the excitation coils are off provide us with a potentially high spatial and temporal resolution of measurements. We show the feasibility of the developed devices by sensing the remanent magnetization of magnetic nanoparticles (MNPs) both in vitro (test tubes, dry MNPs) and in vivo (local injection of the MNPs into mice).
Collapse
|
15
|
Pan W, Ao Y, Zhou P, Fetisov L, Fetisov Y, Zhang T, Qi Y. A Flexible Magnetic Field Sensor Based on PZT/CFO Bilayer via van der Waals Oxide Heteroepitaxy. SENSORS (BASEL, SWITZERLAND) 2023; 23:9147. [PMID: 38005533 PMCID: PMC10674278 DOI: 10.3390/s23229147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/02/2023] [Accepted: 11/11/2023] [Indexed: 11/26/2023]
Abstract
Magnetoelectric (ME) magnetic field sensors utilize ME effects in ferroelectric ferromagnetic layered heterostructures to convert magnetic signals into electrical signals. However, the substrate clamping effect greatly limits the design and fabrication of ME composites with high ME coefficients. To reduce the clamping effect and improve the ME response, a flexible ME sensor based on PbZr0.2Ti0.8O3 (PZT)/CoFe2O4 (CFO) ME bilayered heterostructure was deposited on mica substrates via van der Waals oxide heteroepitaxy. A saturated magnetization of 114.5 emu/cm3 was observed in the bilayers. The flexible sensor exhibited a strong ME coefficient of 6.12 V/cm·Oe. The local ME coupling has been confirmed by the evolution of the ferroelectric domain under applied magnetic fields. The flexible ME sensor possessed a stable response with high sensitivity to both AC and DC weak magnetic fields. A high linearity of 0.9988 and sensitivity of 72.65 mV/Oe of the ME sensor were obtained under flat states. The ME output and limit-of-detection under different bending states showed an inferior trend as the bending radius increased. A flexible proximity sensor has been demonstrated, indicating a promising avenue for wearable device applications and significantly broadening the potential application of the flexible ME magnetic field sensors.
Collapse
Affiliation(s)
- Weijuan Pan
- Ministry of Education Key Laboratory for Green Preparation and Application of Functional Materials, Hubei Provincial Key Laboratory of Polymers, Collaborative Innovation Center for Advanced Organic Chemical Materials Co-Constructed by the Province and Ministry, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China; (W.P.); (Y.A.); (P.Z.); (T.Z.)
| | - Yuan Ao
- Ministry of Education Key Laboratory for Green Preparation and Application of Functional Materials, Hubei Provincial Key Laboratory of Polymers, Collaborative Innovation Center for Advanced Organic Chemical Materials Co-Constructed by the Province and Ministry, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China; (W.P.); (Y.A.); (P.Z.); (T.Z.)
| | - Peng Zhou
- Ministry of Education Key Laboratory for Green Preparation and Application of Functional Materials, Hubei Provincial Key Laboratory of Polymers, Collaborative Innovation Center for Advanced Organic Chemical Materials Co-Constructed by the Province and Ministry, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China; (W.P.); (Y.A.); (P.Z.); (T.Z.)
| | - Leonid Fetisov
- Research-Education Center “Magnetoelectric Materials and Devices”, MIREA—Russian Technological University, Moscow 119454, Russia; (L.F.); (Y.F.)
| | - Yuri Fetisov
- Research-Education Center “Magnetoelectric Materials and Devices”, MIREA—Russian Technological University, Moscow 119454, Russia; (L.F.); (Y.F.)
| | - Tianjin Zhang
- Ministry of Education Key Laboratory for Green Preparation and Application of Functional Materials, Hubei Provincial Key Laboratory of Polymers, Collaborative Innovation Center for Advanced Organic Chemical Materials Co-Constructed by the Province and Ministry, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China; (W.P.); (Y.A.); (P.Z.); (T.Z.)
| | - Yajun Qi
- Ministry of Education Key Laboratory for Green Preparation and Application of Functional Materials, Hubei Provincial Key Laboratory of Polymers, Collaborative Innovation Center for Advanced Organic Chemical Materials Co-Constructed by the Province and Ministry, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China; (W.P.); (Y.A.); (P.Z.); (T.Z.)
| |
Collapse
|
16
|
Alarcón-Segovia LC, Morel MR, Daza-Agudelo JI, Ilardo JC, Rintoul I. Hyperthermic triggers for drug delivery platforms. NANOTECHNOLOGY 2023; 35:035704. [PMID: 37852228 DOI: 10.1088/1361-6528/ad0480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 10/18/2023] [Indexed: 10/20/2023]
Abstract
Electromagnetic fields can penetrate aqueous media in a homogeneous and instantaneous way, without physical contact, independently of its temperature, pressure, agitation degree and without modifying their chemical compositions nor heat and mass transfer conditions. In addition, superparamagnetic biomaterials can interact with electromagnetic fields by absorbing electromagnetic energy and transforming it in localized heat with further diffusion to surrounding media. This paper is devoted to the exploration of the potential use of hyperthermic effects resulting from the interaction between externally applied electromagnetic fields and superparamagnetic nanoparticles as a trigger for controlled drug release in soft tissue simulating materials. Gelatin based soft tissue simulating materials were prepared and doped with superparamagnetic nanoparticles. The materials were irradiated with externally applied electromagnetic fields. The effects on temperature and diffusion of a drug model in water and phosphate buffer were investigated. Significant hyperthermic effects were observed. The temperature of the soft tissue simulating material resulted increased from 35 °C to 45 °C at 2.5 °C min-1. Moreover, the release of an entrapped model drug reached 89%. The intensity of the hyperthermic effects was found to have a strong dependency on the concentration of superparamagnetic nanoparticles and the power and the pulse frequency of the electromagnetic field.
Collapse
Affiliation(s)
- Lilian C Alarcón-Segovia
- Instituto de Matemática Aplicada del Litoral, Universidad Nacional del Litoral and Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina
- Universidad María Auxiliadora, Asunción, Paraguay
| | - Maria R Morel
- Instituto de Desarrollo Tecnológico para la Industria Química, Universidad Nacional del Litoral and Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina
| | - Jorge I Daza-Agudelo
- Instituto de Desarrollo Tecnológico para la Industria Química, Universidad Nacional del Litoral and Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina
| | - Juan C Ilardo
- Instituto de Desarrollo Tecnológico para la Industria Química, Universidad Nacional del Litoral and Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina
| | - Ignacio Rintoul
- Instituto de Desarrollo Tecnológico para la Industria Química, Universidad Nacional del Litoral and Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina
| |
Collapse
|
17
|
Rehman S, Jermy BR, Rather IA, Sabir JSM, Aljameel SS, Almessiere MA, Slimani Y, Khan FA, Baykal A. Pr 3+ Ion-Substituted Ni-Co Nano-Spinel Ferrites: Their Synthesis, Characterization, and Biocompatibility for Colorectal Cancer and Candidaemia. Pharmaceuticals (Basel) 2023; 16:1494. [PMID: 37895966 PMCID: PMC10610135 DOI: 10.3390/ph16101494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/03/2023] [Accepted: 10/08/2023] [Indexed: 10/29/2023] Open
Abstract
Nanotherapeutics have attracted tremendous research interest in the modern pharmaceutical and biomedical industries due to their potential for drug development, targeted delivery, and therapeutic applications. Therefore, the current study underpins the synthesis of praseodymium ion (Pr3+)-substituted Ni0.5Co0.5Fe2O4 nano-spinel ferrites, (Co0.5Ni0.5PrxFe2-xO4 (0.0 ≤ x ≤ 0.10) NSFs, CoNiPr (x ≤ 0.10) NSFs) via the sonochemical route for its application as a nanotherapeutic treatment option. The synthesized nanomaterial was characterized using various analytical techniques, including scanning/transmission electron microscopy (SEM) and X-ray powder diffractometry (XRD). After substitution with Pr (x = 0.08), the particle size, polydispersity index, and zeta potential analysis indicated an increase in hydrodynamic diameter, with an average zeta potential value of -10.2 mV. The investigation of CoNiPr (x ≤ 0.10) NSFs on colorectal cancer (HCT-116) cells demonstrated a significant effect on cancer cell viability. The inhibitory concentration (IC50) of CoNiPr (x ≤ 0.10) NSFs was between 46 ± 0.91 and 288 ± 8.21 for HCT-116 cells. The effect of CoNiPr (x ≤ 0.10) NSFs on normal human embryonic kidney (HEK-293) cells showed a reduction in the HEK-293 cell viability; however, the cell viability was better than HCT-116. The NSFs treatment also showed morphological changes in cancer cell nuclei, as revealed by DAPI (4',6-diamidino-2-phenylindole), nuclear disintegration, and chromatic fragmentation, which are signs of apoptosis or programmed cell death. To examine the potential antifungal effects of CoNiPr NSFs on Candida albicans, known to cause candidemia among cancer patients, the viability of the cells was assessed post treatment with CoNiPr (x ≤ 0.10) NSFs. The increasing ratio of dopant had a moderate impact on the percentage of cell viability loss of 42, 44, and 43% with x = 0.06, 0.08, and 0.10, respectively. These results reinforce that increased dopant significantly impacts the antifungal properties of the synthesized nanomaterial. These findings support the idea that NSFs might be useful in pharmaceuticals.
Collapse
Affiliation(s)
- Suriya Rehman
- Department of Epidemic Diseases Research, Institute for Research & Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Balasamy Rabindran Jermy
- Department of Nanomedicine Research, Institute for Research & Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia;
| | - Irfan A. Rather
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Center of Excellence in Bionanoscience Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Jamal S. M. Sabir
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Center of Excellence in Bionanoscience Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Suhailah S. Aljameel
- Department of Chemistry, College of Science, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia;
| | - Munirah A. Almessiere
- Department of Biophysics Research, Institute for Research & Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia; (M.A.A.); (Y.S.)
| | - Yassine Slimani
- Department of Biophysics Research, Institute for Research & Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia; (M.A.A.); (Y.S.)
| | - Firdos A. Khan
- Department of Stem Cell Research, Institute for Research & Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia;
| | - Abdulhadi Baykal
- Food Engineering Department, Faculty of Engineering, Istanbul Aydin University, Florya, Istanbul 34295, Turkey;
| |
Collapse
|
18
|
Mahdikia H, Saadati F, Alizadeh AM, Khalighfard S, Bekeschus S, Shokri B. Low-frequency magnetic fields potentiate plasma-modified magneto-electric nanoparticle drug loading for anticancer activity in vitro and in vivo. Sci Rep 2023; 13:17536. [PMID: 37845238 PMCID: PMC10579258 DOI: 10.1038/s41598-023-44683-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 10/11/2023] [Indexed: 10/18/2023] Open
Abstract
A multiferroic nanostructure of manganese ferrite barium-titanate called magneto-electric nanoparticles (MENs) was synthesized by a co-precipitation method. FTIR, Raman spectroscopy, TEM, and X-ray diffraction confirmed the presence of spinel core and perovskite shell phases with average crystallite sizes of 70-90 nm. Magnetic, optical, and magnetoelectrical properties of MENs were investigated using VSM, UV-Vis spectrophotometry, DLS, and EIS spectroscopy techniques. After pre-activation by low-pressure argon (Ar) plasma, the MENs were functionalized by a highly hydrophilic acrylic acid and Oxygen (AAc+O2) mixture to produce COOH and C=O-rich surfaces. The loading and release of doxorubicin hydrochloride (DOX) on MENs were investigated using UV-vis and fluorescence spectrophotometry under alternating low-frequency magnetic fields. Plasma treatment enabled drug-loading control by changing the particles' roughness as physical adsorption and creating functional groups for chemical absorption. This led to reduced metabolic activity and cell adherences associated with elevated expression of pro-apoptotic genes (BCL-2, caspase 3) in 4T1 breast cancer cells in vitro exposed to alternating current magnetic field (ACMF) compared to MENs-DOX without field exposure. ACMF-potentiated anticancer effects of MENs were validated in vivo in tumor-bearing Balb/C mice. Altogether, our results suggest potentiated drug loading of MENs showing superior anticancer activity in vitro and in vivo when combined with ACMF.
Collapse
Affiliation(s)
- Hamed Mahdikia
- Laser and Plasma Research Institute, Shahid Beheshti University, Tehran, Iran
- Leibniz Institute for Plasma Science and Technology (INP), Greifswald, Germany
| | - Fariba Saadati
- Leibniz Institute for Plasma Science and Technology (INP), Greifswald, Germany
| | - Ali Mohammad Alizadeh
- Breast Diseases Research Center, Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | | | - Sander Bekeschus
- Leibniz Institute for Plasma Science and Technology (INP), Greifswald, Germany
| | - Babak Shokri
- Laser and Plasma Research Institute, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
19
|
Sadžak A, Eraković M, Šegota S. Kinetics of Flavonoid Degradation and Controlled Release from Functionalized Magnetic Nanoparticles. Mol Pharm 2023; 20:5148-5159. [PMID: 37651612 DOI: 10.1021/acs.molpharmaceut.3c00478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Flavonoids are naturally occurring antioxidants that have been shown to protect cell membranes from oxidative stress and have a potential use in photodynamic cancer treatment. However, they degrade at physiological pH values, which is often neglected in drug release studies. Kinetic study of flavonoid oxidation can help to understand the mechanism of degradation and to correctly analyze flavonoid release data. Additionally, the incorporation of flavonoids into magnetic nanocarriers can be utilized to mitigate degradation and overcome their low solubility, while the release can be controlled using magnetic fields (MFs). An approach that combines alternating least squares (ALS) and multilinear regression to consider flavonoid autoxidation in release studies is presented. This approach can be used in general cases to account for the degradation of unstable drugs released from nanoparticles. The oxidation of quercetin, myricetin (MCE), and myricitrin (MCI) was studied in PBS buffer (pH = 7.4) using UV-vis spectrophotometry. ALS was used to determine the kinetic profiles and characteristic spectra, which were used to analyze UV-vis data of release from functionalized magnetic nanoparticles (MNPs). MNPs were selected for their unique magnetic properties, which can be exploited for both targeted drug delivery and control over the drug release. MNPs were prepared and characterized by X-ray diffraction, infrared spectroscopy, scanning electron microscopy, superconducting quantum interference device magnetometer, and electrophoretic mobility measurements. Autoxidation of all three flavonoids follows a two-step first-order kinetic model. MCE showed the fastest degradation, while the oxidation of MCI was the slowest. The flavonoids were successfully loaded into the prepared MNPs, and the drug release was described by the first-order and Korsmeyer-Peppas models. External MFs were utilized to control the release mechanism and the cumulative mass of the flavonoids released.
Collapse
Affiliation(s)
- Anja Sadžak
- Division of Physical Chemistry, Ruđer Bošković Institute, Bijenička Cesta 54, Zagreb 10000, Croatia
| | - Mihael Eraković
- Division of Physical Chemistry, Ruđer Bošković Institute, Bijenička Cesta 54, Zagreb 10000, Croatia
| | - Suzana Šegota
- Division of Physical Chemistry, Ruđer Bošković Institute, Bijenička Cesta 54, Zagreb 10000, Croatia
| |
Collapse
|
20
|
Ilangovan SS, Mahanty B, Perumal V, Sen S. Modulating the Effect of β-Sitosterol Conjugated with Magnetic Nanocarriers to Inhibit EGFR and Met Receptor Cross Talk. Pharmaceutics 2023; 15:2158. [PMID: 37631372 PMCID: PMC10458314 DOI: 10.3390/pharmaceutics15082158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/14/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
The cross-talk between the EGFR (Epidermal Growth Factor Receptor) and MET (Hepatocyte Growth Factor Receptor) poses a significant challenge in the field of molecular signaling. Their intricate interplay leads to dysregulation and contributes to cancer progression and therapeutic resistance. β-Sitosterol (BS), a plant sterol with promising anticancer properties, shows increased research on its potential as a chemopreventive agent. However, significant modifications are required to deliver BS in cancer cells due to its lower efficacy. The present work aims to design a carrier-mediated delivery system specifically targeting cancer cells with EGFR and MET receptor cross-talk. Surface modification of BS was performed with superparamagnetic iron oxide nanoparticles (SPIONs), polyethylene glycol (PEG), and poly(N-isopropylacrylamide) (PNIPAM) to enhance the delivery of BS at the target site. BS was conjugated with SPIONs (BS-S), PNIPAM (BS-SP), PEG, and PNIPAM (BS-SPP) polymers, respectively, and the conjugated complexes were characterized. Results showed an increase in size, stability, and monodispersity in the following order, BS-S, BS-SP, and BS-SPP. The drug encapsulation efficiency was observed to be highest in BS-SPP (82.5%), compared to BS-S (61%) and BS-SP (74.9%). Sustained drug release was achieved in both BS-SP (82.6%) and BS-SPP (83%). The IC 50 value of BS, BS-S, BS-SP, and BS-SPP towards MCF 7 was 242 µg/mL,197 µg/mL, 168 µg/mL, and 149 µg/mL, HEPG2 was 274 µg/mL, 261 µg/mL, 233 µg/mL and 207 µg/mL and NCIH 460 was 191 µg/mL, 185 µg/mL, 175 and 164 µg/mL, indicating highest inhibition towards NCIH 460 cells. Our results conclude that β-sitosterol conjugated with SPION, PEG, and PNIPAM could be a potential targeted therapy in inhibiting EGFR and MET receptor-expressing cancer cells.
Collapse
Affiliation(s)
| | - Biswanath Mahanty
- Division of Biotechnology, Karunya Institute of Technology and Sciences, Coimbatore 641114, India;
| | - Venkatesan Perumal
- Center for Injury Biomechanics, Materials and Medicine, Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA;
| | - Shampa Sen
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore 632014, India
| |
Collapse
|
21
|
Wei J, Liu Y, Li Y, Zhang Z, Meng J, Xie S, Li X. Photothermal Propelling and Pyroelectric Potential-Promoted Cell Internalization of Janus Nanoparticles and Pyroelectrodynamic Tumor Therapy. Adv Healthc Mater 2023; 12:e2300338. [PMID: 36857737 DOI: 10.1002/adhm.202300338] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Indexed: 03/03/2023]
Abstract
Cancer phototherapy experiences limitations in tissue diffusion and cell internalization of phototherapeutic agents and dose-dependent side effects. Herein, Janus pyroelectric nanoparticles (NPs) are designed to generate self-powered motion and built-in electric fields to overcome the delivery barriers. Polydopamine (PDA) layers are partially coated on tetragonal BaTiO3 (tBT) NPs to prepare Janus tBT@PDA, and Au NPs are deposited on the PDA caps to obtain Janus tBT@PDA-Au NPs. Near-infrared (NIR) illumination of tBT@PDA-Au builds in situ pyroelectric potentials on NPs, which selectively affect the membrane potential of tumor cells rather than normal cells to enhance tumor cell internalization and produce reactive oxygen species (ROS) for pyroelectric dynamic therapy (PEDT). The asymmetric photothermal effect of the Janus NPs creates thermophoretic force to propel NP motion, which enhances tumor diffusion and cellular uptake of NPs and boosts cytotoxicity and intracellular ROS levels. The inoculation of Au NPs increases the photothermal effect, exhibits larger motion velocities, produces higher pyroelectric potentials, and elevates cellular uptake rates, resulting in significant induction of tumor cell apoptosis, suppression of tumor growth, and extension of animal survival. Thus, the concise design of tBT@PDA-Au/NIR treatment has achieved thermophoretic motion-promoted tissue diffusion, built-in electric field-enhanced cell internalization, and photothermal/PEDT-synergized antitumor efficacy.
Collapse
Affiliation(s)
- Junwu Wei
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, P. R. China
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Yuan Liu
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P. R. China
| | - Yingxin Li
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Zhanlin Zhang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Jie Meng
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, P. R. China
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Shuang Xie
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, P. R. China
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Xiaohong Li
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, P. R. China
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| |
Collapse
|
22
|
Verkhovskii RA, Ivanov AN, Lengert EV, Tulyakova KA, Shilyagina NY, Ermakov AV. Current Principles, Challenges, and New Metrics in pH-Responsive Drug Delivery Systems for Systemic Cancer Therapy. Pharmaceutics 2023; 15:pharmaceutics15051566. [PMID: 37242807 DOI: 10.3390/pharmaceutics15051566] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/19/2023] [Accepted: 05/20/2023] [Indexed: 05/28/2023] Open
Abstract
The paradigm of drug delivery via particulate formulations is one of the leading ideas that enable overcoming limitations of traditional chemotherapeutic agents. The trend toward more complex multifunctional drug carriers is well-traced in the literature. Nowadays, the prospectiveness of stimuli-responsive systems capable of controlled cargo release in the lesion nidus is widely accepted. Both endogenous and exogenous stimuli are employed for this purpose; however, endogenous pH is the most common trigger. Unfortunately, scientists encounter multiple challenges on the way to the implementation of this idea related to the vehicles' accumulation in off-target tissues, their immunogenicity, the complexity of drug delivery to intracellular targets, and finally, the difficulties in the fabrication of carriers matching all imposed requirements. Here, we discuss fundamental strategies for pH-responsive drug delivery, as well as limitations related to such carriers' application, and reveal the main problems, weaknesses, and reasons for poor clinical results. Moreover, we attempted to formulate the profiles of an "ideal" drug carrier in the frame of different strategies drawing on the example of metal-comprising materials and considered recently published studies through the lens of these profiles. We believe that this approach will facilitate the formulation of the main challenges facing researchers and the identification of the most promising trends in technology development.
Collapse
Affiliation(s)
- Roman A Verkhovskii
- Science Medical Center, Saratov State University, 83 Astrakhanskaya Str., 410012 Saratov, Russia
| | - Alexey N Ivanov
- Central Research Laboratory, Saratov State Medical University of V. I. Razumovsky, Ministry of Health of the Russian Federation, 410012 Saratov, Russia
| | - Ekaterina V Lengert
- Central Research Laboratory, Saratov State Medical University of V. I. Razumovsky, Ministry of Health of the Russian Federation, 410012 Saratov, Russia
- Institute of Molecular Theranostics, I. M. Sechenov First Moscow State Medical University, 8 Trubetskaya Str., 119991 Moscow, Russia
| | - Ksenia A Tulyakova
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603950 Nizhny Novgorod, Russia
| | - Natalia Yu Shilyagina
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603950 Nizhny Novgorod, Russia
| | - Alexey V Ermakov
- Central Research Laboratory, Saratov State Medical University of V. I. Razumovsky, Ministry of Health of the Russian Federation, 410012 Saratov, Russia
- Institute of Molecular Theranostics, I. M. Sechenov First Moscow State Medical University, 8 Trubetskaya Str., 119991 Moscow, Russia
| |
Collapse
|
23
|
Wang Y, Zang P, Yang D, Zhang R, Gai S, Yang P. The fundamentals and applications of piezoelectric materials for tumor therapy: recent advances and outlook. MATERIALS HORIZONS 2023; 10:1140-1184. [PMID: 36729448 DOI: 10.1039/d2mh01221a] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Malignant tumors are one of the main diseases leading to death, and the vigorous development of nanotechnology has opened up new frontiers for antitumor therapy. Currently, researchers are focused on solving the biomedical challenges associated with traditional anti-tumor medical methods, promoting the research and development of nano-drug carriers and new nano-drugs, which brings great hope for improving the curative effect and reducing toxic and side effects. Among the new systems being investigated, piezoelectric nano biomaterials, including ferroelectrics, piezoelectric and pyroelectric materials, have recently received extensive attention for antitumor applications. By coupling force, light, magnetism or heat and electricity, polarized charges are generated in these materials microscopically, forming a piezo-potential and establishing a built-in electric field. Polarized charges can directly act on the materials in the tumor micro-environment and also assist in the separation of carriers and inhibit recombination based on piezoelectric theory and piezoelectric optoelectronic theory. Based on this, piezoelectric materials convert various forms of primary energy (such as light energy, mechanical energy, thermal energy and magnetic energy) from the surrounding environment into secondary energy (such as electrical energy and chemical energy). Herein, we review the basic theory and principles of piezoelectric materials, pyroelectric materials and ferroelectric materials as nanomedicine. Then, we summarize the types of piezoelectric materials reported to date and their wide applications in treatment, imaging, device construction and probe detection in various tumor treatment fields. Based on this, we discuss the relevant characteristics and post-processing strategies of nano piezoelectric biomaterials to obtain the maximum piezoelectric response. Finally, we present the key challenges and future prospects for the development of ferroelectric, piezoelectric and pyroelectric nanomaterial-based nanoagents for efficient energy harvesting and conversion for desirable therapeutic outcomes.
Collapse
Affiliation(s)
- Yan Wang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China.
| | - Pengyu Zang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China.
| | - Dan Yang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China.
| | - Rui Zhang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China.
| | - Shili Gai
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China.
| | - Piaoping Yang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China.
- Yantai Research Institute, Harbin Engineering University, Yantai 264000, P. R. China
| |
Collapse
|
24
|
Smith IT, Zhang E, Yildirim YA, Campos MA, Abdel-Mottaleb M, Yildirim B, Ramezani Z, Andre VL, Scott-Vandeusen A, Liang P, Khizroev S. Nanomedicine and nanobiotechnology applications of magnetoelectric nanoparticles. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023; 15:e1849. [PMID: 36056752 DOI: 10.1002/wnan.1849] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 07/12/2022] [Accepted: 08/12/2022] [Indexed: 11/09/2022]
Abstract
Unlike any other nanoparticles known to date, magnetoelectric nanoparticles (MENPs) can generate relatively strong electric fields locally via the application of magnetic fields and, vice versa, have their magnetization change in response to an electric field from the microenvironment. Hence, MENPs can serve as a wireless two-way interface between man-made devices and physiological systems at the molecular level. With the recent development of room-temperature biocompatible MENPs, a number of novel potential medical applications have emerged. These applications include wireless brain stimulation and mapping/recording of neural activity in real-time, targeted delivery across the blood-brain barrier (BBB), tissue regeneration, high-specificity cancer cures, molecular-level rapid diagnostics, and others. Several independent in vivo studies, using mice and nonhuman primates models, demonstrated the capability to deliver MENPs in the brain across the BBB via intravenous injection or, alternatively, bypassing the BBB via intranasal inhalation of the nanoparticles. Wireless deep brain stimulation with MENPs was demonstrated both in vitro and in vivo in different rodents models by several independent groups. High-specificity cancer treatment methods as well as tissue regeneration approaches with MENPs were proposed and demonstrated in in vitro models. A number of in vitro and in vivo studies were dedicated to understand the underlying mechanisms of MENPs-based high-specificity targeted drug delivery via application of d.c. and a.c. magnetic fields. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Nanomedicine for Neurological Disease Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Therapeutic Approaches and Drug Discovery > Emerging Technologies.
Collapse
Affiliation(s)
- Isadora Takako Smith
- Department of Electrical and Computer Engineering, University of Miami, Coral Gables, Florida, USA
| | - Elric Zhang
- Department of Electrical and Computer Engineering, University of Miami, Coral Gables, Florida, USA
| | - Yagmur Akin Yildirim
- Department of Electrical and Computer Engineering, University of Miami, Coral Gables, Florida, USA
| | - Manuel Alberteris Campos
- Department of Electrical and Computer Engineering, University of Miami, Coral Gables, Florida, USA
| | - Mostafa Abdel-Mottaleb
- Department of Electrical and Computer Engineering, University of Miami, Coral Gables, Florida, USA
| | - Burak Yildirim
- Department of Electrical and Computer Engineering, University of Miami, Coral Gables, Florida, USA
| | - Zeinab Ramezani
- Department of Electrical and Computer Engineering, University of Miami, Coral Gables, Florida, USA
| | - Victoria Louise Andre
- Department of Electrical and Computer Engineering, University of Miami, Coral Gables, Florida, USA
| | - Aidan Scott-Vandeusen
- Department of Electrical and Computer Engineering, University of Miami, Coral Gables, Florida, USA
| | - Ping Liang
- Cellular Nanomed, Inc. (CNMI), Irvine, California, USA
| | - Sakhrat Khizroev
- Department of Electrical and Computer Engineering, University of Miami, Coral Gables, Florida, USA
| |
Collapse
|
25
|
Bhattacharjee R, Negi A, Bhattacharya B, Dey T, Mitra P, Preetam S, Kumar L, Kar S, Das SS, Iqbal D, Kamal M, Alghofaili F, Malik S, Dey A, Jha SK, Ojha S, Paiva-Santos AC, Kesari KK, Jha NK. Nanotheranostics to Target Antibiotic-resistant Bacteria: Strategies and Applications. OPENNANO 2023. [DOI: 10.1016/j.onano.2023.100138] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
|
26
|
Nizamov TR, Amirov AA, Kuznetsova TO, Dorofievich IV, Bordyuzhin IG, Zhukov DG, Ivanova AV, Gabashvili AN, Tabachkova NY, Tepanov AA, Shchetinin IV, Abakumov MA, Savchenko AG, Majouga AG. Synthesis and Functional Characterization of Co xFe 3-xO 4-BaTiO 3 Magnetoelectric Nanocomposites for Biomedical Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:811. [PMID: 36903693 PMCID: PMC10004808 DOI: 10.3390/nano13050811] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/13/2023] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
Nowadays, magnetoelectric nanomaterials are on their way to finding wide applications in biomedicine for various cancer and neurological disease treatment, which is mainly restricted by their relatively high toxicity and complex synthesis. This study for the first time reports novel magnetoelectric nanocomposites of CoxFe3-xO4-BaTiO3 series with tuned magnetic phase structures, which were synthesized via a two-step chemical approach in polyol media. The magnetic CoxFe3-xO4 phases with x = 0.0, 0.5, and 1.0 were obtained by thermal decomposition in triethylene glycol media. The magnetoelectric nanocomposites were synthesized by the decomposition of barium titanate precursors in the presence of a magnetic phase under solvothermal conditions and subsequent annealing at 700 °C. X-ray diffraction revealed the presence of both spinel and perovskite phases after annealing with average crystallite sizes in the range of 9.0-14.5 nm. Transmission electron microscopy data showed two-phase composite nanostructures consisting of ferrites and barium titanate. The presence of interfacial connections between magnetic and ferroelectric phases was confirmed by high-resolution transmission electron microscopy. Magnetization data showed expected ferrimagnetic behavior and σs decrease after the nanocomposite formation. Magnetoelectric coefficient measurements after the annealing showed non-linear change with a maximum of 89 mV/cm*Oe with x = 0.5, 74 mV/cm*Oe with x = 0, and a minimum of 50 mV/cm*Oe with x = 0.0 core composition, that corresponds with the coercive force of the nanocomposites: 240 Oe, 89 Oe and 36 Oe, respectively. The obtained nanocomposites show low toxicity in the whole studied concentration range of 25-400 μg/mL on CT-26 cancer cells. The synthesized nanocomposites show low cytotoxicity and high magnetoelectric effects, therefore they can find wide applications in biomedicine.
Collapse
Affiliation(s)
- Timur R. Nizamov
- Department of Physical Materials Science, National University of Science and Technology “MISiS”, 119049 Moscow, Russia
| | - Abdulkarim A. Amirov
- Amirkhanov Institute of Physics of Dagestan Federal Research Center, Russian Academy of Sciences, 367003 Makhachkala, Russia
| | - Tatiana O. Kuznetsova
- Department of Physical Materials Science, National University of Science and Technology “MISiS”, 119049 Moscow, Russia
| | - Irina V. Dorofievich
- Department of Physical Materials Science, National University of Science and Technology “MISiS”, 119049 Moscow, Russia
| | - Igor G. Bordyuzhin
- Department of Physical Materials Science, National University of Science and Technology “MISiS”, 119049 Moscow, Russia
| | - Dmitry G. Zhukov
- Department of Physical Materials Science, National University of Science and Technology “MISiS”, 119049 Moscow, Russia
| | - Anna V. Ivanova
- Department of Physical Materials Science, National University of Science and Technology “MISiS”, 119049 Moscow, Russia
| | - Anna N. Gabashvili
- Department of Physical Materials Science, National University of Science and Technology “MISiS”, 119049 Moscow, Russia
| | - Nataliya Yu. Tabachkova
- Department of Materials Science of Semiconductors and Dielectrics, National University of Science and Technology “MISiS”, 119049 Moscow, Russia
| | | | - Igor V. Shchetinin
- Department of Physical Materials Science, National University of Science and Technology “MISiS”, 119049 Moscow, Russia
| | - Maxim A. Abakumov
- Department of Physical Materials Science, National University of Science and Technology “MISiS”, 119049 Moscow, Russia
- Department of Medical Nanobiotechnology, N.I. Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Alexander G. Savchenko
- Department of Physical Materials Science, National University of Science and Technology “MISiS”, 119049 Moscow, Russia
| | - Alexander G. Majouga
- Department of Physical Materials Science, National University of Science and Technology “MISiS”, 119049 Moscow, Russia
- Chemistry Department, Lomonosov Moscow State University, 119991 Moscow, Russia
- Mendeleev University of Chemical Technology of Russia, 125047 Moscow, Russia
| |
Collapse
|
27
|
Chakrabarty P, Illath K, Kar S, Nagai M, Santra TS. Combinatorial physical methods for cellular therapy: Towards the future of cellular analysis? J Control Release 2023; 353:1084-1095. [PMID: 36538949 DOI: 10.1016/j.jconrel.2022.12.038] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 12/16/2022] [Indexed: 12/25/2022]
Abstract
The physical energy activated techniques for cellular delivery and analysis is one of the most rapidly expanding research areas for a variety of biological and biomedical discoveries. These methods, such as electroporation, optoporation, sonoporation, mechanoporation, magnetoporation, etc., have been widely used in delivering different biomolecules into a range of primary and patient-derived cell types. However, the techniques when used individually have had limitations in delivery and co-delivery of diverse biomolecules in various cell types. In recent years, a number of studies have been performed by combining the different membrane disruption techniques, either sequentially or simultaneously, in a single study. The studies, referred to as combinatorial, or hybrid techniques, have demonstrated enhanced transfection, such as efficient macromolecular and gene delivery and co-delivery, at lower delivery parameters and with high cell viability. Such studies can open up new and exciting avenues for understanding the subcellular structure and consequently facilitate the development of novel therapeutic strategies. This review consequently aims at summarising the different developments in hybrid therapeutic techniques. The different methods discussed include mechano-electroporation, electro-sonoporation, magneto-mechanoporation, magnetic nanoparticles enhanced electroporation, and magnetic hyperthermia studies. We discuss the clinical status of the different methods and conclude with a discussion on the future prospects of the combinatorial techniques for cellular therapy and diagnostics.
Collapse
Affiliation(s)
- Pulasta Chakrabarty
- Department of Engineering Design, Indian Institute of Technology Madras, Chennai, India
| | - Kavitha Illath
- Department of Engineering Design, Indian Institute of Technology Madras, Chennai, India
| | - Srabani Kar
- Department of Physics, Indian Institute of Science Education and Research, Tirupati, India
| | - Moeto Nagai
- Department of Mechanical Engineering, Toyohashi University of Technology, Aichi, Japan
| | - Tuhin Subhra Santra
- Department of Engineering Design, Indian Institute of Technology Madras, Chennai, India.
| |
Collapse
|
28
|
Sontakke AD, Bhattacharjee A, Fopase R, Pandey LM, Purkait MK. One-pot, sustainable and room temperature synthesis of graphene oxide-impregnated iron-based metal-organic framework (GO/MIL-100(Fe)) nanocarriers for anticancer drug delivery systems. JOURNAL OF MATERIALS SCIENCE 2022; 57:19019-19049. [DOI: 10.1007/s10853-022-07773-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 09/20/2022] [Indexed: 05/15/2025]
|
29
|
Fatima H, Naz MY, Shukrullah S, Aslam H, Ullah S, Assiri MA. A Review of Multifunction Smart Nanoparticle based Drug Delivery Systems. Curr Pharm Des 2022; 28:2965-2983. [PMID: 35466867 DOI: 10.2174/1381612828666220422085702] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 03/04/2022] [Indexed: 12/16/2022]
Abstract
Cancer nano-therapeutics are rapidly evolving and are often used to overcome a number of concerns with traditional drug delivery methods, including non-specific drug targeting and distribution, low oral bioavailability, and poor hydrophilicity. Modern nano-based targeting techniques have been developed as a result of advances in nano vehicle engineering and materials science, which may bring people with cancer a new hope. Clinical trials have been authorized for a number of medicinal nanocarriers. Nanocarriers with the best feasible size and surface attributes have been developed to optimize biodistribution and increase blood circulation duration. Nanotherapeutics can carry preloaded active medicine towards cancerous cells by preferentially leveraging the specific physiopathology of malignancies. In contrast to passive targeting, active targeting strategies involving antigens or ligands, developed against specific tumor sites, boost the selectivity of these curative nanovehicles. Another barrier that nanoparticles may resolve or lessen is drug resistance. Multifunctional and complex nanoparticles are currently being explored and are predicted to usher in a new era of nanoparticles that will allow for more individualized and customized cancer therapy. The potential prospects and opportunities of stimuli-triggered nanosystems in therapeutic trials are also explored in this review.
Collapse
Affiliation(s)
- Hareem Fatima
- Department of Physics, University of Agriculture, Faisalabad, 38040 Pakistan
| | - Muhammad Yasin Naz
- Department of Physics, University of Agriculture, Faisalabad, 38040 Pakistan
| | - Shazia Shukrullah
- Department of Physics, University of Agriculture, Faisalabad, 38040 Pakistan
| | - Hira Aslam
- Department of Physics, University of Agriculture, Faisalabad, 38040 Pakistan
| | - Sami Ullah
- Department of Chemistry, College of Science, King Khalid University Abha, 61413 Saudi Arabia
| | - Mohammed Ali Assiri
- Department of Chemistry, College of Science, King Khalid University Abha, 61413 Saudi Arabia
| |
Collapse
|
30
|
Waters M, Hopf J, Tam E, Wallace S, Chang J, Bennett Z, Aquino H, Roeder RK, Helquist P, Stack MS, Nallathamby PD. Biocompatible, Multi-Mode, Fluorescent, T2 MRI Contrast Magnetoelectric-Silica Nanoparticles (MagSiNs), for On-Demand Doxorubicin Delivery to Metastatic Cancer Cells. Pharmaceuticals (Basel) 2022; 15:1216. [PMID: 36297329 PMCID: PMC9607636 DOI: 10.3390/ph15101216] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/25/2022] [Accepted: 09/27/2022] [Indexed: 11/06/2022] Open
Abstract
There is a need to improve current cancer treatment regimens to reduce systemic toxicity, to positively impact the quality-of-life post-treatment. We hypothesized the negation of off-target toxicity of anthracyclines (e.g., Doxorubicin) by delivering Doxorubicin on magneto-electric silica nanoparticles (Dox-MagSiNs) to cancer cells. Dox-MagSiNs were completely biocompatible with all cell types and are therapeutically inert till the release of Doxorubicin from the MagSiNs at the cancer cells location. The MagSiNs themselves are comprised of biocompatible components with a magnetostrictive cobalt ferrite core (4−6 nm) surrounded by a piezoelectric fused silica shell of 1.5 nm to 2 nm thickness. The MagSiNs possess T2-MRI contrast properties on par with RESOVIST™ due to their cobalt ferrite core. Additionally, the silica shell surrounding the core was volume loaded with green or red fluorophores to fluorescently track the MagSiNs in vitro. This makes the MagSiNs a suitable candidate for trackable, drug nanocarriers. We used metastatic triple-negative breast cancer cells (MDAMB231), ovarian cancer cells (A2780), and prostate cancer cells (PC3) as our model cancer cell lines. Human umbilical vein endothelial cells (HUVEC) were used as control cell lines to represent blood-vessel cells that suffer from the systemic toxicity of Doxorubicin. In the presence of an external magnetic field that is 300× times lower than an MRI field, we successfully nanoporated the cancer cells, then triggered the release of 500 nM of doxorubicin from Dox-MagSiNs to successfully kill >50% PC3, >50% A2780 cells, and killed 125% more MDAMB231 cells than free Dox.HCl. In control HUVECs, the Dox-MagSiNs did not nanoporate into the HUVECS and did not exhibited any cytotoxicity at all when there was no triggered release of Dox.HCl. Currently, the major advantages of our approach are, (i) the MagSiNs are biocompatible in vitro and in vivo; (ii) the label-free nanoporation of Dox-MagSiNs into cancer cells and not the model blood vessel cell line; (iii) the complete cancellation of the cytotoxicity of Doxorubicin in the Dox-MagSiNs form; (iv) the clinical impact of such a nanocarrier will be that it will be possible to increase the current upper limit for cumulative-dosages of anthracyclines through multiple dosing, which in turn will improve the anti-cancer efficacy of anthracyclines.
Collapse
Affiliation(s)
- Margo Waters
- Department of Pre-Professional Studies, University of Notre Dame, Notre Dame, IN 46556, USA
- The Berthiaume Institute for Precision Health, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Juliane Hopf
- The Berthiaume Institute for Precision Health, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Emma Tam
- The Berthiaume Institute for Precision Health, University of Notre Dame, Notre Dame, IN 46556, USA
- Department of Art, Art History & Design, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Stephanie Wallace
- The Berthiaume Institute for Precision Health, University of Notre Dame, Notre Dame, IN 46556, USA
- Department of Mathematics and Pre-Professional Studies, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Jordan Chang
- Department of Pre-Professional Studies, University of Notre Dame, Notre Dame, IN 46556, USA
- The Berthiaume Institute for Precision Health, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Zach Bennett
- The Berthiaume Institute for Precision Health, University of Notre Dame, Notre Dame, IN 46556, USA
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Hadrian Aquino
- Department of Electrical Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Ryan K. Roeder
- Bioengineering Graduate Program in the Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Paul Helquist
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - M. Sharon Stack
- The Berthiaume Institute for Precision Health, University of Notre Dame, Notre Dame, IN 46556, USA
- Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Prakash D. Nallathamby
- The Berthiaume Institute for Precision Health, University of Notre Dame, Notre Dame, IN 46556, USA
- Bioengineering Graduate Program in the Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
- Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
31
|
Amaldoss MJN, Yang JL, Koshy P, Unnikrishnan A, Sorrell CC. Inorganic nanoparticle-based advanced cancer therapies: promising combination strategies. Drug Discov Today 2022; 27:103386. [PMID: 36182068 DOI: 10.1016/j.drudis.2022.103386] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 08/15/2022] [Accepted: 09/24/2022] [Indexed: 11/17/2022]
Abstract
Inorganic nanoparticles for drug delivery in cancer treatment offer many potential advantages because they can maximize therapeutic effect through targeting ligands while minimizing off-target side-effects through drug adsorption and infiltration. Although inorganic nanoparticles were introduced as drug carriers, they have emerged as having the capacity for combined therapeutic capabilities, including anticancer effects through cytotoxicity, suppression of oncogenes and cancer cell signaling pathway inhibition. The most promising advanced strategies for cancer therapy are as synergistic platforms for RNA interference (siRNA, miRNA, shRNA) and as synergistic drug delivery agents for the inhibition of cancer cell signaling pathways. The present work summarizes relevant current work, the promise of which is suggested by a projected compound annual growth rate of ∼20% for drug delivery alone.
Collapse
Affiliation(s)
- Maria John Newton Amaldoss
- Adult Cancer Program, Lowy Cancer Research Centre, Prince of Wales Clinical School, UNSW Sydney, Sydney, NSW 2052, Australia; School of Materials Science and Engineering, UNSW Sydney, Sydney, NSW 2052, Australia.
| | - Jia-Lin Yang
- Adult Cancer Program, Lowy Cancer Research Centre, Prince of Wales Clinical School, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Pramod Koshy
- School of Materials Science and Engineering, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Ashwin Unnikrishnan
- Adult Cancer Program, Lowy Cancer Research Centre, Prince of Wales Clinical School, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Charles C Sorrell
- School of Materials Science and Engineering, UNSW Sydney, Sydney, NSW 2052, Australia
| |
Collapse
|
32
|
Fiocchi S, Chiaramello E, Marrella A, Suarato G, Bonato M, Parazzini M, Ravazzani P. Modeling of core-shell magneto-electric nanoparticles for biomedical applications: Effect of composition, dimension, and magnetic field features on magnetoelectric response. PLoS One 2022; 17:e0274676. [PMID: 36149898 PMCID: PMC9506614 DOI: 10.1371/journal.pone.0274676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/01/2022] [Indexed: 12/03/2022] Open
Abstract
The recent development of core-shell nanoparticles which combine strain coupled magnetostrictive and piezoelectric phases, has attracted a lot of attention due to their ability to yield strong magnetoelectric effect even at room temperature, thus making them a promising tool to enable biomedical applications. To fully exploit their potentialities and to adapt their use to in vivo applications, this study analyzes, through a numerical approach, their magnetoelectric behavior, shortly quantified by the magnetoelectric coupling coefficient (αME), thus providing an important milestone for the characterization of the magnetoelectric effect at the nanoscale. In view of recent evidence showing that αME is strongly affected by both the applied magnetic field DC bias and AC frequency, this study implements a nonlinear model, based on magnetic hysteresis, to describe the responses of two different core-shell nanoparticles to various magnetic field excitation stimuli. The proposed model is also used to evaluate to which extent realistic variables such as core diameter and shell thickness affect the electric output. Results prove that αME of 80 nm cobalt ferrite-barium titanate (CFO-BTO) nanoparticles with a 60:40 ratio is equal to about 0.28 V/cm∙Oe corresponding to electric fields up to about 1000 V/cm when a strong DC bias is applied. However, the same electric output can be obtained even in absence of DC field with very low AC fields, by exploiting the hysteretic characteristics of the same composites. The analysis of core and shell dimension is as such to indicate that, to maximize αME, larger core diameter and thinner shell nanoparticles should be preferred. These results, taken together, suggest that it is possible to tune magnetoelectric nanoparticles electric responses by controlling their composition and their size, thus opening the opportunity to adapt their structure on the specific application to pursue.
Collapse
Affiliation(s)
- Serena Fiocchi
- Institute of Electronics, Information Engineering and Telecommunications (IEIIT), National Research Council of Italy (CNR), Turin, Italy
| | - Emma Chiaramello
- Institute of Electronics, Information Engineering and Telecommunications (IEIIT), National Research Council of Italy (CNR), Turin, Italy
| | - Alessandra Marrella
- Institute of Electronics, Information Engineering and Telecommunications (IEIIT), National Research Council of Italy (CNR), Turin, Italy
| | - Giulia Suarato
- Institute of Electronics, Information Engineering and Telecommunications (IEIIT), National Research Council of Italy (CNR), Turin, Italy
| | - Marta Bonato
- Institute of Electronics, Information Engineering and Telecommunications (IEIIT), National Research Council of Italy (CNR), Turin, Italy
| | - Marta Parazzini
- Institute of Electronics, Information Engineering and Telecommunications (IEIIT), National Research Council of Italy (CNR), Turin, Italy
| | - Paolo Ravazzani
- Institute of Electronics, Information Engineering and Telecommunications (IEIIT), National Research Council of Italy (CNR), Turin, Italy
| |
Collapse
|
33
|
Torres-Vanegas JD, Cifuentes J, Puentes PR, Quezada V, Garcia-Brand AJ, Cruz JC, Reyes LH. Assessing cellular internalization and endosomal escape abilities of novel BUFII-Graphene oxide nanobioconjugates. Front Chem 2022; 10:974218. [PMID: 36186591 PMCID: PMC9521742 DOI: 10.3389/fchem.2022.974218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022] Open
Abstract
Cell-penetrating agents based on functionalized nanoplatforms have emerged as a promising approach for developing more efficient and multifunctional delivery vehicles for treating various complex diseases that require reaching different intracellular compartments. Our previous work has shown that achieving full cellular coverage and high endosomal escape rates is possible by interfacing magnetite nanoparticles with potent translocating peptides such as Buforin II (BUF-II). In this work, we extended such an approach to two graphene oxide (GO)-based nanoplatforms functionalized with different surface chemistries to which the peptide molecules were successfully conjugated. The developed nanobioconjugates were characterized via spectroscopic (FTIR, Raman), thermogravimetric, and microscopic (SEM, TEM, and AFM) techniques. Moreover, biocompatibility was assessed via standardized hemocompatibility and cytotoxicity assays in two cell lines. Finally, cell internalization and coverage and endosomal escape abilities were estimated with the aid of confocal microscopy analysis of colocalization of the nanobioconjugates with Lysotracker Green®. Our findings showed coverage values that approached 100% for both cell lines, high biocompatibility, and endosomal escape levels ranging from 30 to 45% and 12–24% for Vero and THP-1 cell lines. This work provides the first routes toward developing the next-generation, carbon-based, cell-penetrating nanovehicles to deliver therapeutic agents. Further studies will be focused on elucidating the intracellular trafficking pathways of the nanobioconjugates to reach different cellular compartments.
Collapse
Affiliation(s)
- Julian Daniel Torres-Vanegas
- Department of Chemical and Food Engineering, Grupo de Diseño de Productos y Procesos (GDPP), Universidad de Los Andes, Bogotá, Colombia
| | - Javier Cifuentes
- Department of Biomedical Engineering, Universidad de Los Andes, Bogotá, Colombia
| | - Paola Ruiz Puentes
- Department of Biomedical Engineering, Universidad de Los Andes, Bogotá, Colombia
| | - Valentina Quezada
- Department of Biomedical Engineering, Universidad de Los Andes, Bogotá, Colombia
| | | | - Juan C. Cruz
- Department of Biomedical Engineering, Universidad de Los Andes, Bogotá, Colombia
- *Correspondence: Juan C. Cruz, ; Luis H. Reyes,
| | - Luis H. Reyes
- Department of Chemical and Food Engineering, Grupo de Diseño de Productos y Procesos (GDPP), Universidad de Los Andes, Bogotá, Colombia
- *Correspondence: Juan C. Cruz, ; Luis H. Reyes,
| |
Collapse
|
34
|
Extracellular vesicles as an emerging drug delivery system for cancer treatment: Current strategies and recent advances. Biomed Pharmacother 2022; 153:113480. [DOI: 10.1016/j.biopha.2022.113480] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/22/2022] [Accepted: 07/26/2022] [Indexed: 11/19/2022] Open
|
35
|
Mushtaq S, Shahzad K, Rizwan M, Ul-Hamid A, Abbasi BH, Khalid W, Atif M, Ahmad N, Ali Z, Abbasi R. Magnetoelectric core-shell CoFe 2O 4@BaTiO 3 nanorods: their role in drug delivery and effect on multidrug resistance pump activity in vitro. RSC Adv 2022; 12:24958-24979. [PMID: 36199887 PMCID: PMC9434104 DOI: 10.1039/d2ra03429h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 08/24/2022] [Indexed: 11/23/2022] Open
Abstract
Nanoparticle mediated targeted drug delivery has become a widespread area of cancer research to address premature drug delivery problems. We report the synthesis of magneto-electric (ME) core-shell cobalt ferrite-barium titanate nanorods (CFO@BTO NRs) to achieve "on demand" drug release in vitro. Physical characterizations confirmed the formation of pure CFO@BTO NRs with appropriate magnetic and ferroelectric response, favorable for an externally controlled drug delivery system. Functionalization of NRs with doxorubicin (DOX) and methotrexate (MTX) achieved up to 98% drug release in 20 minutes, under a 4 mT magnetic field (MF). We observed strong MF and dose dependent cytotoxic response in HepG2 and HT144 cells and 3D spheroid models (p < 0.05). Cytotoxicity was characterized by enhanced oxidative stress, causing p53 mediated cell cycle arrest, DNA damage and cellular apoptosis via downregulation of Bcl-2 expression. In addition, MF and dose dependent inhibition of Multidrug Resistance (MDR) pump activity was also observed (p < 0.05) indicating effectivity in chemo-resistant cancers. Hence, CFO@BTO NRs represent an efficient carrier system for controlled drug delivery in cancer nanotherapeutics, where higher drug uptake is a prerequisite for effective treatment.
Collapse
Affiliation(s)
- Sadaf Mushtaq
- Department of Biotechnology, Quaid-i-Azam University Islamabad Pakistan +92 51 9106283 +92 51 9106281
- Institute of Biomedical and Genetic Engineering G-9/1 Islamabad Pakistan
| | - Khuram Shahzad
- Functional Materials Lab, Department of Physics, Air University Sector E-9 Islamabad Pakistan
| | - Muhammad Rizwan
- Functional Materials Lab, Department of Physics, Air University Sector E-9 Islamabad Pakistan
| | - Anwar Ul-Hamid
- Core Research Facilities, King Fahd University of Petroleum & Minerals Dhahran 31261 Saudi Arabia
| | - Bilal Haider Abbasi
- Department of Biotechnology, Quaid-i-Azam University Islamabad Pakistan +92 51 9106283 +92 51 9106281
| | - Waqas Khalid
- Functional Materials Lab, Department of Physics, Air University Sector E-9 Islamabad Pakistan
| | - Muhammad Atif
- Functional Materials Lab, Department of Physics, Air University Sector E-9 Islamabad Pakistan
| | - Nafees Ahmad
- Institute of Biomedical and Genetic Engineering G-9/1 Islamabad Pakistan
| | - Zulqurnain Ali
- Functional Materials Lab, Department of Physics, Air University Sector E-9 Islamabad Pakistan
| | - Rashda Abbasi
- Institute of Biomedical and Genetic Engineering G-9/1 Islamabad Pakistan
| |
Collapse
|
36
|
Baker A, Khalid M, Uddin I, Khan MS. Targeted non AR mediated smart delivery of abiraterone to the prostate cancer. PLoS One 2022; 17:e0272396. [PMID: 36018864 PMCID: PMC9416994 DOI: 10.1371/journal.pone.0272396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 07/19/2022] [Indexed: 11/17/2022] Open
Abstract
Prostate cancer is the second-deadliest tumor in men all over the world. Different types of drugs with various delivery systems and pathways were developed, but no one showed prominent results against cancer. Meanwhile, nanoparticles have shown good results against cancer. Therefore, in the given study, citrate mediated synthesized gold nanoparticles (CtGNPs) with immobilized survivin antibodies (SvGNPs) were bioconjugated to the substantially potent drug abiraterone (AbSvGNPs) to develop as a combinatorial therapeutic against prostate cancer. The AbSvGNPs are made up of CtGNPs, survivin antibodies, and abiraterone. The selected drug abiraterone (Abira) possesses exceptionally good activity against prostate cancer, but cancer cells develop resistance against this drug and it also poses several severe side effects. Meanwhile, survivin antibodies were used to deliver AbSvGNPs specifically into cancer cells by considering survivin, an anti-apoptotic overexpressed protein in cancer cells, as a marker. The survivin antibodies have also been used to inhibit cancer cells as an immunotherapeutic agent. Similarly, CtGNPs were discovered to inhibit cancer cell proliferation via several transduction pathways. The given bioconjugated nanoparticles (AbSvGNPs) were found to be substantially effective against prostate cancer with an IC50 of 11.8 and 7.3 μM against DU145 and PC-3 cells, respectively. However, it was found safe against NRK and showed less than 25% cytotoxicity up to 20μM concentration. The as-synthesized nanoparticles CtGNPs, SvGNPs, and AbSvGNPs were characterized by several physical techniques to confirm their synthesis, whereas the immobilization of survivin antibodies and bioconjugation of Abira was confirmed by UV-visible spectroscopy, DLS, TEM, FTIR, and zeta-potential. The anticancer potential of AbSvGNPs was determined by MTT, DAPI, ROS, MITO, TUNEL ASSAY, and caspase-3 activity against DU145 and PC3 cells.
Collapse
Affiliation(s)
- Abu Baker
- Nanomedicine & Nanobiotechnology Lab, Department of Biosciences, Integral University, Lucknow, India
| | - Mohammad Khalid
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abduaziz University, Al-kharj, Saudi Arabia
| | - Imran Uddin
- Department of Physics, SRM University-AP, Amaravati, India
| | - Mohd Sajid Khan
- Nanomedicine & Nanobiotechnology Lab, Department of Biosciences, Integral University, Lucknow, India
- Department of Biochemistry, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
37
|
Alfareed TM, Slimani Y, Almessiere MA, Nawaz M, Khan FA, Baykal A, Al-Suhaimi EA. Biocompatibility and colorectal anti-cancer activity study of nanosized BaTiO 3 coated spinel ferrites. Sci Rep 2022; 12:14127. [PMID: 35986070 PMCID: PMC9391367 DOI: 10.1038/s41598-022-18306-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 08/09/2022] [Indexed: 11/08/2022] Open
Abstract
In the present work, different nanoparticles spinel ferrite series (MFe2O4, Co0.5M0.5Fe2O4; M = Co, Mn, Ni, Mg, Cu, or Zn) have been obtained via sonochemical approach. Then, sol-gel method was employed to design core-shell magnetoelectric nanocomposites by coating these nanoparticles with BaTiO3 (BTO). The structure and morphology of the prepared samples were examined by X-ray powder diffraction (XRD), scanning electron microscope (SEM) coupled with energy dispersive X-ray spectroscopy (EDX), high-resolution transmission electron microscope (HR-TEM), and zeta potential. XRD analysis showed the presence of spinel ferrite and BTO phases without any trace of a secondary phase. Both phases crystallized in the cubic structure. SEM micrographs illustrated an agglomeration of spherical grains with nonuniformly diphase orientation and different degrees of agglomeration. Moreover, HR-TEM revealed interplanar d-spacing planes that are in good agreement with those of the spinel ferrite phase and BTO phase. These techniques along with EDX analyses confirmed the successful formation of the desired nanocomposites. Zeta potential was also investigated. The biological influence of (MFe2O4, CoMFe) MNPs and core-shell (MFe2O4@BTO, CoMFe@BTO) magnetoelectric nanocomposites were examined by MTT and DAPI assays. Post 48 h of treatments, the anticancer activity of MNPs and MENCs was investigated on human colorectal carcinoma cells (HCT-116) against the cytocompatibility of normal non-cancerous cells (HEK-293). It was established that MNPs possess anti-colon cancer capability while MENCs exhibited a recovery effect due to the presence of a protective biocompatible BTO layer. RBCs hemolytic effect of NPs has ranged from non- to low-hemolytic effect. This effect that could be attributed to the surface charge from zeta potential, also the CoMnFe possesses the stable and lowest zeta potential in comparison with CoFe2O4 and MnFe2O4 also to the protective effect of shell. These findings open up wide prospects for biomedical applications of MNPs as anticancer and MENCs as promising drug nanocarriers.
Collapse
Affiliation(s)
- Tahani M Alfareed
- Master Program of Nanotechnology, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 31441, Saudi Arabia
| | - Yassine Slimani
- Department of Biophysics, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 31441, Saudi Arabia
| | - Munirah A Almessiere
- Department of Biophysics, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 31441, Saudi Arabia
- Department of Physics, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 31441, Saudi Arabia
| | - Muhammad Nawaz
- Department of Nanomedicine Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 31441, Saudi Arabia
| | - Firdos A Khan
- Department of Stem Cells, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 31441, Saudi Arabia
| | - Abdulhadi Baykal
- Department of Nanomedicine Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 31441, Saudi Arabia
| | - Ebtesam A Al-Suhaimi
- Biology Department, College of Science & Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 31441, Saudi Arabia.
| |
Collapse
|
38
|
Chopra H, Bibi S, Goyal R, Gautam RK, Trivedi R, Upadhyay TK, Mujahid MH, Shah MA, Haris M, Khot KB, Gopan G, Singh I, Kim JK, Jose J, Abdel-Daim MM, Alhumaydhi FA, Emran TB, Kim B. Chemopreventive Potential of Dietary Nanonutraceuticals for Prostate Cancer: An Extensive Review. Front Oncol 2022; 12:925379. [PMID: 35903701 PMCID: PMC9315356 DOI: 10.3389/fonc.2022.925379] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 05/25/2022] [Indexed: 12/24/2022] Open
Abstract
There are more than two hundred fifty different types of cancers, that are diagnosed around the world. Prostate cancer is one of the suspicious type of cancer spreading very fast around the world, it is reported that in 2018, 29430 patients died of prostate cancer in the United State of America (USA), and hence it is expected that one out of nine men diagnosed with this severe disease during their lives. Medical science has identified cancer at several stages and indicated genes mutations involved in the cancer cell progressions. Genetic implications have been studied extensively in cancer cell growth. So most efficacious drug for prostate cancer is highly required just like other severe diseases for men. So nutraceutical companies are playing major role to manage cancer disease by the recommendation of best natural products around the world, most of these natural products are isolated from plant and mushrooms because they contain several chemoprotective agents, which could reduce the chances of development of cancer and protect the cells for further progression. Some nutraceutical supplements might activate the cytotoxic chemotherapeutic effects by the mechanism of cell cycle arrest, cell differentiation procedures and changes in the redox states, but in other, it also elevate the levels of effectiveness of chemotherapeutic mechanism and in results, cancer cell becomes less reactive to chemotherapy. In this review, we have highlighted the prostate cancer and importance of nutraceuticals for the control and management of prostate cancer, and the significance of nutraceuticals to cancer patients during chemotherapy.
Collapse
Affiliation(s)
- Hitesh Chopra
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Shabana Bibi
- Department of Biosciences, Shifa Tameer-e-milat University, Islamabad, Pakistan
- Yunnan Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University, Kunming, China
| | - Rajat Goyal
- Maharishi Markandeshwar (MM) School of Pharmacy, Maharishi Markandeshwar University, Sadopur-Ambala, India
- Maharishi Markandeshwar (MM) College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, India
| | - Rupesh K. Gautam
- Maharishi Markandeshwar (MM) School of Pharmacy, Maharishi Markandeshwar University, Sadopur-Ambala, India
| | - Rashmi Trivedi
- Department of Biotechnology, Parul Institute of Applied Sciences and Animal Cell Culture and Immunobiochemistry Lab, Centre of Research for Development, Parul University, Vadodara, India
| | - Tarun Kumar Upadhyay
- Department of Biotechnology, Parul Institute of Applied Sciences and Animal Cell Culture and Immunobiochemistry Lab, Centre of Research for Development, Parul University, Vadodara, India
| | - Mohd Hasan Mujahid
- Department of Biotechnology, Parul Institute of Applied Sciences and Animal Cell Culture and Immunobiochemistry Lab, Centre of Research for Development, Parul University, Vadodara, India
| | | | - Muhammad Haris
- Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan
| | - Kartik Bhairu Khot
- Department of Pharmaceutics, NITTE Deemed-to-be University, NGSM Institute of Pharmaceutical Sciences, Mangalore, India
| | - Gopika Gopan
- Department of Pharmaceutics, NITTE Deemed-to-be University, NGSM Institute of Pharmaceutical Sciences, Mangalore, India
| | - Inderbir Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Jin Kyu Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Jobin Jose
- Department of Pharmaceutics, NITTE Deemed-to-be University, NGSM Institute of Pharmaceutical Sciences, Mangalore, India
| | - Mohamed M. Abdel-Daim
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, Jeddah, Saudi Arabia
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Fahad A. Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, Bangladesh
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| |
Collapse
|
39
|
Galven C, Ducamp M, Rocquefelte X, Dittmer J, Crosnier-Lopez MP, Le Berre F. Structural Characterization and Influence of Defects on the Optical Properties of the Oxygen-Deficient Perovskite Ba 3LiNb 2O 8.5□ 0.5. Inorg Chem 2022; 61:10272-10282. [PMID: 35767436 DOI: 10.1021/acs.inorgchem.1c03827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A new oxygen-deficient perovskite Ba3LiNb2O8.5□0.5 was synthesized via a conventional solid-state route and compared to the already known perovskite Ba3Li0.75Nb2.25O9. The structure of Ba3LiNb2O8.5□0.5 was investigated by means of X-ray and neutron diffraction, TEM, NMR, and XPS. The study of its thermal behavior revealed an unexpected color change when heated to 1400 °C in a sealed platinum tube, with conservation of the initial X-ray structure. First-principles calculations have been performed in order to better understand these observations. The geometry optimizations and the optical spectra simulations highlight the role of both Nb/Li distribution and oxygen-vacancy location.
Collapse
Affiliation(s)
- Cyrille Galven
- Institut des Molécules et Matériaux du Mans (IMMM), UMR CNRS 6283, Le Mans Université, Avenue Olivier Messiaen, 72085 Le Mans Cedex 9, France
| | - Maxime Ducamp
- Institut des Sciences Chimiques de Rennes UMR 6226, Université de Rennes 1, Campus de Beaulieu, 35042 Rennes, France
| | - Xavier Rocquefelte
- Institut des Sciences Chimiques de Rennes UMR 6226, Université de Rennes 1, Campus de Beaulieu, 35042 Rennes, France
| | - Jens Dittmer
- Institut des Molécules et Matériaux du Mans (IMMM), UMR CNRS 6283, Le Mans Université, Avenue Olivier Messiaen, 72085 Le Mans Cedex 9, France
| | - Marie-Pierre Crosnier-Lopez
- Institut des Molécules et Matériaux du Mans (IMMM), UMR CNRS 6283, Le Mans Université, Avenue Olivier Messiaen, 72085 Le Mans Cedex 9, France
| | - Françoise Le Berre
- Institut des Molécules et Matériaux du Mans (IMMM), UMR CNRS 6283, Le Mans Université, Avenue Olivier Messiaen, 72085 Le Mans Cedex 9, France
| |
Collapse
|
40
|
Bok I, Haber I, Qu X, Hai A. In silico assessment of electrophysiological neuronal recordings mediated by magnetoelectric nanoparticles. Sci Rep 2022; 12:8386. [PMID: 35589877 PMCID: PMC9120189 DOI: 10.1038/s41598-022-12303-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 05/09/2022] [Indexed: 11/14/2022] Open
Abstract
Magnetoelectric materials hold untapped potential to revolutionize biomedical technologies. Sensing of biophysical processes in the brain is a particularly attractive application, with the prospect of using magnetoelectric nanoparticles (MENPs) as injectable agents for rapid brain-wide modulation and recording. Recent studies have demonstrated wireless brain stimulation in vivo using MENPs synthesized from cobalt ferrite (CFO) cores coated with piezoelectric barium titanate (BTO) shells. CFO-BTO core-shell MENPs have a relatively high magnetoelectric coefficient and have been proposed for direct magnetic particle imaging (MPI) of brain electrophysiology. However, the feasibility of acquiring such readouts has not been demonstrated or methodically quantified. Here we present the results of implementing a strain-based finite element magnetoelectric model of CFO-BTO core-shell MENPs and apply the model to quantify magnetization in response to neural electric fields. We use the model to determine optimal MENPs-mediated electrophysiological readouts both at the single neuron level and for MENPs diffusing in bulk neural tissue for in vivo scenarios. Our results lay the groundwork for MENP recording of electrophysiological signals and provide a broad analytical infrastructure to validate MENPs for biomedical applications.
Collapse
Affiliation(s)
- Ilhan Bok
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
- Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin Institute for Translational Neuroengineering (WITNe), Madison, WI, USA
| | - Ido Haber
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, USA
| | - Xiaofei Qu
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Aviad Hai
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA.
- Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, WI, USA.
- Grainger Institute for Engineering, University of Wisconsin-Madison, Madison, WI, USA.
- Wisconsin Institute for Translational Neuroengineering (WITNe), Madison, WI, USA.
| |
Collapse
|
41
|
Pardo M, Khizroev S. Where do we stand now regarding treatment of psychiatric and neurodegenerative disorders? Considerations in using magnetoelectric nanoparticles as an innovative approach. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1781. [PMID: 35191206 DOI: 10.1002/wnan.1781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 12/27/2021] [Accepted: 01/31/2022] [Indexed: 06/14/2023]
Abstract
Almost 1000 million people have recently been diagnosed with a mental health or substance disorder (Ritchie & Roser, 2018). Psychiatric disorders, and their treatment, represent a big burden to the society worldwide, causing about 8 million deaths per year (Walker et al., 2015). Daily progress in science enables continuous advances in methods to treat patients; however, the brain remains to be the most unknown and complex organ of the body. There is a growing demand for innovative approaches to treat psychiatric as well as neurodegenerative disorders, disorders with unknown curability, and treatments mostly designed to slow disease progression. Based on that need and the peculiarity of the central nervous system, in the present review, we highlight the handicaps of the existing approaches as well as discuss the potential of the recently introduced magnetoelectric nanoparticles (MENPs) to become a game-changing tool in future applications for the treatment of brain alterations. Unlike other stimulation approaches, MENPs have the potential to enable a wirelessly controlled stimulation at a single-neuron level without requiring genetic modification of the neural tissue and no toxicity has yet been reported. Their potential as a new tool for targeting the brain is discussed. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Cardiovascular Disease Therapeutic Approaches and Drug Discovery > Neurological Disease.
Collapse
Affiliation(s)
- Marta Pardo
- Miller School of Medicine, Department of Neurology and Molecular and Cellular Pharmacology, University of Miami, Miami, Florida, USA
| | - Sakhrat Khizroev
- Department of Electrical and Computer Engineering, University of Miami, Coral Gables, Florida, USA
| |
Collapse
|
42
|
Alfareed TM, Slimani Y, Almessiere MA, Shirsath SE, Hassan M, Nawaz M, Khan FA, Al-Suhaimi EA, Baykal A. Structure, magnetoelectric, and anticancer activities of core-shell Co0·8Mn0.2R0.02Fe1·98O4@BaTiO3 nanocomposites (R = Ce, Eu, Tb, Tm, or Gd). CERAMICS INTERNATIONAL 2022; 48:14640-14651. [DOI: 10.1016/j.ceramint.2022.01.358] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2024]
|
43
|
Kolishetti N, Vashist A, Arias AY, Atluri V, Dhar S, Nair M. Recent advances, status, and opportunities of magneto-electric nanocarriers for biomedical applications. Mol Aspects Med 2022; 83:101046. [PMID: 34743901 PMCID: PMC8792247 DOI: 10.1016/j.mam.2021.101046] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/14/2021] [Accepted: 10/11/2021] [Indexed: 02/03/2023]
Abstract
Magneto-electric (ME) materials with core-shell architecture where the core is made of magnetic materials have emerged as an attractive nanomaterial due to the coupling of magnetic and electric properties in the same material and the fact that both fields can be controlled which allows an on-demand, transport and release of loaded cargo. Over the last decade, biomedical engineers and researchers from various interdisciplinary fields have successfully demonstrated promising properties ranging from therapeutic delivery to sensing, and neuromodulation using ME materials. In this review, we systematically summarize developments in various biomedical fields using the nanoforms of these materials. Herein, we also highlight various promising biomedical applications where the ME nanocarriers are encapsulated in other materials such as gels and liposomes and their potential for promising therapeutics and diagnostic applications.
Collapse
Affiliation(s)
- Nagesh Kolishetti
- Department of Immunology and Nano-Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA; Institute of Neuroimmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA.
| | - Arti Vashist
- Department of Immunology and Nano-Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA; Institute of Neuroimmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA
| | - Adriana Yndart Arias
- Department of Immunology and Nano-Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA; Institute of Neuroimmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA
| | - Venkata Atluri
- Department of Immunology and Nano-Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA; Institute of Neuroimmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA; Department of Biomedical Sciences, Noorda College of Osteopathic Medicine, Provo, UT, 84606, USA
| | - Shanta Dhar
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA; Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - Madhavan Nair
- Department of Immunology and Nano-Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA; Institute of Neuroimmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA.
| |
Collapse
|
44
|
Zhu J, Chen W, Sun Y, Huang X, Chu R, Wang R, Zhou D, Ye S. Recent advances on drug delivery nanoplatforms for the treatment of autoimmune inflammatory diseases. MATERIALS ADVANCES 2022; 3:7687-7708. [DOI: 10.1039/d2ma00814a] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
As one of the current research hotspots, drug release nanoplatforms have great potential in the treatment of autoimmune inflammatory diseases.
Collapse
Affiliation(s)
- Jing Zhu
- College of Science & State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Weihong Chen
- Department of Emergency Surgery, the Second Hospital of Anhui Medical University, Hefei, Anhui 230001, China
| | - Yuansong Sun
- Department of Emergency Surgery, the Second Hospital of Anhui Medical University, Hefei, Anhui 230001, China
| | - Xiaoyi Huang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Ruixi Chu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Rui Wang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Deqing Zhou
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Sheng Ye
- College of Science & State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui 230036, China
| |
Collapse
|
45
|
Kumar N, Tyeb S, Verma V. Recent advances on Metal oxide-polymer systems in targeted therapy and diagnosis: Applications and toxicological perspective. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102814] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
46
|
Hwang SR, Chakraborty K, An JM, Mondal J, Yoon HY, Lee YK. Pharmaceutical Aspects of Nanocarriers for Smart Anticancer Therapy. Pharmaceutics 2021; 13:pharmaceutics13111875. [PMID: 34834290 PMCID: PMC8619450 DOI: 10.3390/pharmaceutics13111875] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/28/2021] [Accepted: 11/03/2021] [Indexed: 12/13/2022] Open
Abstract
Drug delivery to tumor sites using nanotechnology has been demonstrated to overcome the drawbacks of conventional anticancer drugs. Altering the surface shape and geometry of nanocomposites alters their chemical properties, which can confer multiple attributes to nanocarriers for the treatment of cancer and their use as imaging agents for cancer diagnosis. However, heterogeneity and blood flow in human cancer limit the distribution of nanoparticles at the site of tumor tisues. For targeted delivery and controlled release of drug molecules in harsh tumor microenvironments, smart nanocarriers combined with various stimuli-responsive materials have been developed. In this review, we describe nanomaterials for smart anticancer therapy as well as their pharmaceutical aspects including pharmaceutical process, formulation, controlled drug release, drug targetability, and pharmacokinetic or pharmacodynamic profiles of smart nanocarriers. Inorganic or organic-inorganic hybrid nanoplatforms and the electrospinning process have also been briefly described here.
Collapse
Affiliation(s)
- Seung Rim Hwang
- College of Pharmacy, Chosun University, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Korea;
| | - Kushal Chakraborty
- Department of IT and Energy Convergence (BK21 FOUR), Korea National University of Transportation, Chungju 27469, Korea;
| | - Jeong Man An
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul 04763, Korea;
| | - Jagannath Mondal
- Department of Green Bio Engineering, Graduate School, Korea National University of Transportation, Chungju 27469, Korea;
- 4D Convergence Technology Institute, Korea National University of Transportation, Jeungpyeong 27909, Korea
| | - Hong Yeol Yoon
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea;
| | - Yong-kyu Lee
- Department of IT and Energy Convergence (BK21 FOUR), Korea National University of Transportation, Chungju 27469, Korea;
- Department of Green Bio Engineering, Graduate School, Korea National University of Transportation, Chungju 27469, Korea;
- Department of Chemical and Biological Engineering, Korea National University of Transportation, Chungju 27469, Korea
- Correspondence: ; Tel.: +82-43-841-5224
| |
Collapse
|
47
|
Sharifianjazi F, Irani M, Esmaeilkhanian A, Bazli L, Asl MS, Jang HW, Kim SY, Ramakrishna S, Shokouhimehr M, Varma RS. Polymer incorporated magnetic nanoparticles: Applications for magnetoresponsive targeted drug delivery. MATERIALS SCIENCE AND ENGINEERING: B 2021; 272:115358. [DOI: 10.1016/j.mseb.2021.115358] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
48
|
Mhambi S, Fisher D, Tchokonte MBT, Dube A. Permeation Challenges of Drugs for Treatment of Neurological Tuberculosis and HIV and the Application of Magneto-Electric Nanoparticle Drug Delivery Systems. Pharmaceutics 2021; 13:1479. [PMID: 34575555 PMCID: PMC8466684 DOI: 10.3390/pharmaceutics13091479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/05/2021] [Accepted: 09/10/2021] [Indexed: 12/27/2022] Open
Abstract
The anatomical structure of the brain at the blood-brain barrier (BBB) creates a limitation for the movement of drugs into the central nervous system (CNS). Drug delivery facilitated by magneto-electric nanoparticles (MENs) is a relatively new non-invasive approach for the delivery of drugs into the CNS. These nanoparticles (NPs) can create localized transient changes in the permeability of the cells of the BBB by inducing electroporation. MENs can be applied to deliver antiretrovirals and antibiotics towards the treatment of human immunodeficiency virus (HIV) and tuberculosis (TB) infections in the CNS. This review focuses on the drug permeation challenges and reviews the application of MENs for drug delivery for these diseases. We conclude that MENs are promising systems for effective CNS drug delivery and treatment for these diseases, however, further pre-clinical and clinical studies are required to achieve translation of this approach to the clinic.
Collapse
Affiliation(s)
- Sinaye Mhambi
- Discipline of Pharmaceutics, School of Pharmacy, University of the Western Cape, Cape Town 7535, South Africa;
| | - David Fisher
- Department of Medical Bioscience, University of the Western Cape, Cape Town 7535, South Africa;
| | | | - Admire Dube
- Discipline of Pharmaceutics, School of Pharmacy, University of the Western Cape, Cape Town 7535, South Africa;
| |
Collapse
|
49
|
Kopyl S, Surmenev R, Surmeneva M, Fetisov Y, Kholkin A. Magnetoelectric effect: principles and applications in biology and medicine- a review. Mater Today Bio 2021; 12:100149. [PMID: 34746734 PMCID: PMC8554634 DOI: 10.1016/j.mtbio.2021.100149] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/05/2021] [Accepted: 10/08/2021] [Indexed: 12/26/2022] Open
Abstract
Magnetoelectric (ME) effect experimentally discovered about 60 years ago remains one of the promising research fields with the main applications in microelectronics and sensors. However, its applications to biology and medicine are still in their infancy. For the diagnosis and treatment of diseases at the intracellular level, it is necessary to develop a maximally non-invasive way of local stimulation of individual neurons, navigation, and distribution of biomolecules in damaged cells with relatively high efficiency and adequate spatial and temporal resolution. Recently developed ME materials (composites), which combine elastically coupled piezoelectric (PE) and magnetostrictive (MS) phases, have been shown to yield very strong ME effects even at room temperature. This makes them a promising toolbox for solving many problems of modern medicine. The main ME materials, processing technologies, as well as most prospective biomedical applications will be overviewed, and modern trends in using ME materials for future therapies, wireless power transfer, and optogenetics will be considered.
Collapse
Affiliation(s)
- S. Kopyl
- Department of Physics & CICECO - Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal
| | - R. Surmenev
- Physical Materials Science and Composite Materials Centre, Research School of Chemistry & Applied Biomedical Sciences, National Research Tomsk Polytechnic University, Tomsk, Russia
- Piezo- and Magnetoelectric Materials Research & Development Centre, Research School of Chemistry & Applied Biomedical Sciences, National Research Tomsk Polytechnic University, Tomsk, Russia
| | - M. Surmeneva
- Physical Materials Science and Composite Materials Centre, Research School of Chemistry & Applied Biomedical Sciences, National Research Tomsk Polytechnic University, Tomsk, Russia
- Piezo- and Magnetoelectric Materials Research & Development Centre, Research School of Chemistry & Applied Biomedical Sciences, National Research Tomsk Polytechnic University, Tomsk, Russia
| | - Y. Fetisov
- Research & Education Centre ‘Magnetoelectric Materials and Devices’, MIREA – Russian Technological University, Moscow, Russia
| | - A. Kholkin
- Department of Physics & CICECO - Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal
- Piezo- and Magnetoelectric Materials Research & Development Centre, Research School of Chemistry & Applied Biomedical Sciences, National Research Tomsk Polytechnic University, Tomsk, Russia
- School of Natural Sciences and Mathematics, Ural Federal University, Ekaterinburg, Russia
| |
Collapse
|
50
|
Martins PM, Lima AC, Ribeiro S, Lanceros-Mendez S, Martins P. Magnetic Nanoparticles for Biomedical Applications: From the Soul of the Earth to the Deep History of Ourselves. ACS APPLIED BIO MATERIALS 2021; 4:5839-5870. [PMID: 35006927 DOI: 10.1021/acsabm.1c00440] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Precisely engineered magnetic nanoparticles (MNPs) have been widely explored for applications including theragnostic platforms, drug delivery systems, biomaterial/device coatings, tissue engineering scaffolds, performance-enhanced therapeutic alternatives, and even in SARS-CoV-2 detection strips. Such popularity is due to their unique, challenging, and tailorable physicochemical/magnetic properties. Given the wide biomedical-related potential applications of MNPs, significant achievements have been reached and published (exponentially) in the last five years, both in synthesis and application tailoring. Within this review, and in addition to essential works in this field, we have focused on the latest representative reports regarding the biomedical use of MNPs including characteristics related to their oriented synthesis, tailored geometry, and designed multibiofunctionality. Further, actual trends, needs, and limitations of magnetic-based nanostructures for biomedical applications will also be discussed.
Collapse
Affiliation(s)
- Pedro M Martins
- Centre of Molecular and Environmental Biology (CBMA), Universidade do Minho, Campus de Gualtar, Braga 4710-057, Portugal.,IB-S - Institute for Research and Innovation on Bio-Sustainability, University of Minho, Braga 4710-057, Portugal
| | - Ana C Lima
- Centre/Department of Physics, University of Minho, Campus de Gualtar, Braga 4710-057, Portugal
| | - Sylvie Ribeiro
- Centre of Molecular and Environmental Biology (CBMA), Universidade do Minho, Campus de Gualtar, Braga 4710-057, Portugal.,Centre/Department of Physics, University of Minho, Campus de Gualtar, Braga 4710-057, Portugal
| | - Senentxu Lanceros-Mendez
- 3BCMaterials, Basque Centre for Materials and Applications, UPV/EHU Science Park, Leioa 48940, Spain.,IKERBASQUE, Basque Foundation for Science, Bilbao, 48009, Spain
| | - Pedro Martins
- IB-S - Institute for Research and Innovation on Bio-Sustainability, University of Minho, Braga 4710-057, Portugal.,Centre/Department of Physics, University of Minho, Campus de Gualtar, Braga 4710-057, Portugal
| |
Collapse
|