1
|
Mukhopadhyay J, Ngobeli R, Ghosh G, Elburg MA. Age of the Western Iron Ore Group, India, and implications for pre-GOE oxygenation of oceans at the twilight of Archean-Proterozoic transition. Sci Rep 2025; 15:13951. [PMID: 40263560 PMCID: PMC12015484 DOI: 10.1038/s41598-025-97611-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 04/07/2025] [Indexed: 04/24/2025] Open
Abstract
Increasing concentrations of oxygen in the early atmosphere contributed to the development of the Earth's ozone shield and thus ushered in the growth of photoautotrophs. The proliferation of multicellular life is linked with the rise of atmospheric oxygen, known as the Great Oxidation Event (GOE). However, it has become evident that the permanent trend of rising oxygen in the atmosphere was preceded by multiple fluctuations. It is imperative to gather information from immediate pre- and post-GOE successions for constraining this transformation. The greenstone successions from > 3.8 Ga to the Archean-Proterozoic transition are important candidates for deciphering the evolution of the atmosphere and hydrosphere. The Archean Singhbhum craton, eastern India, hosts a well-preserved low-grade greenstone succession, the Western Iron Ore Group (W-IOG), containing banded iron formations (BIF) from pre-GOE stratigraphy. We report here zircon U-Pb LA-ICPMS age of ~ 2500 Ma from felsic tuff below the BIF and detrital zircon age of ~ 2730 Ma from underlying sandstones that constrain the age of the younger cycle of BIF deposition in the W-IOG as Neoarchean grading into the Paleoproterozoic. The newly reported Neoarchean to Paleoproterozoic age of the W-IOG provides potential opportunity for future research on the tempos and events immediately ahead of the GOE in the oceanic realm at the Archean-Proterozoic boundary.
Collapse
Affiliation(s)
- Joydip Mukhopadhyay
- Department of Earth and Environmental Sciences, Indian Institute of Science Education and Research (IISER) Berhampur, Brahmapur, Odisha, India.
| | - Rebeun Ngobeli
- Department of Geology, University of Johannesburg, Johannesburg, South Africa
| | - Gautam Ghosh
- Department of Geology, Presidency University, Kolkata, India
| | - Marlina A Elburg
- Department of Geology, University of Johannesburg, Johannesburg, South Africa
| |
Collapse
|
2
|
He X, Cheng W, Fang Z, Tang Z, Zeng Z, Zhang G, Qin L. Chromium cycle in Red Soil Critical Zone constrained by chromium isotopes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176646. [PMID: 39357763 DOI: 10.1016/j.scitotenv.2024.176646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 08/15/2024] [Accepted: 09/29/2024] [Indexed: 10/04/2024]
Abstract
Chromium (Cr) isotopic system has been used to trace Cr pollution in the modern surface environment and redox change in the paleoenvironment. However, the transformation mechanism of Cr in soil and the accompanied Cr isotopic fractionation have not been clarified clearly. Here we measured Cr isotopic compositions (δ53Cr) of two paddy field profiles from the Red Soil Critical Zone Observatory in South China. The δ53Cr values of the young paddy fields, which have been cultivated for about 20 years, range from -0.34 ‰ to -0.22 ‰. The old paddy fields have been cultivated for >100 years and have more positive Cr isotopic compositions than the young paddy fields, from -0.20 ‰ to -0.06 ‰. The results of three-step leaching experiments show that iron and manganese oxides are enriched in heavy Cr isotopes, while organic matters have much lower Cr isotopic compositions, likely resulting from back reduction of Cr(VI). Our results suggest that Cr isotopic fractionation during the oxidation of Cr(III) is not the only reason for the depletion of heavy isotopes during oxidative weathering, and the partial back-reduction of generated Cr(VI) by organic matter plays an important role in Cr isotopic fractionation during weathering. Comparison between the old and young paddy fields further indicates that cultivation can significantly affect the Cr cycle in red soils. Paddy fields could be a potential sink for the Cr(VI) contaminant, and soils with a long history of cultivation would be more susceptible.
Collapse
Affiliation(s)
- Xiaoqing He
- State Key Laboratory of Lithospheric and Environmental Coevolution, University of Science and Technology of China, Hefei 230026, China; School of Carbon Neutrality Science and Engineering, Anhui University of Science and Technology, Hefei 231131, China; CAS Center for Excellence in Comparative Planetology, Hefei 230026, China
| | - Wenhan Cheng
- State Key Laboratory of Lithospheric and Environmental Coevolution, University of Science and Technology of China, Hefei 230026, China; College of Resources and Environment, Anhui Agricultural University, Hefei 230026, China
| | - Ziyao Fang
- State Key Laboratory of Lithospheric and Environmental Coevolution, University of Science and Technology of China, Hefei 230026, China; CAS Center for Excellence in Comparative Planetology, Hefei 230026, China
| | - Zihao Tang
- State Key Laboratory of Lithospheric and Environmental Coevolution, University of Science and Technology of China, Hefei 230026, China
| | - Zhen Zeng
- State Key Laboratory of Lithospheric and Environmental Coevolution, University of Science and Technology of China, Hefei 230026, China; State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Ganlin Zhang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liping Qin
- State Key Laboratory of Lithospheric and Environmental Coevolution, University of Science and Technology of China, Hefei 230026, China; CAS Center for Excellence in Comparative Planetology, Hefei 230026, China; Deep Space Exploration Laboratory, Hefei 230088, China.
| |
Collapse
|
3
|
Liu C, Guo H, Yan S, Wang Y. Control of paleoclimate and paleoweathering on chromium contents in a non-ultramafic aquifer hosting high chromium groundwater. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:316. [PMID: 39002037 DOI: 10.1007/s10653-024-02097-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 06/24/2024] [Indexed: 07/15/2024]
Abstract
Cr(VI) is a carcinogen with proven mutagenic and genotoxic effects. The effects of the depositional environment (e.g., paleoweathering, paleoclimate, and paleoredox condition) on Cr enrichment in non-ultramafic aquifer solids are unclear. In this study, we presented the sedimentary characteristics of a borehole from a typical non-ultramafic aquifer with high Cr groundwater in Jingbian, central Ordos Basin, China. Chromium was enriched in the K1h sandstone aquifer, especially at depths of 400-500 m, with the highest value of mass transport coefficient (τAl,Cr) up to 92.13% and τAl,Fe up to 33.5%. The provenance of aquifer Cr was predominantly intermediate and felsic igneous rocks with a mafic rock mixture. This mafic source was inferred from Cr-rich granodiorite and mafic/ultramafic rocks in the Yinshan (Daqingshan-Wulashan) Block, northern Ordos Basin. The Cr-rich aquifer in K1h was developed due to a moderate chemical index of alteration (CIA) (mean, 56.7) under relatively warm and humid paleoclimate, as evidenced by high CIA-temperature (CIA-Temp) (mean, 6.79 °C) and paleoclimatic index values (mean, 0.40). Fe-Mn redox cycling in the oxic to suboxic environments contributed to aquifer Cr accumulation. Using path analysis, we identified that paleoclimate created favorable weathering conditions and enrichment of Fe contributed to the formation of high-Cr aquifers. The study reveals the formation of positive Cr anomalies in non-ultramafic aquifers, which is the potential source of groundwater Cr, and highlights the effects of depositional factors on Cr accumulation during aquifer deposition or early diagenesis. It can provide new insights into the natural processes of high-Cr sediments occurring in non-ultramafic aquifers.
Collapse
Affiliation(s)
- Chao Liu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing, 100083, China
- Key Laboratory of Groundwater Conservation of MWR & School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Huaming Guo
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing, 100083, China.
- Key Laboratory of Groundwater Conservation of MWR & School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing, 100083, China.
| | - Song Yan
- Beijing Water Business Doctor Co. Ltd, Beijing, 100024, China
| | - Yutong Wang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing, 100083, China
- Key Laboratory of Groundwater Conservation of MWR & School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing, 100083, China
| |
Collapse
|
4
|
Liao T, Wang S, Zhang H, Stüeken EE, Luo H. Dating Ammonia-Oxidizing Bacteria with Abundant Eukaryotic Fossils. Mol Biol Evol 2024; 41:msae096. [PMID: 38776415 PMCID: PMC11135946 DOI: 10.1093/molbev/msae096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/21/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024] Open
Abstract
Evolution of a complete nitrogen (N) cycle relies on the onset of ammonia oxidation, which aerobically converts ammonia to nitrogen oxides. However, accurate estimation of the antiquity of ammonia-oxidizing bacteria (AOB) remains challenging because AOB-specific fossils are absent and bacterial fossils amenable to calibrate molecular clocks are rare. Leveraging the ancient endosymbiosis of mitochondria and plastid, as well as using state-of-the-art Bayesian sequential dating approach, we obtained a timeline of AOB evolution calibrated largely by eukaryotic fossils. We show that the first AOB evolved in marine Gammaproteobacteria (Gamma-AOB) and emerged between 2.1 and 1.9 billion years ago (Ga), thus postdating the Great Oxidation Event (GOE; 2.4 to 2.32 Ga). To reconcile the sedimentary N isotopic signatures of ammonia oxidation occurring near the GOE, we propose that ammonia oxidation likely occurred at the common ancestor of Gamma-AOB and Gammaproteobacterial methanotrophs, or the actinobacterial/verrucomicrobial methanotrophs which are known to have ammonia oxidation activities. It is also likely that nitrite was transported from the terrestrial habitats where ammonia oxidation by archaea took place. Further, we show that the Gamma-AOB predated the anaerobic ammonia-oxidizing (anammox) bacteria, implying that the emergence of anammox was constrained by the availability of dedicated ammonia oxidizers which produce nitrite to fuel anammox. Our work supports a new hypothesis that N redox cycle involving nitrogen oxides evolved rather late in the ocean.
Collapse
Affiliation(s)
- Tianhua Liao
- Simon F. S. Li Marine Science Laboratory, School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR
| | - Sishuo Wang
- Simon F. S. Li Marine Science Laboratory, School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR
| | - Hao Zhang
- Simon F. S. Li Marine Science Laboratory, School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR
| | - Eva E Stüeken
- School of Earth and Environmental Sciences and Centre for Exoplanet Science, University of St Andrews, Queen's Terrace, KY16 9TS, UK
| | - Haiwei Luo
- Simon F. S. Li Marine Science Laboratory, School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR
- Earth and Environmental Sciences Programme, The Chinese University of Hong Kong, Shatin, Hong Kong SAR
- Institute of Environment, Energy and Sustainability, The Chinese University of Hong Kong, Shatin, Hong Kong SAR
| |
Collapse
|
5
|
Ślesak I, Mazur Z, Ślesak H. Genes encoding the photosystem II proteins are under purifying selection: an insight into the early evolution of oxygenic photosynthesis. PHOTOSYNTHESIS RESEARCH 2022; 153:163-175. [PMID: 35648248 DOI: 10.1007/s11120-022-00917-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/28/2022] [Indexed: 06/15/2023]
Abstract
The molecular evolution concerns coding sequences (CDSs) of genes and may affect the structure and function of proteins. Non-uniform use of synonymous codons during translation, known as codon usage bias (CUB), depends on the balance between mutations bias and natural selection. We estimated different CUB indices, i.e. the effective number of codons (ENC), G + C content in the 3rd codon positions (GC3), and codon adaptation index for CDSs of intrinsic proteins of photosystem II (PSII), such as psbA (D1), psbD (D2), psbB (CP47), psbC (CP43), and CDSs of the extrinsic protein psbO (PsbO). These genes occur in all organisms that perform oxygenic photosynthesis (OP) on Earth: cyanobacteria, algae and plants. Comparatively, a similar analysis of codon bias for CDSs of L and M subunits that constitute the core proteins of the type II reaction centre (RCII) in anoxygenic bacteria was performed. Analysis of CUB indices and determination of the number of synonymous (dS) and nonsynonymous substitutions (dN) in all analysed CDSs indicated that the crucial PSII and RCII proteins were under strong purifying (negative) selection in course of evolution. Purifying selection was also estimated for CDSs of atpA, the α subunit of ATP synthase, an enzyme that was most likely already present in the last universal common ancestor (LUCA). The data obtained point to an ancient origin of OP, even in the earliest stages of the evolution of life on Earth.
Collapse
Affiliation(s)
- Ireneusz Ślesak
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239, Kraków, Poland.
| | - Zofia Mazur
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239, Kraków, Poland
| | - Halina Ślesak
- Institute of Botany, Faculty of Biology, Jagiellonian University, Gronostajowa 9, 30-387, Kraków, Poland
| |
Collapse
|
6
|
Competitive interaction of Mn(II) and Fe(II) cations with the high-affinity Mn-binding site of the photosystem II: evolutionary aspect. ORIGINS LIFE EVOL B 2022; 52:113-128. [PMID: 35796895 DOI: 10.1007/s11084-022-09625-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 06/16/2022] [Indexed: 10/17/2022]
Abstract
The evolutionary origin of the oxygen-evolving complex (OEC) in the photosystem II (PSII) is still unclear, as is the nature of electron source for the photosystem before the OEC had appeared. Johnson et al. (in PNAS 110:11238, 2013) speculated that Mn(II) cations were the source of electrons for transitional photosystems. However, Archean oceans also contained Fe(II) cations at concentrations comparable or higher than that of Mn(II). Fe(II) cations can bind to the high-affinity (НА) Mn-binding site in the OEC (Semin et al. in Biochemistry 41:5854, 2002). Now we have investigated the competitive interaction of Mn(II) and Fe(II) cations with the HA site in the Mn-depleted PSII membranes (PSII[-Mn]). Fe cations, oxidized under illumination, bind strongly to the HA site and, thus, prevent the interaction of Mn(II) with this site. If the Mn(II) and Fe(II) cations, at relatively equal concentration, are simultaneously present in the buffer, together with PSII(-Mn) membranes, there is competition between these two cations for the binding site, which manifests itself in partial inhibition of the Mn(II) oxidation and the blocking of the HA site by Fe(II) cations. If the concentration of Fe(II) cations is several times higher than the concentration of Mn(II), the HA site is completely blocked and the oxidation of Mn(II) cations is inhibited; under saturating light, the effectiveness of this inhibitory effect increases. This may be due to the generation of H2O2 on the acceptor side of the photosystem, which significantly accelerates the rate of the turnover reaction of Mn(II) on the HA site.
Collapse
|
7
|
Probing the Role of Cysteine Thiyl Radicals in Biology: Eminently Dangerous, Difficult to Scavenge. Antioxidants (Basel) 2022; 11:antiox11050885. [PMID: 35624747 PMCID: PMC9137623 DOI: 10.3390/antiox11050885] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/21/2022] [Accepted: 04/23/2022] [Indexed: 11/17/2022] Open
Abstract
Thiyl radicals are exceptionally interesting reactive sulfur species (RSS), but rather rarely considered in a biological or medical context. We here review the reactivity of protein thiyl radicals in aqueous and lipid phases and provide an overview of their most relevant reaction partners in biological systems. We deduce that polyunsaturated fatty acids (PUFAs) are their preferred reaction substrates in lipid phases, whereas protein side chains arguably prevail in aqueous phases. In both cellular compartments, a single, dominating thiyl radical-specific antioxidant does not seem to exist. This conclusion is rationalized by the high reaction rate constants of thiyl radicals with several highly concentrated substrates in the cell, precluding effective interception by antioxidants, especially in lipid bilayers. The intractable reactivity of thiyl radicals may account for a series of long-standing, but still startling biochemical observations surrounding the amino acid cysteine: (i) its global underrepresentation on protein surfaces, (ii) its selective avoidance in aerobic lipid bilayers, especially the inner mitochondrial membrane, (iii) the inverse correlation between cysteine usage and longevity in animals, (iv) the mitochondrial synthesis and translational incorporation of cysteine persulfide, and potentially (v) the ex post introduction of selenocysteine into the genetic code.
Collapse
|
8
|
Davidson AB, Holmden C, Nomosatryo S, Henny C, Francois R, Crowe SA. Cr Isotopes and the Engineered Attenuation of Cr(VI)-Rich Runoff. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:14938-14945. [PMID: 34669373 DOI: 10.1021/acs.est.1c01714] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The leaching of lateritic soils can result in drainage waters with high concentrations of Cr(VI). Such Cr(VI)-rich waters have developed in streams that drain lateritic soils in Central Sulawesi Island, Indonesia. Chromium in this lateritic drainage system is removed by reduction of Cr(VI) to Cr(III) through two faucets delivering an FeSO4 solution to the drainage waters. Cr stable isotope compositions from both water and sediment samples along the drainage path were used to evaluate the efficacy of this remediation strategy. Overall, dissolved [Cr(VI)] decreased moving downstream, but there was an increase in [Cr(VI)] after the first faucet that was effectively removed at the second faucet. This intermittent increase in [Cr(VI)] was the likely result of oxidative remobilization of sediment Cr(III) through reaction with Mn oxides. Cr isotope distributions reflect near quantitative reduction associated with the FeSO4 faucets but also reveal that Cr isotope fractionation is imparted due to Cr redox cycling, downstream. During this redox cycling, fractionation appeared to accompany oxidation, with the product Cr(VI) becoming enriched in 53Cr relative to the reactant Cr(III) with an apparent fractionation factor of 0.7 ± 0.3‰. This study suggests that while FeSO4 effectively removes Cr(VI) from the drainage, the presence of Mn oxides can confound attenuation and improvements to Cr(VI) remediation should consider means of preventing the back reaction of Cr(III) with Mn oxides.
Collapse
Affiliation(s)
- Ashley B Davidson
- Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, Earth Sciences Building, 2020-2207 Main Mall, Vancouver, British Columbia V6T 1Z4, Canada
| | - Chris Holmden
- Saskatchewan Isotope Laboratory, University of Saskatchewan, Geology Building, 114 Science Place, Saskatoon S7N 5E2, Saskatchewan Canada
| | - Sulung Nomosatryo
- Research Center for Limnology, Indonesian Institute of Sciences (LIPI), Cibinong-Bogor, 16911, Indonesia
- GFZ German Research Centre for Geosciences, Section Geomicrobiology, 14473 Potsdam, Germany
| | - Cynthia Henny
- Research Center for Limnology, Indonesian Institute of Sciences (LIPI), Cibinong-Bogor, 16911, Indonesia
| | - Roger Francois
- Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, Earth Sciences Building, 2020-2207 Main Mall, Vancouver, British Columbia V6T 1Z4, Canada
| | - Sean A Crowe
- Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, Earth Sciences Building, 2020-2207 Main Mall, Vancouver, British Columbia V6T 1Z4, Canada
- Department of Microbiology & Immunology, University of British Columbia, 1365-2350 Health Sciences Mall, Vancouver, British Columbia V6T 1Z3, Canada
| |
Collapse
|
9
|
Fang Z, Qin L, Liu W, Yao T, Chen X, Wei S. Absence of hexavalent chromium in marine carbonates: implications for chromium isotopes as paleoenvironment proxy. Natl Sci Rev 2020; 8:nwaa090. [PMID: 34691584 PMCID: PMC8288429 DOI: 10.1093/nsr/nwaa090] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 04/29/2020] [Accepted: 05/07/2020] [Indexed: 11/23/2022] Open
Abstract
The oxygenation of Earth's atmosphere is widely regarded to have played an important role in early-life evolution. Chromium (Cr) isotopes recorded in sedimentary rocks have been used to constrain the atmospheric oxygen level (AOL) over geological times based on the fact that a positive Cr isotopic signature is linked to the presence of Cr(VI) as a result of oxidative continental weathering. However, there is no direct evidence of the presence of Cr(VI) in sedimentary rocks yet. Carbonates are most widely distributed over geological times and were thought to have incorporated Cr(VI) directly from seawater. Here, we present results of Cr valence states in carbonates which show Cr(III) is the dominant species in all samples spanning a wide range of geological times. These findings indicate that Cr(VI) in seawater was reduced either before or after carbonate precipitation, which might have caused Cr isotopic fractionation between seawater and carbonates, or marine carbonates preferentially uptake Cr(III) from seawater. As Cr(III) can come from non-redox Cr cycling, which also can cause isotopic fractionation, we suggest that positively fractionated Cr isotopic values do not necessarily correspond to the rise in AOL.
Collapse
Affiliation(s)
- Ziyao Fang
- CAS Key Laboratory of Crust-Mantle Materials and Environments, University of Science and Technology of China, Hefei 230026, China
| | - Liping Qin
- CAS Key Laboratory of Crust-Mantle Materials and Environments, University of Science and Technology of China, Hefei 230026, China
| | - Wei Liu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, China
| | - Tao Yao
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, China
| | - Xiaoyan Chen
- CAS Key Laboratory of Crust-Mantle Materials and Environments, University of Science and Technology of China, Hefei 230026, China
| | - Shiqiang Wei
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, China
| |
Collapse
|
10
|
Bižić M, Klintzsch T, Ionescu D, Hindiyeh MY, Günthel M, Muro-Pastor AM, Eckert W, Urich T, Keppler F, Grossart HP. Aquatic and terrestrial cyanobacteria produce methane. SCIENCE ADVANCES 2020; 6:eaax5343. [PMID: 31998836 PMCID: PMC6962044 DOI: 10.1126/sciadv.aax5343] [Citation(s) in RCA: 129] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 11/19/2019] [Indexed: 05/08/2023]
Abstract
Evidence is accumulating to challenge the paradigm that biogenic methanogenesis, considered a strictly anaerobic process, is exclusive to archaea. We demonstrate that cyanobacteria living in marine, freshwater, and terrestrial environments produce methane at substantial rates under light, dark, oxic, and anoxic conditions, linking methane production with light-driven primary productivity in a globally relevant and ancient group of photoautotrophs. Methane production, attributed to cyanobacteria using stable isotope labeling techniques, was enhanced during oxygenic photosynthesis. We suggest that the formation of methane by cyanobacteria contributes to methane accumulation in oxygen-saturated marine and limnic surface waters. In these environments, frequent cyanobacterial blooms are predicted to further increase because of global warming potentially having a direct positive feedback on climate change. We conclude that this newly identified source contributes to the current natural methane budget and most likely has been producing methane since cyanobacteria first evolved on Earth.
Collapse
Affiliation(s)
- M. Bižić
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Alte Fischerhuette 2, D-16775 Stechlin, Germany
- Corresponding author. (M.B.); (H.-P.G.)
| | - T. Klintzsch
- Institute of Earth Sciences, Biogeochemistry Group, Heidelberg University, Heidelberg, Germany
| | - D. Ionescu
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Alte Fischerhuette 2, D-16775 Stechlin, Germany
| | - M. Y. Hindiyeh
- Department of Water and Environmental Engineering, German Jordanian University, Amman, Jordan
| | - M. Günthel
- Department of Biosciences, Swansea University, SA2 8PP Swansea, UK
- Medical University of Gdańsk, Department of International Research Agenda 3P–Medicine, Marii Skłodowskiej-Curie 3a, 80-210 Gdańsk, Poland
| | - A. M. Muro-Pastor
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Sevilla, Spain
| | - W. Eckert
- Israel Oceanographic and Limnological Research, Yigal Allon Kinneret Limnological Laboratory, Migdal 14650, Israel
| | - T. Urich
- Institute of Microbiology, Center for Functional Genomics, University of Greifswald, Felix-Hausdorff-Str. 8, 17489 Greifswald, Germany
| | - F. Keppler
- Institute of Earth Sciences, Biogeochemistry Group, Heidelberg University, Heidelberg, Germany
- Heidelberg Center for the Environment (HCE), Heidelberg University, 69120 Heidelberg, Germany
| | - H.-P. Grossart
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Alte Fischerhuette 2, D-16775 Stechlin, Germany
- Institute of Biochemistry and Biology, Potsdam University, Maulbeerallee 2, 14469 Potsdam, Germany
- Corresponding author. (M.B.); (H.-P.G.)
| |
Collapse
|
11
|
Toma J, Holmden C, Shakotko P, Pan Y, Ootes L. Cr isotopic insights into ca. 1.9 Ga oxidative weathering of the continents using the Beaverlodge Lake paleosol, Northwest Territories, Canada. GEOBIOLOGY 2019; 17:467-489. [PMID: 31006990 DOI: 10.1111/gbi.12342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 03/05/2019] [Accepted: 03/26/2019] [Indexed: 06/09/2023]
Abstract
The ca. 1.9 Ga Beaverlodge Lake paleosol was studied using redox-sensitive Cr isotopes in order to determine the isotopic response to paleoweathering of a rhyodacite parent rock 500 million years after the Great Oxidation Event. Redox reactions occurring in modern weathering environments produce Cr(VI) that is enriched in heavy Cr isotopes compared to the igneous inventory. Cr(VI) species are soluble and easily leached from soils into streams and rivers, thus, leaving particle-reactive and isotopically light Cr(III) species to build up in soils. The Beaverlodge Lake paleosol and two other published weathering profiles of similar age, the Flin Flon and Schreiber Beach paleosols, are not as isotopically light as modern soils, indicating that rivers were not as isotopically heavy at that time. Considering that the global average δ53 Cr value for the oxidative weathering flux of Cr to the oceans today is just 0.27 ± 0.30‰ (1σ) based on a steady-state analysis of the modern ocean Cr cycle, the oxidative weathering flux of Cr to the oceans at ca. 1.9 Ga would have likely been shifted to lower δ53 Cr values, and possibly lower than the igneous inventory (-0.12 ± 0.10‰, 2σ). Mn oxides are the main oxidant of Cr(III) in modern soils, but there is no evidence that they formed in the studied paleosols. Cr(VI) may have formed by direct oxidation of Cr(III) using molecular oxygen or H2 O2 , but neither pathway is as efficient as Mn oxides for producing Cr(VI). The picture that emerges from this and other studies of Cr isotope variation in ca. 1.9 Ga paleosols is of atmospheric oxygen concentrations that are high enough to oxidize iron, but too low to oxidize Mn, resulting in low Cr(VI) inventories in Earth surface environments.
Collapse
Affiliation(s)
- Jonathan Toma
- Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, AB, Canada
| | - Chris Holmden
- Department of Geological Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| | | | - Yuanming Pan
- Department of Geological Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| | - Luke Ootes
- British Columbia Geological Survey, Stn Prov Govt, Victoria, BC, Canada
| |
Collapse
|
12
|
Hamilton TL. The trouble with oxygen: The ecophysiology of extant phototrophs and implications for the evolution of oxygenic photosynthesis. Free Radic Biol Med 2019; 140:233-249. [PMID: 31078729 DOI: 10.1016/j.freeradbiomed.2019.05.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 04/03/2019] [Accepted: 05/02/2019] [Indexed: 12/11/2022]
Abstract
The ability to harvest light to drive chemical reactions and gain energy provided microbes access to high energy electron donors which fueled primary productivity, biogeochemical cycles, and microbial evolution. Oxygenic photosynthesis is often cited as the most important microbial innovation-the emergence of oxygen-evolving photosynthesis, aided by geologic events, is credited with tipping the scale from a reducing early Earth to an oxygenated world that eventually lead to complex life. Anoxygenic photosynthesis predates oxygen-evolving photosynthesis and played a key role in developing and fine-tuning the photosystem architecture of modern oxygenic phototrophs. The release of oxygen as a by-product of metabolic activity would have caused oxidative damage to anaerobic microbiota that evolved under the anoxic, reducing conditions of early Earth. Photosynthetic machinery is particularly susceptible to the adverse effects of oxygen and reactive oxygen species and these effects are compounded by light. As a result, phototrophs employ additional detoxification mechanisms to mitigate oxidative stress and have evolved alternative oxygen-dependent enzymes for chlorophyll biosynthesis. Phylogenetic reconstruction studies and biochemical characterization suggest photosynthetic reactions centers, particularly in Cyanobacteria, evolved to both increase efficiency of electron transfer and avoid photodamage caused by chlorophyll radicals that is acute in the presence of oxygen. Here we review the oxygen and reactive oxygen species detoxification mechanisms observed in extant anoxygenic and oxygenic photosynthetic bacteria as well as the emergence of these mechanisms over evolutionary time. We examine the distribution of phototrophs in modern systems and phylogenetic reconstructions to evaluate the emergence of mechanisms to mediate oxidative damage and highlight changes in photosystems and reaction centers, chlorophyll biosynthesis, and niche space in response to oxygen production. This synthesis supports an emergence of H2S-driven anoxygenic photosynthesis in Cyanobacteria prior to the evolution of oxygenic photosynthesis and underscores a role for the former metabolism in fueling fine-tuning of the oxygen evolving complex and mechanisms to repair oxidative damage. In contrast, we note the lack of elaborate mechanisms to deal with oxygen in non-cyanobacterial anoxygenic phototrophs suggesting these microbes have occupied similar niche space throughout Earth's history.
Collapse
Affiliation(s)
- Trinity L Hamilton
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN, 55108, USA; Biotechnology Institute, University of Minnesota, St. Paul, MN, 55108, USA.
| |
Collapse
|
13
|
Ślesak I, Kula M, Ślesak H, Miszalski Z, Strzałka K. How to define obligatory anaerobiosis? An evolutionary view on the antioxidant response system and the early stages of the evolution of life on Earth. Free Radic Biol Med 2019; 140:61-73. [PMID: 30862543 DOI: 10.1016/j.freeradbiomed.2019.03.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 03/01/2019] [Accepted: 03/05/2019] [Indexed: 10/27/2022]
Abstract
One of the former definitions of "obligate anaerobiosis" was based on three main criteria: 1) it occurs in organisms, so-called obligate anaerobes, which live in environments without oxygen (O2), 2) O2-dependent (aerobic) respiration, and 3) antioxidant enzymes are absent in obligate anaerobes. In contrast, aerobes need O2 in order to grow and develop properly. Obligate (or strict) anaerobes belong to prokaryotic microorganisms from two domains, Bacteria and Archaea. A closer look at anaerobiosis covers a wide range of microorganisms that permanently or in a time-dependent manner tolerate different concentrations of O2 in their habitats. On this basis they can be classified as obligate/facultative anaerobes, microaerophiles and nanaerobes. Paradoxically, O2 tolerance in strict anaerobes is usually, as in aerobes, associated with the activity of the antioxidant response system, which involves different antioxidant enzymes responsible for removing excess reactive oxygen species (ROS). In our opinion, the traditional definition of "obligate anaerobiosis" loses its original sense. Strict anaerobiosis should only be restricted to the occurrence of O2-independent pathways involved in energy generation. For that reason, a term better than "obligate anaerobes" would be O2/ROS tolerant anaerobes, where the role of the O2/ROS detoxification system is separated from O2-independent metabolic pathways that supply energy. Ubiquitous key antioxidant enzymes like superoxide dismutase (SOD) and superoxide reductase (SOR) in contemporary obligate anaerobes might suggest that their origin is ancient, maybe even the beginning of the evolution of life on Earth. It cannot be ruled out that c. 3.5 Gyr ago, local microquantities of O2/ROS played a role in the evolution of the last universal common ancestor (LUCA) of all modern organisms. On the basis of data in the literature, the hypothesis that LUCA could be an O2/ROS tolerant anaerobe is discussed together with the question of the abiotic sources of O2/ROS and/or the early evolution of cyanobacteria that perform oxygenic photosynthesis.
Collapse
Affiliation(s)
- Ireneusz Ślesak
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239, Krakow, Poland.
| | - Monika Kula
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239, Krakow, Poland.
| | - Halina Ślesak
- Institute of Botany, Jagiellonian University, Gronostajowa 9, 30-387, Krakow, Poland.
| | - Zbigniew Miszalski
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239, Krakow, Poland.
| | - Kazimierz Strzałka
- Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, 30-387, Krakow, Poland; Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Krakow, Poland.
| |
Collapse
|
14
|
Schad M, Konhauser KO, Sánchez-Baracaldo P, Kappler A, Bryce C. How did the evolution of oxygenic photosynthesis influence the temporal and spatial development of the microbial iron cycle on ancient Earth? Free Radic Biol Med 2019; 140:154-166. [PMID: 31323314 DOI: 10.1016/j.freeradbiomed.2019.07.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 07/05/2019] [Accepted: 07/15/2019] [Indexed: 12/22/2022]
Abstract
Iron is the most abundant redox active metal on Earth and thus provides one of the most important records of the redox state of Earth's ancient atmosphere, oceans and landmasses over geological time. The most dramatic shifts in the Earth's iron cycle occurred during the oxidation of Earth's atmosphere. However, tracking the spatial and temporal development of the iron cycle is complicated by uncertainties about both the timing and location of the evolution of oxygenic photosynthesis, and by the myriad of microbial processes that act to cycle iron between redox states. In this review, we piece together the geological evidence to assess where and when oxygenic photosynthesis likely evolved, and attempt to evaluate the influence of this innovation on the microbial iron cycle.
Collapse
Affiliation(s)
- Manuel Schad
- Geomicrobiology, Center for Applied Geosciences, University of Tübingen, 72076, Tübingen, Germany
| | - Kurt O Konhauser
- Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, AB T6G 2E3, Canada
| | | | - Andreas Kappler
- Geomicrobiology, Center for Applied Geosciences, University of Tübingen, 72076, Tübingen, Germany
| | - Casey Bryce
- Geomicrobiology, Center for Applied Geosciences, University of Tübingen, 72076, Tübingen, Germany.
| |
Collapse
|
15
|
Gleason FH, Larkum AW, Raven JA, Manohar CS, Lilje O. Ecological implications of recently discovered and poorly studied sources of energy for the growth of true fungi especially in extreme environments. FUNGAL ECOL 2019. [DOI: 10.1016/j.funeco.2018.12.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
16
|
Abstract
Sam Granick opened his seminal 1957 paper titled 'Speculations on the origins and evolution of photosynthesis' with the assertion that there is a constant urge in human beings to seek beginnings (I concur). This urge has led to an incessant stream of speculative ideas and debates on the evolution of photosynthesis that started in the first half of the twentieth century and shows no signs of abating. Some of these speculative ideas have become commonplace, are taken as fact, but find little support. Here, I review and scrutinize three widely accepted ideas that underpin the current study of the evolution of photosynthesis: first, that the photochemical reaction centres used in anoxygenic photosynthesis are more primitive than those in oxygenic photosynthesis; second, that the probability of acquiring photosynthesis via horizontal gene transfer is greater than the probability of losing photosynthesis; and third, and most important, that the origin of anoxygenic photosynthesis pre-dates the origin of oxygenic photosynthesis. I shall attempt to demonstrate that these three ideas are often grounded in incorrect assumptions built on more assumptions with no experimental or observational support. I hope that this brief review will not only serve as a cautionary tale but also that it will open new avenues of research aimed at disentangling the complex evolution of photosynthesis and its impact on the early history of life and the planet.
Collapse
Affiliation(s)
- Tanai Cardona
- Department of Life Sciences, Imperial College London, London, UK
| |
Collapse
|
17
|
Cardona T, Sánchez‐Baracaldo P, Rutherford AW, Larkum AW. Early Archean origin of Photosystem II. GEOBIOLOGY 2019; 17:127-150. [PMID: 30411862 PMCID: PMC6492235 DOI: 10.1111/gbi.12322] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 10/03/2018] [Accepted: 10/11/2018] [Indexed: 05/09/2023]
Abstract
Photosystem II is a photochemical reaction center that catalyzes the light-driven oxidation of water to molecular oxygen. Water oxidation is the distinctive photochemical reaction that permitted the evolution of oxygenic photosynthesis and the eventual rise of eukaryotes. At what point during the history of life an ancestral photosystem evolved the capacity to oxidize water still remains unknown. Here, we study the evolution of the core reaction center proteins of Photosystem II using sequence and structural comparisons in combination with Bayesian relaxed molecular clocks. Our results indicate that a homodimeric photosystem with sufficient oxidizing power to split water had already appeared in the early Archean about a billion years before the most recent common ancestor of all described Cyanobacteria capable of oxygenic photosynthesis, and well before the diversification of some of the known groups of anoxygenic photosynthetic bacteria. Based on a structural and functional rationale, we hypothesize that this early Archean photosystem was capable of water oxidation to oxygen and had already evolved protection mechanisms against the formation of reactive oxygen species. This would place primordial forms of oxygenic photosynthesis at a very early stage in the evolutionary history of life.
Collapse
Affiliation(s)
- Tanai Cardona
- Department of Life SciencesImperial College LondonLondonUK
| | | | | | | |
Collapse
|
18
|
Early Archean origin of heterodimeric Photosystem I. Heliyon 2018; 4:e00548. [PMID: 29560463 PMCID: PMC5857716 DOI: 10.1016/j.heliyon.2018.e00548] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 02/02/2018] [Accepted: 02/14/2018] [Indexed: 11/26/2022] Open
Abstract
When and how oxygenic photosynthesis originated remains controversial. Wide uncertainties exist for the earliest detection of biogenic oxygen in the geochemical record or the origin of water oxidation in ancestral lineages of the phylum Cyanobacteria. A unique trait of oxygenic photosynthesis is that the process uses a Type I reaction centre with a heterodimeric core, also known as Photosystem I, made of two distinct but homologous subunits, PsaA and PsaB. In contrast, all other known Type I reaction centres in anoxygenic phototrophs have a homodimeric core. A compelling hypothesis for the evolution of a heterodimeric Type I reaction centre is that the gene duplication that allowed the divergence of PsaA and PsaB was an adaptation to incorporate photoprotective mechanisms against the formation of reactive oxygen species, therefore occurring after the origin of water oxidation to oxygen. Here I show, using sequence comparisons and Bayesian relaxed molecular clocks that this gene duplication event may have occurred in the early Archean more than 3.4 billion years ago, long before the most recent common ancestor of crown group Cyanobacteria and the Great Oxidation Event. If the origin of water oxidation predated this gene duplication event, then that would place primordial forms of oxygenic photosynthesis at a very early stage in the evolutionary history of life.
Collapse
|
19
|
Knoll AH, Bergmann KD, Strauss JV. Life: the first two billion years. Philos Trans R Soc Lond B Biol Sci 2017; 371:rstb.2015.0493. [PMID: 27672146 DOI: 10.1098/rstb.2015.0493] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/10/2016] [Indexed: 01/17/2023] Open
Abstract
Microfossils, stromatolites, preserved lipids and biologically informative isotopic ratios provide a substantial record of bacterial diversity and biogeochemical cycles in Proterozoic (2500-541 Ma) oceans that can be interpreted, at least broadly, in terms of present-day organisms and metabolic processes. Archean (more than 2500 Ma) sedimentary rocks add at least a billion years to the recorded history of life, with sedimentological and biogeochemical evidence for life at 3500 Ma, and possibly earlier; phylogenetic and functional details, however, are limited. Geochemistry provides a major constraint on early evolution, indicating that the first bacteria were shaped by anoxic environments, with distinct patterns of major and micronutrient availability. Archean rocks appear to record the Earth's first iron age, with reduced Fe as the principal electron donor for photosynthesis, oxidized Fe the most abundant terminal electron acceptor for respiration, and Fe a key cofactor in proteins. With the permanent oxygenation of the atmosphere and surface ocean ca 2400 Ma, photic zone O2 limited the access of photosynthetic bacteria to electron donors other than water, while expanding the inventory of oxidants available for respiration and chemoautotrophy. Thus, halfway through Earth history, the microbial underpinnings of modern marine ecosystems began to take shape.This article is part of the themed issue 'The new bacteriology'.
Collapse
Affiliation(s)
- Andrew H Knoll
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Kristin D Bergmann
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Justin V Strauss
- Department of Earth Sciences, Dartmouth College, Hanover, NH 03755, USA
| |
Collapse
|
20
|
Camacho A, Walter XA, Picazo A, Zopfi J. Photoferrotrophy: Remains of an Ancient Photosynthesis in Modern Environments. Front Microbiol 2017; 8:323. [PMID: 28377745 PMCID: PMC5359306 DOI: 10.3389/fmicb.2017.00323] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 02/15/2017] [Indexed: 11/13/2022] Open
Abstract
Photoferrotrophy, the process by which inorganic carbon is fixed into organic matter using light as an energy source and reduced iron [Fe(II)] as an electron donor, has been proposed as one of the oldest photoautotrophic metabolisms on Earth. Under the iron-rich (ferruginous) but sulfide poor conditions dominating the Archean ocean, this type of metabolism could have accounted for most of the primary production in the photic zone. Here we review the current knowledge of biogeochemical, microbial and phylogenetic aspects of photoferrotrophy, and evaluate the ecological significance of this process in ancient and modern environments. From the ferruginous conditions that prevailed during most of the Archean, the ancient ocean evolved toward euxinic (anoxic and sulfide rich) conditions and, finally, much after the advent of oxygenic photosynthesis, to a predominantly oxic environment. Under these new conditions photoferrotrophs lost importance as primary producers, and now photoferrotrophy remains as a vestige of a formerly relevant photosynthetic process. Apart from the geological record and other biogeochemical markers, modern environments resembling the redox conditions of these ancient oceans can offer insights into the past significance of photoferrotrophy and help to explain how this metabolism operated as an important source of organic carbon for the early biosphere. Iron-rich meromictic (permanently stratified) lakes can be considered as modern analogs of the ancient Archean ocean, as they present anoxic ferruginous water columns where light can still be available at the chemocline, thus offering suitable niches for photoferrotrophs. A few bacterial strains of purple bacteria as well as of green sulfur bacteria have been shown to possess photoferrotrophic capacities, and hence, could thrive in these modern Archean ocean analogs. Studies addressing the occurrence and the biogeochemical significance of photoferrotrophy in ferruginous environments have been conducted so far in lakes Matano, Pavin, La Cruz, and the Kabuno Bay of Lake Kivu. To date, only in the latter two lakes a biogeochemical role of photoferrotrophs has been confirmed. In this review we critically summarize the current knowledge on iron-driven photosynthesis, as a remains of ancient Earth biogeochemistry.
Collapse
Affiliation(s)
- Antonio Camacho
- Cavanilles Institute for Biodiversity and Evolutionary Biology, University of ValenciaBurjassot, Spain
| | - Xavier A. Walter
- Bristol BioEnergy Centre, Bristol Robotics Laboratory, University of the West of EnglandBristol, UK
| | - Antonio Picazo
- Cavanilles Institute for Biodiversity and Evolutionary Biology, University of ValenciaBurjassot, Spain
| | - Jakob Zopfi
- Aquatic and Stable Isotope Biogeochemistry, Department of Environmental Sciences, University of BaselBasel, Switzerland
| |
Collapse
|
21
|
Cardona T. Photosystem II is a Chimera of Reaction Centers. J Mol Evol 2017; 84:149-151. [PMID: 28224181 DOI: 10.1007/s00239-017-9784-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 02/14/2017] [Indexed: 01/20/2023]
Affiliation(s)
- Tanai Cardona
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK.
| |
Collapse
|
22
|
Babechuk MG, Kleinhanns IC, Schoenberg R. Chromium geochemistry of the ca. 1.85 Ga Flin Flon paleosol. GEOBIOLOGY 2017; 15:30-50. [PMID: 27444369 DOI: 10.1111/gbi.12203] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 06/20/2016] [Indexed: 06/06/2023]
Abstract
Fractionation of stable Cr isotopes has been measured in Archaean paleosols and marine sedimentary rocks and interpreted to record the terrestrial oxidation of Cr(III) to Cr(VI), providing possible indirect evidence for the emergence of oxygenic photosynthesis. However, these fractionations occur amidst evidence from other geochemical proxies for a pervasively anoxic atmosphere. This study examined the Cr geochemistry of the ca. 1.85 Ga Flin Flon paleosol, which developed under an atmosphere unambiguously oxidising enough to quantitatively convert Fe(II) to Fe(III) during pedogenesis. The paleosol shows an extreme range in Cr isotope composition of 2.76 ‰ δ53/52 Cr. The protolith greenstone (δ53/52 Cr: -0.23 ‰), the deepest weathering horizon (δ53/52 Cr: -0.15 to -0.23 ‰) and a residual corestone in the upper paleosol (δ53/52 Cr: -0.01 ‰) all exhibit Cr isotopic compositions comparable to unaltered igneous rocks. The most significant isotopic fractionation is preserved in the areas influenced by oxidative subaerial weathering (i.e. increase in Fe(III)/Fe(II)) and the greatest loss of mobile elements. The uppermost paleosol horizon is both Cr and Mn depleted and offset to significantly 53 Cr-enriched compositions (δ53/52 Cr values between +1.50 and +2.38 ‰), which is not easily modelled with the oxidation of Cr(III) and loss of isotopically heavy Cr(VI). Instead, the currently preferred model for these data invokes the open-system removal of isotopically light aqueous Cr(III) during either pedogenesis or subsequent hydrothermal/metamorphic alteration. The 53 Cr enrichment would then represent the preferential dissolution or complexation of isotopically light aqueous Cr(III) species (enhanced by lower pH conditions and possibly the presence of complexing ligands) and/or the residual signature from preferential adsorption of isotopically heavy Cr(III). Both scenarios would contradict the widely held assumption that only redox reactions of Cr can generate large magnitude isotopic fractionations and, if substantiated, non-redox isotope effects would complicate the conclusive fingerprinting of ancient atmospheric O2 from Cr isotope data alone.
Collapse
Affiliation(s)
- M G Babechuk
- Department of Geosciences, University of Tübingen, Tübingen, Germany
- Department of Geology, Trinity College Dublin, Dublin 2, Ireland
| | - I C Kleinhanns
- Department of Geosciences, University of Tübingen, Tübingen, Germany
| | - R Schoenberg
- Department of Geosciences, University of Tübingen, Tübingen, Germany
| |
Collapse
|