1
|
Jin X, Li X, Teixeira da Silva JA, Liu X. Functions and mechanisms of non-histone protein acetylation in plants. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:2087-2101. [PMID: 39136630 DOI: 10.1111/jipb.13756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 07/16/2024] [Accepted: 07/18/2024] [Indexed: 10/19/2024]
Abstract
Lysine acetylation, an evolutionarily conserved post-translational protein modification, is reversibly catalyzed by lysine acetyltransferases and lysine deacetylases. Lysine acetylation, which was first discovered on histones, mainly functions to configure the structure of chromatin and regulate gene transcriptional activity. Over the past decade, with advances in high-resolution mass spectrometry, a vast and growing number of non-histone proteins modified by acetylation in various plant species have been identified. Lysine acetylation of non-histone proteins is widely involved in regulating biological processes in plants such as photosynthesis, energy metabolism, hormone signal transduction and stress responses. Moreover, in plants, lysine acetylation plays crucial roles in regulating enzyme activity, protein stability, protein interaction and subcellular localization. This review summarizes recent progress in our understanding of the biological functions and mechanisms of non-histone protein acetylation in plants. Research prospects in this field are also noted.
Collapse
Affiliation(s)
- Xia Jin
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Xiaoshuang Li
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830000, China
| | | | - Xuncheng Liu
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| |
Collapse
|
2
|
Zhang X, Lu M, An H. Lysine acetylproteome analysis reveals the lysine acetylation in developing fruit and a key acetylated protein involved in sucrose accumulation in Rosa roxburghii Tratt. J Proteomics 2024; 305:105248. [PMID: 38964538 DOI: 10.1016/j.jprot.2024.105248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/30/2024] [Accepted: 07/01/2024] [Indexed: 07/06/2024]
Abstract
Lysine acetylation is a common post-translational modification of proteins in plants. Rosa roxburghii Tratt. is an economically important fruit tree known for its high nutritional value. However, the characteristics of acetylome-related proteins during fruit development in this crop remain unknown. This study aimed to explore the global acetylproteome of R. roxburghii fruit to identify key lysine-acetylated proteins associated with its quality traits. A total of 4280 acetylated proteins were identified, among them, 981 proteins exhibited differential acetylation (DA) while 19 proteins showed increased acetylation level consistently on individual sites. Functional classification revealed that these DA proteins were primarily associated with central metabolic pathways, carbohydrate metabolism, terpenoids and polyketides metabolism, lipid metabolism, and amino acid metabolism, highlighting the importance of lysine acetylation in fruit quality formation. Notably, the most significant up-regulated acetylation occurred in sucrose synthase (SuS1), a key enzyme in sucrose biosynthesis. Enzyme assays, RNA-seq and proteome analysis indicated that SuS activity, which was independent of its transcriptome and proteome level, may be enhanced by up-acetylation, ultimately increasing sucrose accumulation. Thus, these findings offer a better understanding of the global acetylproteome of R. roxburghii fruit, while also uncover a novel mechanism of acetylated SuS-mediated in sucrose metabolism in plant. SIGNIFICANCE: Rosa roxburghii Tratt. is an important horticultural crop whose commercial value is closely linked to its fruit quality. Acetylation modification is a post-translational mechanism observed in plants, which regulates the physiological functions and metabolic fluxes involved in various biological processes. The regulatory mechanism of lysine acetylation in the fruit quality formation in perennial woody plants has not been fully elucidated, while most of the research has primarily focused on annual crops. Therefore, this study, for the first time, uses Rosaceae fruits as the research material to elucidate the regulatory role of lysine-acetylated proteins in fruit development, identify key metabolic processes influencing fruit quality formation, and provide valuable insights for cultivation strategies.
Collapse
Affiliation(s)
- Xue Zhang
- College of Forestry, Guizhou University, Guiyang 550025, China; Guizhou Engineering Research Center for Fruit Crops, Agricultural College, Guizhou University, Guiyang 550025, China
| | - Min Lu
- Guizhou Engineering Research Center for Fruit Crops, Agricultural College, Guizhou University, Guiyang 550025, China
| | - Huaming An
- College of Forestry, Guizhou University, Guiyang 550025, China; Guizhou Engineering Research Center for Fruit Crops, Agricultural College, Guizhou University, Guiyang 550025, China.
| |
Collapse
|
3
|
Liu M, Gong F, Yu W, Cao K, Xu H, Zhou X. The Rhododendron Chrysanthum Pall.s' Acetylation Modification of Rubisco Enzymes Controls Carbon Cycling to Withstand UV-B Stress. Biomolecules 2024; 14:732. [PMID: 38927135 PMCID: PMC11201758 DOI: 10.3390/biom14060732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/11/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
Lysine acetylation of proteins plays a critical regulatory function in plants. A few advances have been made in the study of plant acetylproteome. However, until now, there have been few data on Rhododendron chrysanthum Pall. (R. chrysanthum). We analyzed the molecular mechanisms of photosynthesis and stress resistance in R. chrysanthum under UV-B stress. We measured chlorophyll fluorescence parameters of R. chrysanthum under UV-B stress and performed a multi-omics analysis. Based on the determination of chlorophyll fluorescence parameters, R. chrysanthum Y(NO) (Quantum yield of non-photochemical quenching) increased under UV-B stress, indicating that the plant was damaged and photosynthesis decreased. In the analysis of acetylated proteomics data, acetylated proteins were found to be involved in a variety of biological processes. Notably, acetylated proteins were significantly enriched in the pathways of photosynthesis and carbon fixation, suggesting that lysine acetylation modifications have an important role in these activities. Our findings suggest that R. chrysanthum has decreased photosynthesis and impaired photosystems under UV-B stress, but NPQ shows that plants are resistant to UV-B. Acetylation proteomics revealed that up- or down-regulation of acetylation modification levels alters protein expression. Acetylation modification of key enzymes of the Calvin cycle (Rubisco, GAPDH) regulates protein expression, making Rubisco and GAPDH proteins expressed as significantly different proteins, which in turn affects the carbon fixation capacity of R. chrysanthum. Thus, Rubisco and GAPDH are significantly differentially expressed after acetylation modification, which affects the carbon fixation capacity and thus makes the plant resistant to UV-B stress. Lysine acetylation modification affects biological processes by regulating the expression of key enzymes in photosynthesis and carbon fixation, making plants resistant to UV-B stress.
Collapse
Affiliation(s)
| | | | | | | | - Hongwei Xu
- Jilin Provincial Key Laboratory of Plant Resource Science and Green Production, Jilin Normal University, Siping 136000, China
| | - Xiaofu Zhou
- Jilin Provincial Key Laboratory of Plant Resource Science and Green Production, Jilin Normal University, Siping 136000, China
| |
Collapse
|
4
|
Liu X, Ye J, Zhang X, Yang K, Zheng J, Cheng S, Zhang W, Xu F. Multi-omics explores the potential regulatory role of acetylation modification in flavonoid biosynthesis of Ginkgo biloba. TREE PHYSIOLOGY 2024; 44:tpae051. [PMID: 38728368 DOI: 10.1093/treephys/tpae051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 04/25/2024] [Accepted: 05/08/2024] [Indexed: 05/12/2024]
Abstract
Flavonoids are crucial medicinal active ingredients in Ginkgo biloba L. However, the effect of protein post-translational modifications on flavonoid biosynthesis remains poorly explored. Lysine acetylation, a reversible post-translational modification, plays a crucial role in metabolic regulation. This study aims to investigate the potential role of acetylation in G. biloba flavonoid biosynthesis. Through comprehensive analysis of transcriptomes, metabolomes, proteomes and acetylated proteins in different tissues, a total of 11,788 lysine acetylation sites were identified on 4324 acetylated proteins, including 89 acetylation sites on 23 proteins. Additionally, 128 types of differentially accumulated flavonoids were identified among tissues, and a dataset of differentially expressed genes related to the flavonoid biosynthesis pathway was constructed. Twelve (CHI, C3H1, ANR, DFR, CCoAOMT1, F3H1, F3H2, CCoAOMT2, C3H2, HCT, F3'5'H and FG2) acetylated proteins that might be involved in flavonoid biosynthesis were identified. Specifically, we found that the modification levels of CCoAOMT1 and F3'5'H sites correlated with the catalytic production of homoeriodictyol and dihydromyricetin, respectively. Inhibitors of lysine deacetylase (trichostatin A) impacted total flavonoid content in different tissues and increased flavonoid levels in G. biloba roots. Treatment with trichostatin A revealed that expression levels of GbF3'5'H and GbCCoAOMT1 in stems and leaves aligned with total flavonoid content variations, while in roots, expression levels of GbC3H2 and GbFG2 corresponded to total flavonoid content changes. Collectively, these findings reveal for the first time the important role of acetylation in flavonoid biosynthesis.
Collapse
Affiliation(s)
- Xiaomeng Liu
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China
- School of Modern Industry for Selenium Science and Engineering, National R&D Center for Se-rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Jiabao Ye
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China
| | - Xiaoxi Zhang
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China
| | - Ke Yang
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China
| | - Jiarui Zheng
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China
| | - Shuiyuan Cheng
- School of Modern Industry for Selenium Science and Engineering, National R&D Center for Se-rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Weiwei Zhang
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China
| | - Feng Xu
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China
| |
Collapse
|
5
|
Zhu J, Guo W, Lan Y. Global Analysis of Lysine Lactylation of Germinated Seeds in Wheat. Int J Mol Sci 2023; 24:16195. [PMID: 38003390 PMCID: PMC10671351 DOI: 10.3390/ijms242216195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Protein lactylation is a newly discovered posttranslational modification (PTM) and is involved in multiple biological processes, both in mammalian cells and rice grains. However, the function of lysine lactylation remains unexplored in wheat. In this study, we performed the first comparative proteomes and lysine lactylomes during seed germination of wheat. In total, 8000 proteins and 927 lactylated sites in 394 proteins were identified at 0 and 12 h after imbibition (HAI). Functional enrichment analysis showed that glycolysis- and TCA-cycle-related proteins were significantly enriched, and more differentially lactylated proteins were enriched in up-regulated lactylated proteins at 12 HAI vs. 0 HAI through the KEGG pathway and protein domain enrichment analysis compared to down-regulated lactylated proteins. Meanwhile, ten particularly preferred amino acids near lactylation sites were found in the embryos of germinated seeds: AA*KlaT, A***KlaD********A, KlaA**T****K, K******A*Kla, K*Kla********K, KlaA******A, Kla*A, KD****Kla, K********Kla and KlaG. These results supplied a comprehensive profile of lysine lactylation of wheat and indicated that protein lysine lactylation played important functions in several biological processes.
Collapse
Affiliation(s)
- Junke Zhu
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China;
| | - Weiwei Guo
- College of Agronomy, Qingdao Agricultural University/Shandong Key Laboratory of Dryland Farming Technology/Shandong Engineering Research Center of Germplasm, Innovation and Utilization of Salt-Tolerant Crops, Qingdao 266109, China
| | - Yubin Lan
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China;
- National Sub-Center for International Collaboration Research on Precision Agricultural Aviation Pesticide Spraying Technology, Shandong University of Technology, Zibo 255000, China
- Academy of Ecological Unmanned Farm, Shandong University of Technology, Zibo 255000, China
| |
Collapse
|
6
|
Jiang J, Xie X, Li X. Acetyl-Proteomic Profiling of Sorghum bicolor Seedlings after Chitin Treatment Reveals the Involvement of Acetylated Chlorophyll a/b Binding Proteins in the Innate Immune Response. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37384550 DOI: 10.1021/acs.jafc.3c00700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/01/2023]
Abstract
Plant pathogen-associated molecular pattern-triggered immunity (PTI) is affected by post-translational modifications, but the role of acetylation in the PTI responses of Sorghum bicolor remains unclear. In this study, a comprehensive acetyl-proteomic analysis was performed on sorghum seedlings treated with chitin based on label-free protein quantification. Chitin rapidly induced 15 PTI-related genes and 5 defense enzymes. Acetylation was upregulated in sorghum after the chitin treatment, and 579, 895, and 929 acetylated proteins, peptides, and sites, respectively, were identified using high-performance liquid chromatography-tandem mass spectrometry. Acetylation and expression of chlorophyll a/b binding proteins (Lhcs) were significantly upregulated, and they were localized in chloroplasts. Additionally, we found that the expression of Lhcs in vivo enhanced chitin-mediated acetylation. The findings of this study provide a comprehensive assessment of the lysine acetylome in sorghum and a foundation for future study into the regulatory mechanisms of acetylation during chlorophyll synthesis.
Collapse
Affiliation(s)
- Junmei Jiang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, P. R. China
| | - Xin Xie
- Key Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang 550025, P. R. China
| | - Xiangyang Li
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, P. R. China
| |
Collapse
|
7
|
Zhang N, Wang S, Zhao S, Chen D, Tian H, Li J, Zhang L, Li S, Liu L, Shi C, Yu X, Ren Y, Chen F. Global crotonylatome and GWAS revealed a TaSRT1- TaPGK model regulating wheat cold tolerance through mediating pyruvate. SCIENCE ADVANCES 2023; 9:eadg1012. [PMID: 37163591 PMCID: PMC10171821 DOI: 10.1126/sciadv.adg1012] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Here, we reported the complete profiling of the crotonylation proteome in common wheat. Through a combination of crotonylation and multi-omics analysis, we identified a TaPGK associated with wheat cold stress. Then, we confirmed the positive role of TaPGK-modulating wheat cold tolerance. Meanwhile, we found that cold stress induced lysine crotonylation of TaPGK. Moreover, we screened a lysine decrotonylase TaSRT1 interacting with TaPGK and found that TaSRT1 negatively regulated wheat cold tolerance. We subsequently demonstrated TaSRT1 inhibiting the accumulation of TaPGK protein, and this inhibition was possibly resulted from decrotonylation of TaPGK by TaSRT1. Transcriptome sequencing indicated that overexpression of TaPGK activated glycolytic key genes and thereby increased pyruvate content. Moreover, we found that exogenous application of pyruvate sharply enhanced wheat cold tolerance. These findings suggest that the TaSRT1-TaPGK model regulating wheat cold tolerance is possibly through mediating pyruvate. This study provided two valuable cold tolerance genes and dissected diverse mechanism of glycolytic pathway involving in wheat cold stress.
Collapse
Affiliation(s)
- Ning Zhang
- National Key Laboratory of Wheat and Maize Crop Science/CIMMYT-China Wheat and Maize Joint Research Center/Agronomy College, Henan Agricultural University, Zhengzhou, China
| | - Sisheng Wang
- National Key Laboratory of Wheat and Maize Crop Science/CIMMYT-China Wheat and Maize Joint Research Center/Agronomy College, Henan Agricultural University, Zhengzhou, China
| | - Simin Zhao
- National Key Laboratory of Wheat and Maize Crop Science/CIMMYT-China Wheat and Maize Joint Research Center/Agronomy College, Henan Agricultural University, Zhengzhou, China
| | - Daiying Chen
- National Key Laboratory of Wheat and Maize Crop Science/CIMMYT-China Wheat and Maize Joint Research Center/Agronomy College, Henan Agricultural University, Zhengzhou, China
| | - Hongyan Tian
- National Key Laboratory of Wheat and Maize Crop Science/CIMMYT-China Wheat and Maize Joint Research Center/Agronomy College, Henan Agricultural University, Zhengzhou, China
| | - Jia Li
- National Key Laboratory of Wheat and Maize Crop Science/CIMMYT-China Wheat and Maize Joint Research Center/Agronomy College, Henan Agricultural University, Zhengzhou, China
| | - Lingran Zhang
- National Key Laboratory of Wheat and Maize Crop Science/CIMMYT-China Wheat and Maize Joint Research Center/Agronomy College, Henan Agricultural University, Zhengzhou, China
| | - Songgang Li
- National Key Laboratory of Wheat and Maize Crop Science/CIMMYT-China Wheat and Maize Joint Research Center/Agronomy College, Henan Agricultural University, Zhengzhou, China
| | - Lu Liu
- National Key Laboratory of Wheat and Maize Crop Science/CIMMYT-China Wheat and Maize Joint Research Center/Agronomy College, Henan Agricultural University, Zhengzhou, China
| | - Chaonan Shi
- National Key Laboratory of Wheat and Maize Crop Science/CIMMYT-China Wheat and Maize Joint Research Center/Agronomy College, Henan Agricultural University, Zhengzhou, China
| | - Xiaodong Yu
- National Key Laboratory of Wheat and Maize Crop Science/CIMMYT-China Wheat and Maize Joint Research Center/Agronomy College, Henan Agricultural University, Zhengzhou, China
| | - Yan Ren
- National Key Laboratory of Wheat and Maize Crop Science/CIMMYT-China Wheat and Maize Joint Research Center/Agronomy College, Henan Agricultural University, Zhengzhou, China
| | - Feng Chen
- National Key Laboratory of Wheat and Maize Crop Science/CIMMYT-China Wheat and Maize Joint Research Center/Agronomy College, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
8
|
Liang M, Gu D, Lie Z, Yang Y, Lu L, Dai G, Peng T, Deng L, Zheng F, Liu X. Regulation of chlorophyll biosynthesis by light-dependent acetylation of NADPH:protochlorophyll oxidoreductase A in Arabidopsis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 330:111641. [PMID: 36806610 DOI: 10.1016/j.plantsci.2023.111641] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/31/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
Chlorophylls are the major pigments that harvest light energy during photosynthesis in plants. Although reactions in chlorophyll biogenesis have been largely known, little attention has been paid to the post-translational regulation mechanism of this process. In this study, we found that four lysine sites (K128/340/350/390) of NADPH:protochlorophyllide oxidoreductase A (PORA), which catalyzes the only light-triggered step in chlorophyll biosynthesis, were acetylated after dark-grown seedlings transferred to light via acetylomics analysis. Etiolated seedlings with K390 mutation of PORA had a lower greening rate and decreased PORA acetylation after illumination. Importantly, K390 of PORA was found extremely conserved in plants and cyanobacteria via bioinformatics analysis. We further demonstrated that the acetylation level of PORA was increased by exposing the dark-grown seedlings to the histone deacetylase (HDAC) inhibitor TSA. Thus, the HDACs probably regulate the acetylation of PORA, thereby controlling this non-histone substrate to catalyze the reduction of Pchlide to produce chlorophyllide, which provides a novel regulatory mechanism by which the plant actively tunes chlorophyll biosynthesis during the conversion from skotomorphogenesis to photomorphogenesis.
Collapse
Affiliation(s)
- Minting Liang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Dachuan Gu
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Zhiyang Lie
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Yongyi Yang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Longxin Lu
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510630, China
| | - Guangyi Dai
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Tao Peng
- Department of Biology, Institute of Plant and Food Science, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ling Deng
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Feng Zheng
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Xuncheng Liu
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China.
| |
Collapse
|
9
|
Luo W, He M, Luo Q, Li Y. Proteome-wide analysis of lysine β-hydroxybutyrylation in the myocardium of diabetic rat model with cardiomyopathy. Front Cardiovasc Med 2023; 9:1066822. [PMID: 36698951 PMCID: PMC9868477 DOI: 10.3389/fcvm.2022.1066822] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 12/13/2022] [Indexed: 01/10/2023] Open
Abstract
Lysine ß-hydroxybutyrylation (kbhb), a novel modification of lysine residues with the ß-hydroxybuty group, is associated with ketone metabolism in numerous species. However, its potential role in diabetes, especially in diabetic cardiomyopathy (DCM), remains largely unexplored. In this study, using affinity enrichment and liquid chromatography-mass spectrometry (LC-MS/MS) method, we quantitatively analyze the kbhb residues on heart tissues of a DCM model rat. A total of 3,520 kbhb sites in 1,089 proteins were identified in this study. Further analysis showed that 336 kbhb sites in 143 proteins were differentially expressed between the heart tissues of DCM and wild-type rats. Among them, 284 kbhb sites in 96 proteins were upregulated, while 52 kbhb sites in 47 proteins were downregulated. Bioinformatic analysis of the proteomic results revealed that these kbhb-modified proteins were widely distributed in various components and involved in a wide range of cellular functions and biological processes (BPs). Functional analysis showed that the kbhb-modified proteins were involved in the tricarboxylic acid cycle, oxidative phosphorylation, and propanoate metabolism. Our findings demonstrated how kbhb is related to many metabolic pathways and is mainly involved in energy metabolism. These results provide the first global investigation of the kbhb profile in DCM progression and can be an essential resource to explore DCM's pathogenesis further.
Collapse
Affiliation(s)
- Weiguang Luo
- Department of Clinical Laboratory, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Mei He
- Henan Medical Key Laboratory of Arrhythmia, The 7th People’s Hospital of Zhengzhou, Zhengzhou Cardiovascular Hospital, Zhengzhou, China
| | - Qizhi Luo
- Department of Immunology, Basic Medical School of Central South University, Changsha, Hunan, China
| | - Yi Li
- Department of Clinical Laboratory, Henan Provincial People’s Hospital, Henan University People’s Hospital, Zhengzhou, Henan, China,*Correspondence: Yi Li,
| |
Collapse
|
10
|
Li BB, Zhang W, Wei S, Lv YY, Shang JX, Hu YS. Comprehensive proteome and lysine acetylome analysis after artificial aging reveals the key acetylated proteins involved in wheat seed oxidative stress response and energy production. J Food Biochem 2022; 46:e14495. [PMID: 36322387 DOI: 10.1111/jfbc.14495] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/17/2022] [Accepted: 10/19/2022] [Indexed: 11/07/2022]
Abstract
Lysine acetylation is a common post-translational modification of proteins within all organisms. However, quantitative acetylome characterization in wheat seed during aging in storage has not been reported. This study reports the first large-scale acetylome analysis of wheat seeds after artificial aging treatment, using the quantitative proteomic approach. In total, 11,002 acetylation sites, corresponding to 4262 acetylated proteins were identified, of which 1207 acetylated sites, representing 783 acetylated proteins, were significantly more or less acetylated after artificial aging. Functional analysis demonstrated that the majority of the acetylated proteins are closely involved with cellular and metabolic functions. In particular, key enzymes in the oxidative stress response and energy metabolism were significantly differentially acetylated and appear to be heavily involved in wheat seed aging. The acetylome analysis was verified by quantitative real-time PCR and enzyme activity determination. Lysine-acetylation results in a weaker oxidative stress response and lower energy production efficiency, resulting in the apoptosis of wheat seed cells, insufficient energy supply at the germination stage, and consequently, marked loss of seed vigor. PRACTICAL APPLICATIONS: It is known that the loss of protein function is an important reason for the decrease of seed vigor. Therefore, the change of protein function in the process of wheat seed aging was studied by proteome and lysine acetylome analysis technology. The results showed that the oxidation-reduction imbalance and the decrease of energy production efficiency of seeds were the important reasons for the decrease of their vigor. This will provide a new idea for green and safe storage of grain.
Collapse
Affiliation(s)
- Bang-Bang Li
- College of Biological Engineering, Henan University of Technology, Zhengzhou, China
| | - Wei Zhang
- College of Biological Engineering, Henan University of Technology, Zhengzhou, China
| | - Shan Wei
- College of Biological Engineering, Henan University of Technology, Zhengzhou, China
| | - Yang-Yong Lv
- College of Biological Engineering, Henan University of Technology, Zhengzhou, China
| | - Ji-Xu Shang
- College of Biological Engineering, Henan University of Technology, Zhengzhou, China
| | - Yuan-Sen Hu
- College of Biological Engineering, Henan University of Technology, Zhengzhou, China
| |
Collapse
|
11
|
Ng JWX, Chua SK, Mutwil M. Feature importance network reveals novel functional relationships between biological features in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2022; 13:944992. [PMID: 36212273 PMCID: PMC9539877 DOI: 10.3389/fpls.2022.944992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 08/24/2022] [Indexed: 06/16/2023]
Abstract
Understanding how the different cellular components are working together to form a living cell requires multidisciplinary approaches combining molecular and computational biology. Machine learning shows great potential in life sciences, as it can find novel relationships between biological features. Here, we constructed a dataset of 11,801 gene features for 31,522 Arabidopsis thaliana genes and developed a machine learning workflow to identify linked features. The detected linked features are visualised as a Feature Important Network (FIN), which can be mined to reveal a variety of novel biological insights pertaining to gene function. We demonstrate how FIN can be used to generate novel insights into gene function. To make this network easily accessible to the scientific community, we present the FINder database, available at finder.plant.tools.
Collapse
|
12
|
Guo W, Han J, Li X, He Z, Zhang Y. Large-scale analysis of protein crotonylation reveals its diverse functions in Pinellia ternata. BMC PLANT BIOLOGY 2022; 22:457. [PMID: 36151520 PMCID: PMC9502611 DOI: 10.1186/s12870-022-03835-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 09/09/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Pinellia ternata is an important traditional medicine in China, and its growth is regulated by the transcriptome or proteome. Lysine crotonylation, a newly identified and important type of posttranslational modification, plays a key role in many aspects of cell metabolism. However, little is known about its functions in Pinellia ternata. RESULTS In this study, we generated a global crotonylome analysis of Pinellia ternata and examined its overlap with lysine succinylation. A total of 2106 crotonylated sites matched on 1006 proteins overlapping in three independent tests were identified, and we found three specific amino acids surrounding crotonylation sites in Pinellia ternata: KcrF, K***Y**Kcr and Kcr****R. Gene Ontology (GO) and KEGG pathway enrichment analyses showed that two crucial alkaloid biosynthesis-related enzymes and many stress-related proteins were also highly crotonylated. Furthermore, several enzymes participating in carbohydrate metabolism pathways were found to exhibit both lysine crotonylation and succinylation modifications. CONCLUSIONS These results indicate that lysine crotonylation performs important functions in many biological processes in Pinellia ternata, especially in the biosynthesis of alkaloids, and some metabolic pathways are simultaneously regulated by lysine crotonylation and succinylation.
Collapse
Affiliation(s)
- Weiwei Guo
- Shandong Provincial Key Laboratory of Dry Farming Technology/Shandong Engineering Research Center of Germplasm Innovation and Utilization of Salt-Tolerant Crops/College of Agronomy, Qingdao Agricultural University, Qingdao Shandong, 266109, China
| | - Jiayi Han
- Shandong Provincial Key Laboratory of Dry Farming Technology/Shandong Engineering Research Center of Germplasm Innovation and Utilization of Salt-Tolerant Crops/College of Agronomy, Qingdao Agricultural University, Qingdao Shandong, 266109, China
| | - Ximei Li
- Shandong Provincial Key Laboratory of Dry Farming Technology/Shandong Engineering Research Center of Germplasm Innovation and Utilization of Salt-Tolerant Crops/College of Agronomy, Qingdao Agricultural University, Qingdao Shandong, 266109, China
| | - Zihan He
- Shandong Provincial Key Laboratory of Dry Farming Technology/Shandong Engineering Research Center of Germplasm Innovation and Utilization of Salt-Tolerant Crops/College of Agronomy, Qingdao Agricultural University, Qingdao Shandong, 266109, China
| | - Yumei Zhang
- Shandong Provincial Key Laboratory of Dry Farming Technology/Shandong Engineering Research Center of Germplasm Innovation and Utilization of Salt-Tolerant Crops/College of Agronomy, Qingdao Agricultural University, Qingdao Shandong, 266109, China.
| |
Collapse
|
13
|
Song L, Zhan H, Wang Y, Lin Z, Li B, Shen L, Jiao Y, Li Y, Wang F, Yang J. Cross-Talk of Protein Expression and Lysine Acetylation in Response to TMV Infection in Nicotiana benthamiana. ACS OMEGA 2022; 7:32496-32511. [PMID: 36120045 PMCID: PMC9475610 DOI: 10.1021/acsomega.2c03917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
Lysine acetylation (Kac), a reversible PTM, plays an essential role in various biological processes, including those involving metabolic pathways, pathogen resistance, and transcription, in both prokaryotes and eukaryotes. TMV, the major factor that causes the poor quality of Solanaceae crops worldwide, directly alters many metabolic processes in tobacco. However, the extent and function of Kac during TMV infection have not been determined. The validation test to detect Kac level and viral expression after TMV infection and Nicotinamide (NAM) treatment clarified that acetylation was involved in TMV infection. Furthermore, we comprehensively analyzed the changes in the proteome and acetylome of TMV-infected tobacco (Nicotiana benthamiana) seedlings via LC-MS/MS in conjunction with highly sensitive immune-affinity purification. In total, 2082 lysine-acetylated sites on 1319 proteins differentially expressed in response to TMV infection were identified. Extensive bioinformatic studies disclosed changes in acetylation of proteins engaged in cellular metabolism and biological processes. The vital influence of Kac in fatty acid degradation and alpha-linolenic acid metabolism was also revealed in TMV-infected seedlings. This study first revealed Kac information in N. benthamiana under TMV infection and expanded upon the existing landscape of acetylation in pathogen infection.
Collapse
Affiliation(s)
- Liyun Song
- Key
Laboratory of Tobacco Pest Monitoring, Controlling & Integrated
Management, Tobacco Research Institute of
the Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Huaixu Zhan
- Key
Laboratory of Tobacco Pest Monitoring, Controlling & Integrated
Management, Tobacco Research Institute of
the Chinese Academy of Agricultural Sciences, Qingdao 266101, China
- Graduate
School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yujie Wang
- Luoyang
Branch of Henan Tobacco Company, Luoyang 471000, China
| | - Zhonglong Lin
- Yunnan
Tobacco Company of the China National Tobacco Corporation, Kunming 650011, China
| | - Bin Li
- Sichuan
Tobacco Company, Chengdu 610017, China
| | - Lili Shen
- Key
Laboratory of Tobacco Pest Monitoring, Controlling & Integrated
Management, Tobacco Research Institute of
the Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Yubing Jiao
- Key
Laboratory of Tobacco Pest Monitoring, Controlling & Integrated
Management, Tobacco Research Institute of
the Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Ying Li
- Key
Laboratory of Tobacco Pest Monitoring, Controlling & Integrated
Management, Tobacco Research Institute of
the Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Fenglong Wang
- Key
Laboratory of Tobacco Pest Monitoring, Controlling & Integrated
Management, Tobacco Research Institute of
the Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Jinguang Yang
- Key
Laboratory of Tobacco Pest Monitoring, Controlling & Integrated
Management, Tobacco Research Institute of
the Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| |
Collapse
|
14
|
Yang W, Li X, Jiang G, Long Y, Li H, Yu S, Zhao H, Liu J. Crotonylation versus acetylation in petunia corollas with reduced acetyl-CoA due to PaACL silencing. PHYSIOLOGIA PLANTARUM 2022; 174:e13794. [PMID: 36193016 DOI: 10.1111/ppl.13794] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/08/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
Protein acetylation and crotonylation are important posttranslational modifications of lysine. In animal cells, the correlation of acetylation and crotonylation has been well characterized and the lysines of some proteins are acetylated or crotonylated depending on the relative concentrations of acetyl-CoA and crotonyl-CoA. However, in plants, the correlation of acetylation and crotonylation and the effects of the relative intracellular concentrations of crotonyl-CoA and acetyl-CoA on protein crotonylation and acetylation are not well known. In our previous study, PaACL silencing changed the content of acetyl-CoA in petunia (Petunia hybrida) corollas, and the effect of PaACL silencing on the global acetylation proteome in petunia was analyzed. In the present study, we found that PaACL silencing did not significantly alter the content of crotonyl-CoA. We performed a global crotonylation proteome analysis of the corollas of PaACL-silenced and control petunia plants; we found that protein crotonylation was closely related to protein acetylation and that proteins with more crotonylation sites often had more acetylation sites. Crotonylated proteins and acetylated proteins were enriched in many common Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. However, PaACL silencing resulted in different KEGG pathway enrichments of proteins with different levels of crotonylation sites and acetylation sites. PaACLB1-B2 silencing did not led to changes in the opposite direction in crotonylation and acetylation levels at the same lysine site in cytoplasmic proteins, which indicated that cytoplasmic lysine acetylation and crotonylation might not depend on the relative concentrations of acetyl-CoA and crotonyl-CoA. Moreover, the global crotonylome and acetylome were weakly positively correlated in the corollas of PaACL-silenced and control plants.
Collapse
Affiliation(s)
- Weiyuan Yang
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Xin Li
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Guiyun Jiang
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Yu Long
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Hui Li
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Shujun Yu
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Huina Zhao
- College of Horticulture, South China Agricultural University, Guangzhou, China
- College of Landscape Architecture and Art, Henan Agricultural University, Zhengzhou, China
| | - Juanxu Liu
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- College of Horticulture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
15
|
Zhang N, Zhang L, Li L, Geng J, Zhao L, Ren Y, Dong Z, Chen F. Global Profiling of 2-hydroxyisobutyrylome in Common Wheat. GENOMICS, PROTEOMICS & BIOINFORMATICS 2022; 20:688-701. [PMID: 33581340 PMCID: PMC9880814 DOI: 10.1016/j.gpb.2020.06.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 03/17/2020] [Accepted: 08/15/2020] [Indexed: 01/31/2023]
Abstract
As a novel post-translational modification (PTM), lysine 2-hydroxyisobutyrylation (Khib) is considered to regulate gene transcriptional activities in eukaryotic cells; however, the functions of Khib-modified proteins in plants remain unknown. Here, we report that Khib is an evolutionarily-conserved PTM in wheat and its progenitors. A total of 3348 Khib sites on 1074 proteins are identified in common wheat (Triticum aestivum L.) by using affinity purification and mass spectroscopy of 2-hydroxyisobutyrylome. Bioinformatic data indicate that Khib-modified proteins participate in a wide variety of biological and metabolic pathways. Immunoprecipitation confirms that Khib-modified proteins are present endogenously. A comparison of Khib and other main PTMs shows that Khib-modified proteins are simultaneously modified by multiple PTMs. Using mutagenesis experiments and co-immunoprecipitation assays, we demonstrate that Khib on K206 of phosphoglycerate kinase (PGK) is a key regulatory modification for its enzymatic activity, and mutation on K206 affects the interactions of PGK with its substrates. Furthermore, Khib modification of low-molecular-weight proteins is a response to the deacetylase inhibitors nicotinamide and trichostatin. This study provides evidence to promote our current understanding of Khib in wheat plants, including the cooperation between Khib and its metabolic regulation.
Collapse
Affiliation(s)
- Ning Zhang
- National Key Laboratory of Wheat and Maize Crop Science / Agronomy College, Henan Agricultural University, Zhengzhou 450046, China
| | - Lingran Zhang
- National Key Laboratory of Wheat and Maize Crop Science / Agronomy College, Henan Agricultural University, Zhengzhou 450046, China
| | - Linjie Li
- National Key Laboratory of Wheat and Maize Crop Science / Agronomy College, Henan Agricultural University, Zhengzhou 450046, China
| | - Junyou Geng
- National Key Laboratory of Wheat and Maize Crop Science / Agronomy College, Henan Agricultural University, Zhengzhou 450046, China
| | - Lei Zhao
- National Key Laboratory of Wheat and Maize Crop Science / Agronomy College, Henan Agricultural University, Zhengzhou 450046, China
| | - Yan Ren
- National Key Laboratory of Wheat and Maize Crop Science / Agronomy College, Henan Agricultural University, Zhengzhou 450046, China
| | - Zhongdong Dong
- National Key Laboratory of Wheat and Maize Crop Science / Agronomy College, Henan Agricultural University, Zhengzhou 450046, China
| | - Feng Chen
- National Key Laboratory of Wheat and Maize Crop Science / Agronomy College, Henan Agricultural University, Zhengzhou 450046, China.
| |
Collapse
|
16
|
Xia L, Kong X, Song H, Han Q, Zhang S. Advances in proteome-wide analysis of plant lysine acetylation. PLANT COMMUNICATIONS 2022; 3:100266. [PMID: 35059632 PMCID: PMC8760137 DOI: 10.1016/j.xplc.2021.100266] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 10/21/2021] [Accepted: 11/22/2021] [Indexed: 06/14/2023]
Abstract
Lysine acetylation (LysAc) is a conserved and important post-translational modification (PTM) that plays a key role in plant physiological and metabolic processes. Based on advances in Lys-acetylated protein immunoenrichment and mass-spectrometric technology, LysAc proteomics studies have been performed in many species. Such studies have made substantial contributions to our understanding of plant LysAc, revealing that Lys-acetylated histones and nonhistones are involved in a broad spectrum of plant cellular processes. Here, we present an extensive overview of recent research on plant Lys-acetylproteomes. We provide in-depth insights into the characteristics of plant LysAc modifications and the mechanisms by which LysAc participates in cellular processes and regulates metabolism and physiology during plant growth and development. First, we summarize the characteristics of LysAc, including the properties of Lys-acetylated sites, the motifs that flank Lys-acetylated lysines, and the dynamic alterations in LysAc among different tissues and developmental stages. We also outline a map of Lys-acetylated proteins in the Calvin-Benson cycle and central carbon metabolism-related pathways. We then introduce some examples of the regulation of plant growth, development, and biotic and abiotic stress responses by LysAc. We discuss the interaction between LysAc and Nα-terminal acetylation and the crosstalk between LysAc and other PTMs, including phosphorylation and succinylation. Finally, we propose recommendations for future studies in the field. We conclude that LysAc of proteins plays an important role in the regulation of the plant life cycle.
Collapse
Affiliation(s)
- Linchao Xia
- Key Laboratory of Bio-Resource and Eco-Environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Xiangge Kong
- Key Laboratory of Bio-Resource and Eco-Environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Haifeng Song
- Key Laboratory of Bio-Resource and Eco-Environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Qingquan Han
- Key Laboratory of Bio-Resource and Eco-Environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Sheng Zhang
- Key Laboratory of Bio-Resource and Eco-Environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| |
Collapse
|
17
|
Guo J, Chai X, Mei Y, Du J, Du H, Shi H, Zhu JK, Zhang H. Acetylproteomics analyses reveal critical features of lysine-ε-acetylation in Arabidopsis and a role of 14-3-3 protein acetylation in alkaline response. STRESS BIOLOGY 2022; 2:1. [PMID: 37676343 PMCID: PMC10442023 DOI: 10.1007/s44154-021-00024-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/07/2021] [Indexed: 09/08/2023]
Abstract
Lysine-ε-acetylation (Kac) is a post-translational modification (PTM) that is critical for metabolic regulation and cell signaling in mammals. However, its prevalence and importance in plants remain to be determined. Employing high-resolution tandem mass spectrometry, we analyzed protein lysine acetylation in five representative Arabidopsis organs with 2 ~ 3 biological replicates per organ. A total of 2887 Kac proteins and 5929 Kac sites were identified. This comprehensive catalog allows us to analyze proteome-wide features of lysine acetylation. We found that Kac proteins tend to be more uniformly expressed in different organs, and the acetylation status exhibits little correlation with the gene expression level, indicating that acetylation is unlikely caused by stochastic processes. Kac preferentially targets evolutionarily conserved proteins and lysine residues, but only a small percentage of Kac proteins are orthologous between rat and Arabidopsis. A large portion of Kac proteins overlap with proteins modified by other PTMs including ubiquitination, SUMOylation and phosphorylation. Although acetylation, ubiquitination and SUMOylation all modify lysine residues, our analyses show that they rarely target the same sites. In addition, we found that "reader" proteins for acetylation and phosphorylation, i.e., bromodomain-containing proteins and GRF (General Regulatory Factor)/14-3-3 proteins, are intensively modified by the two PTMs, suggesting that they are main crosstalk nodes between acetylation and phosphorylation signaling. Analyses of GRF6/14-3-3λ reveal that the Kac level of GRF6 is decreased under alkaline stress, suggesting that acetylation represses plant alkaline response. Indeed, K56ac of GRF6 inhibits its binding to and subsequent activation of the plasma membrane H+-ATPase AHA2, leading to hypersensitivity to alkaline stress. These results provide valuable resources for protein acetylation studies in plants and reveal that protein acetylation suppresses phosphorylation output by acetylating GRF/14-3-3 proteins.
Collapse
Affiliation(s)
- Jianfei Guo
- State Key Laboratory of Plant Molecular Genetics, Shanghai Center for Plant Stress Biology, Center for Excellence in Plant Molecular Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoqiang Chai
- State Key Laboratory of Plant Molecular Genetics, Shanghai Center for Plant Stress Biology, Center for Excellence in Plant Molecular Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
| | - Yuchao Mei
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Jiamu Du
- Department of Biology, Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China
| | - Haining Du
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Huazhong Shi
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Jian-Kang Zhu
- State Key Laboratory of Plant Molecular Genetics, Shanghai Center for Plant Stress Biology, Center for Excellence in Plant Molecular Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
| | - Heng Zhang
- State Key Laboratory of Plant Molecular Genetics, Shanghai Center for Plant Stress Biology, Center for Excellence in Plant Molecular Sciences, Chinese Academy of Sciences, Shanghai, 201602, China.
| |
Collapse
|
18
|
Mustafa G, Komatsu S. Plant proteomic research for improvement of food crops under stresses: a review. Mol Omics 2021; 17:860-880. [PMID: 34870299 DOI: 10.1039/d1mo00151e] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Crop improvement approaches have been changed due to technological advancements in traditional plant-breeding methods. Abiotic and biotic stresses limit plant growth and development, which ultimately lead to reduced crop yield. Proteins encoded by genomes have a considerable role in the endurance and adaptation of plants to different environmental conditions. Biotechnological applications in plant breeding depend upon the information generated from proteomic studies. Proteomics has a specific advantage to contemplate post-translational modifications, which indicate the functional effects of protein modifications on crop production. Subcellular proteomics helps in exploring the precise cellular responses and investigating the networking among subcellular compartments during plant development and biotic/abiotic stress responses. Large-scale mass spectrometry-based plant proteomic studies with a more comprehensive overview are now possible due to dramatic improvements in mass spectrometry, sample preparation procedures, analytical software, and strengthened availability of genomes for numerous plant species. Development of stress-tolerant or resilient crops is essential to improve crop productivity and growth. Use of high throughput techniques with advanced instrumentation giving efficient results made this possible. In this review, the role of proteomic studies in identifying the stress-response processes in different crops is summarized. Advanced techniques and their possible utilization on plants are discussed in detail. Proteomic studies accelerate marker-assisted genetic augmentation studies on crops for developing high yielding stress-tolerant lines or varieties under stresses.
Collapse
Affiliation(s)
- Ghazala Mustafa
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Setsuko Komatsu
- Faculty of Environment and Information Sciences, Fukui University of Technology, Fukui 910-8505, Japan.
| |
Collapse
|
19
|
Li G, Zheng B, Zhao W, Ren T, Zhang X, Ning T, Liu P. Global analysis of lysine acetylation in soybean leaves. Sci Rep 2021; 11:17858. [PMID: 34504199 PMCID: PMC8429545 DOI: 10.1038/s41598-021-97338-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 08/23/2021] [Indexed: 01/16/2023] Open
Abstract
Protein lysine acetylation (Kac) is an important post-translational modification in both animal and plant cells. Global Kac identification has been performed at the proteomic level in various species. However, the study of Kac in oil and resource plant species is relatively limited. Soybean is a globally important oil crop and resouce plant. In the present study, lysine acetylome analysis was performed in soybean leaves with proteomics techniques. Various bioinformatics analyses were performed to illustrate the structure and function of these Kac sites and proteins. Totally, 3148 acetylation sites in 1538 proteins were detected. Motif analysis of these Kac modified peptides extracted 17 conserved motifs. These Kac modified protein showed a wide subcellular location and functional distribution. Chloroplast is the primary subcellular location and cellular component where Kac proteins were localized. Function and pathways analyses indicated a plenty of biological processes and metabolism pathways potentially be influenced by Kac modification. Ribosome activity and protein biosynthesis, carbohydrate and energy metabolism, photosynthesis and fatty acid metabolism may be regulated by Kac modification in soybean leaves. Our study suggests Kac plays an important role in soybean physiology and biology, which is an available resource and reference of Kac function and structure characterization in oil crop and resource plant, as well as in plant kingdom.
Collapse
Affiliation(s)
- Geng Li
- College of Agronomy, Shandong Agricultural University, Tai'an, 271018, Shandong, People's Republic of China
| | - Bin Zheng
- College of Agronomy, Shandong Agricultural University, Tai'an, 271018, Shandong, People's Republic of China
| | - Wei Zhao
- College of Agronomy, Shandong Agricultural University, Tai'an, 271018, Shandong, People's Republic of China
| | - Tinghu Ren
- College of Agronomy, Shandong Agricultural University, Tai'an, 271018, Shandong, People's Republic of China
| | - Xinghui Zhang
- College of Agronomy, Shandong Agricultural University, Tai'an, 271018, Shandong, People's Republic of China
| | - Tangyuan Ning
- College of Agronomy, Shandong Agricultural University, Tai'an, 271018, Shandong, People's Republic of China.
| | - Peng Liu
- College of Agronomy, Shandong Agricultural University, Tai'an, 271018, Shandong, People's Republic of China.
| |
Collapse
|
20
|
Xu M, Tian X, Ku T, Wang G, Zhang E. Global Identification and Systematic Analysis of Lysine Malonylation in Maize ( Zea mays L.). FRONTIERS IN PLANT SCIENCE 2021; 12:728338. [PMID: 34490025 PMCID: PMC8417889 DOI: 10.3389/fpls.2021.728338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 08/02/2021] [Indexed: 05/27/2023]
Abstract
Lysine malonylation is a kind of post-translational modifications (PTMs) discovered in recent years, which plays an important regulatory role in plants. Maize (Zea mays L.) is a major global cereal crop. Immunoblotting revealed that maize was rich in malonylated proteins. We therefore performed a qualitative malonylome analysis to globally identify malonylated proteins in maize. In total, 1,722 uniquely malonylated lysine residues were obtained in 810 proteins. The modified proteins were involved in various biological processes such as photosynthesis, ribosome and oxidative phosphorylation. Notably, a large proportion of the modified proteins (45%) were located in chloroplast. Further functional analysis revealed that 30 proteins in photosynthesis and 15 key enzymes in the Calvin cycle were malonylated, suggesting an indispensable regulatory role of malonylation in photosynthesis and carbon fixation. This work represents the first comprehensive survey of malonylome in maize and provides an important resource for exploring the function of lysine malonylation in physiological regulation of maize.
Collapse
Affiliation(s)
- Min Xu
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | - Xiaomin Tian
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | - Tingting Ku
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | - Guangyuan Wang
- Shandong Province Key Laboratory of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Enying Zhang
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
21
|
Xu M, Xie Y, Li Y, Shen L, Huang K, Lin Z, Li B, Xia C, Zhang X, Chi Y, Zhang B, Yang J. Proteomic Analysis of Histone Crotonylation Suggests Diverse Functions in Myzus persicae. ACS OMEGA 2021; 6:16391-16401. [PMID: 34235310 PMCID: PMC8246447 DOI: 10.1021/acsomega.1c01194] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 06/10/2021] [Indexed: 06/13/2023]
Abstract
Myzus persicae is one of the most important economic pests of cultivated crops. In the present study, we used an integrated approach involving high-performance liquid chromatography fractionation, affinity enrichment, and mass spectrometry-based proteomics to carry out a comprehensive proteomic analysis of lysine crotonylation in M. persicae. Altogether, 7530 lysine crotonylation sites were identified in 2452 protein groups. Intensive bioinformatic analyses were then carried out to annotate those lysine crotonylated targets identified in terms of Gene Ontology annotation, domain annotation, subcellular localization, Kyoto Encyclopedia of Genes and Genomes pathway annotation, functional cluster analysis, etc. Analysis results showed that lysine-crotonylated proteins were involved in many biological processes, such as the amino acid metabolism, aminoacyl-tRNA biosynthesis, spliceosomes, ribosomes, and so forth. Notably, the interaction network showed that there were 199 crotonylated proteins involved in the amino acid metabolism and numerous crotonylation targets associated with fatty acid biosynthesis and degradation. The results provide a system-wide view of the entire M. persicae crotonylome and a rich data set for functional analysis of crotonylated proteins in this economically important pest, which marks an important beginning for the further research.
Collapse
Affiliation(s)
- Manlin Xu
- Tobacco
Research Institute of CAAS, Qingdao, Shandong 266101, China
- Shandong
Peanut Research Institute, Qingdao, Shandong 266100, China
| | - Yi Xie
- Tobacco
Research Institute of CAAS, Qingdao, Shandong 266101, China
| | - Ying Li
- Tobacco
Research Institute of CAAS, Qingdao, Shandong 266101, China
| | - Lili Shen
- Tobacco
Research Institute of CAAS, Qingdao, Shandong 266101, China
| | - Kun Huang
- Tobacco
Company of Yunnan Province, Honghe Company, Mile, Yunnan 652300, China
| | - Zhonglong Lin
- China
Tobacco Corporation Yunnan Company, Kunming, Yunnan 650000, China
| | - Bin Li
- China
Tobacco Corporation Sichuan Company, Chengdu, Sichuan 610000, China
| | - Changjian Xia
- Haikou Cigar
Research Institute, Hainan Provincial Branch
of China National Tobacco Corporation (CNTC), Haikou, Hainan 570100, China
| | - Xia Zhang
- Shandong
Peanut Research Institute, Qingdao, Shandong 266100, China
| | - Yucheng Chi
- Shandong
Peanut Research Institute, Qingdao, Shandong 266100, China
| | - Bin Zhang
- Qingdao
Agricultural University, Qingdao, Shandong 266109, China
| | - Jinguang Yang
- Tobacco
Research Institute of CAAS, Qingdao, Shandong 266101, China
| |
Collapse
|
22
|
Feng B, Li S, Wang Z, Cao F, Wang Z, Li G, Liu K. Systematic analysis of lysine 2-hydroxyisobutyrylation posttranslational modification in wheat leaves. PLoS One 2021; 16:e0253325. [PMID: 34138952 PMCID: PMC8211214 DOI: 10.1371/journal.pone.0253325] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 06/02/2021] [Indexed: 01/15/2023] Open
Abstract
Lysine 2-hydroxyisobutyrylation (Khib) is a recently discovered post-translational modification (PTM) showing diverse biological functions and effects in living organisms. However, the study of Khib in plant species is still relatively limited. Wheat (Triticum aestivum L.) is a global important cereal plant. In this study, the systematic Khib analysis was performed in wheat leave tissues. A total of 3004 Khib sites in 1104 proteins were repeatedly identified. Structure characterization of these Khib peptides revealed 12 conserved sequence motifs. Function classification and enrichment analysis indicated these Khib proteins showed a wide function and pathway distribution, of which ribosome activity, protein biosynthesis and photosynthesis were the preferred biological processes. Subcellular location predication indicated chloroplast was the dominant subcellular compartment where Khib was distributed. There may be some crosstalks among Khib, lysine acetylation and lysine succinylation modification because some proteins and sites were modified by all these three acylations. The present study demonstrated the critical role of Khib in wheat biological and physiology, which has expanded the scope of Khib in plant species. Our study is an available resource and reference of Khib function demonstration and structure characterization in cereal plant, as well as in plant kingdom.
Collapse
Affiliation(s)
- Bo Feng
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Ji’nan, Shandong, P. R. China
| | - Shengdong Li
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Ji’nan, Shandong, P. R. China
| | - Zongshuai Wang
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Ji’nan, Shandong, P. R. China
| | - Fang Cao
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Ji’nan, Shandong, P. R. China
| | - Zheng Wang
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Ji’nan, Shandong, P. R. China
| | - Geng Li
- College of Agronomy, Shandong Agricultural University, Tai’an, Shandong, P. R. China
| | - Kaichang Liu
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Ji’nan, Shandong, P. R. China
| |
Collapse
|
23
|
Yuan B, Liu T, Cheng Y, Gao S, Li L, Cai L, Yang J, Chen J, Zhong K. Comprehensive Proteomic Analysis of Lysine Acetylation in Nicotiana benthamiana After Sensing CWMV Infection. Front Microbiol 2021; 12:672559. [PMID: 34084157 PMCID: PMC8166574 DOI: 10.3389/fmicb.2021.672559] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 04/15/2021] [Indexed: 11/13/2022] Open
Abstract
Protein lysine acetylation (Kac) is an important post-translational modification mechanism in eukaryotes that is involved in cellular regulation. To investigate the role of Kac in virus-infected plants, we characterized the lysine acetylome of Nicotiana benthamiana plants with or without a Chinese wheat mosaic virus (CWMV) infection. We identified 4,803 acetylated lysine sites on 1,964 proteins. A comparison of the acetylation levels of the CWMV-infected group with those of the uninfected group revealed that 747 sites were upregulated on 422 proteins, including chloroplast localization proteins and histone H3, and 150 sites were downregulated on 102 proteins. Nineteen conserved motifs were extracted and 51 percent of the acetylated proteins located on chloroplast. Nineteen Kac sites were located on histone proteins, including 10 Kac sites on histone 3. Bioinformatics analysis results indicated that lysine acetylation occurs on a large number of proteins involved in biological processes, especially photosynthesis. Furthermore, we found that the acetylation level of chloroplast proteins, histone 3 and some metabolic pathway-related proteins were significantly higher in CWMV-infected plants than in uninfected plants. In summary, our results reveal the regulatory roles of Kac in response to CWMV infection.
Collapse
Affiliation(s)
- Bowen Yuan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Tingting Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Ye Cheng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Shiqi Gao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China.,Yantai Academy of Agricultural Science, Yantai, China
| | - Linzhi Li
- Yantai Academy of Agricultural Science, Yantai, China
| | - Linna Cai
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Jian Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Jianping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Kaili Zhong
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| |
Collapse
|
24
|
Dong Y, Li P, Li P, Chen C. First comprehensive analysis of lysine succinylation in paper mulberry (Broussonetia papyrifera). BMC Genomics 2021; 22:255. [PMID: 33838656 PMCID: PMC8035759 DOI: 10.1186/s12864-021-07567-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/26/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Lysine succinylation is a naturally occurring post-translational modification (PTM) that is ubiquitous in organisms. Lysine succinylation plays important roles in regulating protein structure and function as well as cellular metabolism. Global lysine succinylation at the proteomic level has been identified in a variety of species; however, limited information on lysine succinylation in plant species, especially paper mulberry, is available. Paper mulberry is not only an important plant in traditional Chinese medicine, but it is also a tree species with significant economic value. Paper mulberry is found in the temperate and tropical zones of China. The present study analyzed the effects of lysine succinylation on the growth, development, and physiology of paper mulberry. RESULTS A total of 2097 lysine succinylation sites were identified in 935 proteins associated with the citric acid cycle (TCA cycle), glyoxylic acid and dicarboxylic acid metabolism, ribosomes and oxidative phosphorylation; these pathways play a role in carbon fixation in photosynthetic organisms and may be regulated by lysine succinylation. The modified proteins were distributed in multiple subcellular compartments and were involved in a wide variety of biological processes, such as photosynthesis and the Calvin-Benson cycle. CONCLUSION Lysine-succinylated proteins may play key regulatory roles in metabolism, primarily in photosynthesis and oxidative phosphorylation, as well as in many other cellular processes. In addition to the large number of succinylated proteins associated with photosynthesis and oxidative phosphorylation, some proteins associated with the TCA cycle are succinylated. Our study can serve as a reference for further proteomics studies of the downstream effects of succinylation on the physiology and biochemistry of paper mulberry.
Collapse
Affiliation(s)
- Yibo Dong
- College of Animal Science, Guizhou university, Guiyang, 550025, Guizhou, China
- Department of Plant Protection, Institute of Crop Protection, College of Agriculture, Guizhou University, Guiyang, 550025, Guizhou, China
| | - Ping Li
- Institute of Grassland Research, Sichuan Academy of Grassland Science, Chengdu, 610000, Sichuan, China
| | - Ping Li
- College of Animal Science, Guizhou university, Guiyang, 550025, Guizhou, China
| | - Chao Chen
- College of Animal Science, Guizhou university, Guiyang, 550025, Guizhou, China.
| |
Collapse
|
25
|
Bo F, Shengdong L, Zongshuai W, Fang C, Zheng W, Chunhua G, Geng L, Ling'an K. Global analysis of lysine 2-hydroxyisobutyrylation in wheat root. Sci Rep 2021; 11:6327. [PMID: 33737719 PMCID: PMC7973580 DOI: 10.1038/s41598-021-85879-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 03/03/2021] [Indexed: 12/13/2022] Open
Abstract
Lysine 2-hydroxyisobutyrylation (Khib) is a novel naturally occurring post-translational modification. The system Khib identification at proteomics level has been performed in various species and tissues to characterize the role of Khib in biological activities. However, the study of Khib in plant species is relatively less. In the present study, the first plant root tissues lysine 2-hydroxyisobutyrylome analysis was performed in wheat with antibody immunoprecipitation affinity, high resolution mass spectrometry-based proteomics and bioinformatics analysis. In total, 6328 Khib sites in 2186 proteins were repeatedly identified in three replicates. These Khib proteins showed a wide subcellular location distribution. Function and pathways characterization of these Khib proteins indicated that many cellular functions and metabolism pathways were potentially affected by this modification. Protein and amino acid metabolism related process may be regulated by Khib, especially ribosome activities and proteins biosynthesis process. Carbohydrate metabolism and energy production related processes including glycolysis/gluconeogenesis, TCA cycle and oxidative phosphorylation pathways were also affected by Khib modification. Besides, root sulfur assimilation and transformation related enzymes exhibited Khib modification. Our work illustrated the potential regulation role of Khib in wheat root physiology and biology, which could be used as a useful reference for Khib study in plant root.
Collapse
Affiliation(s)
- Feng Bo
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Ji'nan, Shandong, 250100, People's Republic of China
| | - Li Shengdong
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Ji'nan, Shandong, 250100, People's Republic of China
| | - Wang Zongshuai
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Ji'nan, Shandong, 250100, People's Republic of China
| | - Cao Fang
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Ji'nan, Shandong, 250100, People's Republic of China
| | - Wang Zheng
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Ji'nan, Shandong, 250100, People's Republic of China
| | - Gao Chunhua
- Cotton Research Center, Shandong Academy of Agricultural Sciences, Ji'nan, Shandong, 250100, People's Republic of China
| | - Li Geng
- College of Agronomy, Shandong Agricultural University, Tai'an, Shandong, 271018, People's Republic of China.
| | - Kong Ling'an
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Ji'nan, Shandong, 250100, People's Republic of China.
| |
Collapse
|
26
|
Rubisco lysine acetylation occurs at very low stoichiometry in mature Arabidopsis leaves: implications for regulation of enzyme function. Biochem J 2020; 477:3885-3896. [PMID: 32959870 PMCID: PMC7557146 DOI: 10.1042/bcj20200413] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 09/18/2020] [Accepted: 09/21/2020] [Indexed: 11/23/2022]
Abstract
Multiple studies have shown ribulose-1,5-bisphosphate carboxylase/oxygenase (E.C. 4.1.1.39; Rubisco) to be subject to Lys-acetylation at various residues; however, opposing reports exist about the biological significance of these post-translational modifications. One aspect of the Lys-acetylation that has not been addressed in plants generally, or with Rubisco specifically, is the stoichiometry at which these Lys-acetylation events occur. As a method to ascertain which Lys-acetylation sites on Arabidopsis Rubisco might be of regulatory importance to its catalytic function in the Calvin–Benson cycle, we purified Rubisco from leaves in both the day and night-time and performed independent mass spectrometry based methods to determine the stoichiometry of Rubisco Lys-acetylation events. The results indicate that Rubisco is acetylated at most Lys residues, but each acetylation event occurs at very low stoichiometry. Furthermore, in vitro treatments that increased the extent of Lys-acetylation on purified Rubisco had no effect on Rubisco maximal activity. Therefore, we are unable to confirm that Lys-acetylation at low stoichiometries can be a regulatory mechanism controlling Rubisco maximal activity. The results highlight the need for further use of stoichiometry measurements when determining the biological significance of reversible PTMs like acetylation.
Collapse
|
27
|
Guo W, Han L, Li X, Wang H, Mu P, Lin Q, Liu Q, Zhang Y. Proteome and lysine acetylome analysis reveals insights into the molecular mechanism of seed germination in wheat. Sci Rep 2020; 10:13454. [PMID: 32778714 PMCID: PMC7418024 DOI: 10.1038/s41598-020-70230-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 07/13/2020] [Indexed: 12/19/2022] Open
Abstract
Seed germination is the first stage in wheat growth and development, directly affecting grain yield and quality. As an important post-translation modification, lysine acetylation participates in diverse biological functions. However, little is known regarding the quantitative acetylproteome characterization during wheat seed germination. In this study, we generated the first comparative proteomes and lysine acetylomes during wheat seed germination. In total, 5,639 proteins and 1,301 acetylated sites on 722 proteins were identified at 0, 12 and 24 h after imbibitions. Several particularly preferred amino acids were found near acetylation sites, including KacS, KacT, KacK, KacR, KacH, KacF, KacN, Kac*E, FKac and Kac*D, in the embryos during seed germination. Among them, KacH, KacF, FKac and KacK were conserved in wheat. Biosynthetic process, transcriptional regulation, ribosome and proteasome pathway related proteins were significantly enriched in both differentially expressed proteins and differentially acetylated proteins through Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analysis. We also revealed that histone acetylation was differentially involved in epigenetic regulation during seed germination. Meanwhile, abscisic acid and stress related proteins were found with acetylation changes. In addition, we focused on 8 enzymes involved in carbohydrate metabolism, and found they were differentially acetylated during seed germination. Finally, a putative metabolic pathway was proposed to dissect the roles of protein acetylation during wheat seed germination. These results not only demonstrate that lysine acetylation may play key roles in seed germination of wheat but also reveal insights into the molecular mechanism of seed germination in this crop.
Collapse
Affiliation(s)
- Weiwei Guo
- Shandong Provincial Key Laboratory of Dryland Farming Technology/College of Agronomy, Qingdao Agricultural University, Qingdao Shandong, 266109, China
| | - Liping Han
- Shandong Provincial Key Laboratory of Dryland Farming Technology/College of Agronomy, Qingdao Agricultural University, Qingdao Shandong, 266109, China
| | - Ximei Li
- Shandong Provincial Key Laboratory of Dryland Farming Technology/College of Agronomy, Qingdao Agricultural University, Qingdao Shandong, 266109, China
| | - Huifang Wang
- Shandong Provincial Key Laboratory of Dryland Farming Technology/College of Agronomy, Qingdao Agricultural University, Qingdao Shandong, 266109, China
| | - Ping Mu
- Shandong Provincial Key Laboratory of Dryland Farming Technology/College of Agronomy, Qingdao Agricultural University, Qingdao Shandong, 266109, China
| | - Qi Lin
- Shandong Provincial Key Laboratory of Dryland Farming Technology/College of Agronomy, Qingdao Agricultural University, Qingdao Shandong, 266109, China
| | - Qingchang Liu
- Shandong Provincial Key Laboratory of Dryland Farming Technology/College of Agronomy, Qingdao Agricultural University, Qingdao Shandong, 266109, China.,Laboratory of Crop Heterosis and Utilization, Ministry of Education, China Agricultural University, Beijing, 100193, China
| | - Yumei Zhang
- Shandong Provincial Key Laboratory of Dryland Farming Technology/College of Agronomy, Qingdao Agricultural University, Qingdao Shandong, 266109, China.
| |
Collapse
|
28
|
Mao M, Xue Y, He Y, Zhou X, Rafique F, Hu H, Liu J, Feng L, Yang W, Li X, Sun L, Huang Z, Ma J. Systematic identification and comparative analysis of lysine succinylation between the green and white parts of chimeric leaves of Ananas comosus var. bracteatus. BMC Genomics 2020; 21:383. [PMID: 32493214 PMCID: PMC7268518 DOI: 10.1186/s12864-020-6750-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 04/21/2020] [Indexed: 01/26/2023] Open
Abstract
Background Lysine succinylation, an important protein posttranslational modification (PTM), is widespread and conservative. The regulatory functions of succinylation in leaf color has been reported. The chimeric leaves of Ananas comosus var. bracteatus are composed of normal green parts and albino white parts. However, the extent and function of lysine succinylation in chimeric leaves of Ananas comosus var. bracteatus has yet to be investigated. Results Compared to the green (Gr) parts, the global succinylation level was increased in the white (Wh) parts of chimeric leaves according to the Western blot and immunohistochemistry analysis. Furthermore, we quantitated the change in the succinylation profiles between the Wh and Gr parts of chimeric leaves using label-free LFQ intensity. In total, 855 succinylated sites in 335 proteins were identified, and 593 succinylated sites in 237 proteins were quantified. Compared to the Gr parts, 232 (61.1%) sites in 128 proteins were quantified as upregulated targets, and 148 (38.9%) sites in 70 proteins were quantified as downregulated targets in the Wh parts of chimeric leaves using a 1.5-fold threshold (P < 0.05). These proteins with altered succinylation level were mainly involved in crassulacean acid metabolism (CAM) photosynthesis, photorespiration, glycolysis, the citric acid cycle (CAC) and pyruvate metabolism. Conclusions Our results suggested that the changed succinylation level in proteins might function in the main energy metabolism pathways—photosynthesis and respiration. Succinylation might provide a significant effect in the growth of chimeric leaves and the relationship between the Wh and Gr parts of chimeric leaves. This study not only provided a basis for further characterization on the function of succinylated proteins in chimeric leaves of Ananas comosus var. bracteatus but also provided a new insight into molecular breeding for leaf color chimera.
Collapse
Affiliation(s)
- Meiqin Mao
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Yanbin Xue
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Yehua He
- Horticultural Biotechnology College, South China Agricultural University, Guangzhou, China
| | - Xuzixing Zhou
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Fatima Rafique
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Hao Hu
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Jiawen Liu
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Lijun Feng
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Wei Yang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Xi Li
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Lingxia Sun
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Zhuo Huang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Jun Ma
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China.
| |
Collapse
|
29
|
Yan Z, Shen Z, Gao ZF, Chao Q, Qian CR, Zheng H, Wang BC. A comprehensive analysis of the lysine acetylome reveals diverse functions of acetylated proteins during de-etiolation in Zea mays. JOURNAL OF PLANT PHYSIOLOGY 2020; 248:153158. [PMID: 32240968 DOI: 10.1016/j.jplph.2020.153158] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 02/02/2020] [Accepted: 02/02/2020] [Indexed: 06/11/2023]
Abstract
Lysine acetylation is one of the most important post-translational modifications and is involved in multiple cellular processes in plants. There is evidence that acetylation may play an important role in light-induced de-etiolation, a key developmental switch from skotomorphogenesis to photomorphogenesis. During this transition, establishment of photosynthesis is of great significance. However, studies on acetylome dynamics during de-etiolation are limited. Here, we performed the first global lysine acetylome analysis for Zea mays seedlings undergoing de-etiolation, using nano liquid chromatography coupled to tandem mass spectrometry, and identified 814 lysine-acetylated sites on 462 proteins. Bioinformatics analysis of this acetylome showed that most of the lysine-acetylated proteins are predicted to be located in the cytoplasm, nucleus, chloroplast, and mitochondria. In addition, we detected ten lysine acetylation motifs and found that the accumulation of 482 lysine-acetylated peptides corresponding to 289 proteins changed significantly during de-etiolation. These proteins include transcription factors, histones, and proteins involved in chlorophyll synthesis, photosynthesis light reaction, carbon assimilation, glycolysis, the TCA cycle, amino acid metabolism, lipid metabolism, and nucleotide metabolism. Our study provides an in-depth dataset that extends our knowledge of in vivo acetylome dynamics during de-etiolation in monocots. This dataset promotes our understanding of the functional consequences of lysine acetylation in diverse cellular metabolic regulatory processes, and will be a useful toolkit for further investigations of the lysine acetylome and de-etiolation in plants.
Collapse
Affiliation(s)
- Zhen Yan
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Zhuo Shen
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou 510640, China.
| | - Zhi-Fang Gao
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.
| | - Qing Chao
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China; The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100039, China.
| | - Chun-Rong Qian
- Institute of Crop Cultivation and Farming, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China.
| | - Haiyan Zheng
- Center for Advanced Biotechnology and Medicine, Biological Mass Spectrometry Facility, Rutgers University, Piscataway, New Jersey 08855, USA.
| | - Bai-Chen Wang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China; The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100039, China.
| |
Collapse
|
30
|
Singh PK, Gao W, Liao P, Li Y, Xu FC, Ma XN, Long L, Song CP. Comparative acetylome analysis of wild-type and fuzzless-lintless mutant ovules of upland cotton (Gossypium hirsutum Cv. Xu142) unveils differential protein acetylation may regulate fiber development. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 150:56-70. [PMID: 32114400 DOI: 10.1016/j.plaphy.2020.02.031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 02/17/2020] [Accepted: 02/20/2020] [Indexed: 06/10/2023]
Abstract
Protein acetylation (KAC) is a significant post-translational modification, which plays an essential role in the regulation of growth and development. Unfortunately, related studies are inadequately available in angiosperms, and to date, there is no report providing insight on the role of protein acetylation in cotton fiber development. Therefore, we first compared the lysine-acetylation proteome (acetylome) of upland cotton ovules in the early fiber development stages by using wild-type as well as its fuzzless-lintless mutant to identify the role of KAC in the fiber development. A total of 1696 proteins with 2754 acetylation sites identified with the different levels of acetylation belonging to separate subcellular compartments suggesting a large number of proteins differentially acetylated in two cotton cultivars. About 80% of the sites were predicted to localize in the cytoplasm, chloroplast, and mitochondria. Seventeen significantly enriched acetylation motifs were identified. Serine and threonine and cysteine located downstream and upstream to KAC sites. KEGG pathway enrichment analysis indicated oxidative phosphorylation, fatty acid, ribosome and protein, and folate biosynthesis pathways enriched significantly. To our knowledge, this is the first report of comparative acetylome analysis to compare the wild-type as well as its fuzzless-lintless mutant acetylome data to identify the differentially acetylated proteins, which may play a significant role in cotton fiber development.
Collapse
Affiliation(s)
- Prashant Kumar Singh
- Department of Vegetables and Field Crops, Institute of Plant Sciences, Agricultural Research Organization - The Volcani Center, Rishon LeZion, 7505101, Israel; State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress Biology, School of Life Sciences, Department of Biology, Henan University, Kaifeng, China; Department of Biotechnology, Pachhunga University College, Mizoram University, Aizawl, 796001, India.
| | - Wei Gao
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress Biology, School of Life Sciences, Department of Biology, Henan University, Kaifeng, China
| | - Peng Liao
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress Biology, School of Life Sciences, Department of Biology, Henan University, Kaifeng, China
| | - Yang Li
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress Biology, School of Life Sciences, Department of Biology, Henan University, Kaifeng, China
| | - Fu-Chun Xu
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress Biology, School of Life Sciences, Department of Biology, Henan University, Kaifeng, China
| | - Xiao-Nan Ma
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress Biology, School of Life Sciences, Department of Biology, Henan University, Kaifeng, China
| | - Lu Long
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress Biology, School of Life Sciences, Department of Biology, Henan University, Kaifeng, China
| | - Chun-Peng Song
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress Biology, School of Life Sciences, Department of Biology, Henan University, Kaifeng, China.
| |
Collapse
|
31
|
Haq MI, Thakuri BKC, Hobbs T, Davenport ML, Kumar D. Tobacco SABP2-interacting protein SIP428 is a SIR2 type deacetylase. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 152:72-80. [PMID: 32388422 DOI: 10.1016/j.plaphy.2020.04.034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 04/23/2020] [Accepted: 04/23/2020] [Indexed: 05/25/2023]
Abstract
Salicylic acid is widely studied for its role in biotic stress signaling in plants. Several SA-binding proteins, including SABP2 (salicylic acid-binding protein 2) has been identified and characterized for their role in plant disease resistance. SABP2 is a 29 kDA tobacco protein that binds to salicylic acid with high affinity. It is a methylesterase enzyme that catalyzes the conversion of methyl salicylate into salicylic acid required for inducing a robust systemic acquired resistance (SAR) in plants. Methyl salicylic acid is one of the several mobile SAR signals identified in plants. SABP2-interacting protein 428 (SIP428) was identified in a yeast two-hybrid screen using tobacco SABP2 as a bait. In silico analysis shows that SIP428 possesses the SIR2 (silent information regulatory 2)-like conserved motifs. SIR2 enzymes are orthologs of sirtuin proteins that catalyze the NAD+-dependent deacetylation of Nε lysine-acetylated proteins. The recombinant SIP428 expressed in E. coli exhibits SIR2-like deacetylase activity. SIP428 shows homology to Arabidopsis AtSRT2 (67% identity), which is implicated in SA-mediated basal defenses. Immunoblot analysis using anti-acetylated lysine antibodies showed that the recombinant SIP428 is lysine acetylated. The expression of SIP428 transcripts was moderately downregulated upon infection by TMV. In the presence of SIP428, the esterase activity of SABP2 increased modestly. The interaction of SIP428 with SABP2, it's regulation upon pathogen infection, and similarity with AtSRT2 suggests that SIP428 is likely to play a role in stress signaling in plants.
Collapse
Affiliation(s)
- Md Imdadul Haq
- Department of Biological Sciences, Box 70703, East Tennessee State University, Johnson City, TN, 37614, USA
| | - Bal Krishna Chand Thakuri
- Department of Biological Sciences, Box 70703, East Tennessee State University, Johnson City, TN, 37614, USA
| | - Tazley Hobbs
- Department of Biological Sciences, Box 70703, East Tennessee State University, Johnson City, TN, 37614, USA
| | - Mackenzie L Davenport
- Department of Biological Sciences, Box 70703, East Tennessee State University, Johnson City, TN, 37614, USA
| | - Dhirendra Kumar
- Department of Biological Sciences, Box 70703, East Tennessee State University, Johnson City, TN, 37614, USA.
| |
Collapse
|
32
|
Nie LB, Liang QL, Du R, Elsheikha HM, Han NJ, Li FC, Zhu XQ. Global Proteomic Analysis of Lysine Malonylation in Toxoplasma gondii. Front Microbiol 2020; 11:776. [PMID: 32411114 PMCID: PMC7198775 DOI: 10.3389/fmicb.2020.00776] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 03/31/2020] [Indexed: 11/17/2022] Open
Abstract
Lysine malonylation (Kmal) is a new post-translational modification (PTM), which has been reported in several prokaryotic and eukaryotic species. Although Kmal can regulate many and diverse biological processes in various organisms, knowledge about this important PTM in the apicomplexan parasite Toxoplasma gondii is limited. In this study, we performed the first global profiling of malonylated proteins in T. gondii tachyzoites using affinity enrichment and Liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis. Three experiments performed in tandem revealed 294, 345, 352 Kmal sites on 203, 236, 230 malonylated proteins, respectively. Computational analysis showed the identified malonylated proteins to be localized in various subcellular compartments and involved in many cellular functions, particularly mitochondrial function. Additionally, one conserved Kmal motif with a strong bias for cysteine was detected. Taken together, these findings provide the first report of Kmal profile in T. gondii and should be an important resource for studying the physiological roles of Kmal in this parasite.
Collapse
Affiliation(s)
- Lan-Bi Nie
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China.,State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Qin-Li Liang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Rui Du
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Hany M Elsheikha
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough, United Kingdom
| | - Nai-Jian Han
- Jingjie PTM Biolabs (Hangzhou) Co. Ltd., Hangzhou, China
| | - Fa-Cai Li
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xing-Quan Zhu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| |
Collapse
|
33
|
High-Resolution Lysine Acetylome Profiling by Offline Fractionation and Immunoprecipitation. Methods Mol Biol 2020; 2139:241-256. [PMID: 32462591 DOI: 10.1007/978-1-0716-0528-8_18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Acetylation of lysine side chains at their ε-amino group is a reversible posttranslational modification (PTM), which can affect diverse protein functions. Lysine acetylation was first described on histones, and nowadays gains more and more attention due to its more general occurrence in proteomes, and its possible crosstalk with other protein modifications. Here we describe a workflow to investigate the acetylation of lysine-containing peptides on a large scale. For this high-resolution lysine acetylome analysis, dimethyl-labeled peptide samples are pooled and offline-fractionated using hydrophilic interaction liquid chromatography (HILIC). The offline fractionation is followed by an immunoprecipitation and liquid chromatography-tandem mass spectrometry (LC-MS/MS) for data acquisition and subsequent data analysis.
Collapse
|
34
|
Xu D, Wang X. Lysine Acetylation is an Important Post-Translational Modification that Modulates Heat Shock Response in the Sea Cucumber Apostichopus japonicus. Int J Mol Sci 2019; 20:ijms20184423. [PMID: 31505730 PMCID: PMC6770049 DOI: 10.3390/ijms20184423] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 08/30/2019] [Accepted: 09/04/2019] [Indexed: 12/19/2022] Open
Abstract
Heat stress (HS) is an important factor for the survival of the marine organism Apostichopus japonicus. Lysine acetylation is a pivotal post-translational modification that modulates diverse physiological processes including heat shock response (HSR). In this study, 4028 lysine acetylation sites in 1439 proteins were identified in A. japonicus by acetylproteome sequencing. A total of 13 motifs were characterized around the acetylated lysine sites. Gene Ontology analysis showed that major acetylated protein groups were involved in “oxidation–reduction process”, “ribosome”, and “protein binding” terms. Compared to the control group, the acetylation quantitation of 25 and 41 lysine sites changed after 6 and 48 h HS. Notably, lysine acetyltransferase CREB-binding protein (CBP) was identified to have differential acetylation quantitation at multiple lysine sites under HS. Various chaperones, such as caseinolytic peptidase B protein homolog (CLBP), T-complex protein 1 (TCP1), and cyclophilin A (CYP1), showed differential acetylation quantitation after 48 h HS. Additionally, many translation-associated proteins, such as ribosomal proteins, translation initiation factor (IF), and elongation factors (EFs), had differential acetylation quantitation under HS. These proteins represented specific interaction networks. Collectively, our results offer novel insight into the complex HSR in A. japonicus and provide a resource for further mechanistic studies examining the regulation of protein function by lysine acetylation.
Collapse
Affiliation(s)
- Dongxue Xu
- College of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China.
| | - Xuan Wang
- Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
35
|
Chen P, Wei F, Li R, Li ZQ, Kashif MH, Zhou RY. Comparative acetylomic analysis reveals differentially acetylated proteins regulating anther and pollen development in kenaf cytoplasmic male sterility line. PHYSIOLOGIA PLANTARUM 2019; 166:960-978. [PMID: 30353937 DOI: 10.1111/ppl.12850] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 10/10/2018] [Accepted: 10/10/2018] [Indexed: 06/08/2023]
Abstract
Cytoplasmic male sterility (CMS) is widely used in plant breeding and represents a perfect model to understand cyto-nuclear interactions and pollen development research. Lysine acetylation in proteins is a dynamic and reversible posttranslational modification (PTM) that plays an important roles in diverse cell processes and signaling. However, studies addressing acetylation PTM regarding to anther and pollen development in CMS background are largely lacking. To reveal the possible mechanism of kenaf (Hibiscus cannabinus L.) CMS and pollen development, we performed a label-free-based comparative acetylome analysis in kenaf anther of a CMS line and wild-type (Wt). Using whole transcriptome unigenes of kenaf as the reference genome, we identified a total of 1204 Kac (lysin acetylation) sites on 1110 peptides corresponding to 672 unique proteins. Futher analysis showed 56 out of 672 proteins were differentially acetylated between CMS and Wt line, with 13 and 43 of those characterized up- and downregulated, respectively. Thirty-eight and 82 proteins were detected distinctively acetylated in CMS and Wt lines, respectively. And evaluation of the acetylomic and proteomic results indicated that the most significantly acetylated proteins were not associated with abundant changes at the protein level. Bioinformatics analysis demonstrated that many of these proteins were involved in various biological processes which may play key roles in pollen development, inculding tricarboxylic acid (TCA) cycle and energy metabolism, protein folding, protein metabolism, cell signaling, gene expression regulation. Taken together, our results provide insight into the CMS molecular mechanism and pollen development in kenaf from a protein acetylation perspective.
Collapse
Affiliation(s)
- Peng Chen
- Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning, China
| | - Fan Wei
- Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning, China
| | - Ru Li
- College of Life Science & Technology, Guangxi University, Nanning, China
| | - Zeng-Qiang Li
- Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning, China
| | - Muhammad H Kashif
- Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning, China
| | - Rui-Yang Zhou
- Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning, China
| |
Collapse
|
36
|
Wang G, Xu L, Yu H, Gao J, Guo L. Systematic analysis of the lysine succinylome in the model medicinal mushroom Ganoderma lucidum. BMC Genomics 2019; 20:585. [PMID: 31311503 PMCID: PMC6636155 DOI: 10.1186/s12864-019-5962-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Accepted: 07/09/2019] [Indexed: 01/08/2023] Open
Abstract
Background Ganoderma lucidum, one of the best-known medicinal mushrooms in the world, produces more than 400 different bioactive compounds. However, the regulation of these bioactive compounds biosynthesis is still unclear. Lysine succinylation is a critical post-translational modification and has many important functions in all aspects of eukaryotic and prokaryotic cells. Although it has been studied for a long time, its function is still unclear in G. lucidum. In this study, a global investigation was carried out on the succinylome in G. lucidum. Results In total, 382 modified proteins which contain 742 lysine succinylated sites were obtained. The proteomics data are available through ProteomeXchange with the dataset accession number PXD013954. Bioinformatics analysis revealed that the succinylated proteins were distributed in various cellular biological processes and participated in a great variety of metabolic pathways including carbon metabolism and biosynthesis of secondary metabolites. Notably, a total of 47 enzymes associated with biosynthesis of triterpenoids and polysaccharides were found to be succinylated. Furthermore, two succinylated sites K90 and K106 were found in the conserved Fve region of immunomodulatory protein LZ8. These observations show that lysine succinylation plays an indispensable role in metabolic regulation of bioactive compounds in G. lucidum. Conclusions These findings indicate that lysine succinylation is related to many metabolic pathways, especially pharmacologically bioactive compounds metabolism. This study provides the first global investigation of lysine succinylation in G. lucidum and the succinylome dataset provided in this study serves as a resource to further explore the physiological roles of these modifications in secondary metabolism. Electronic supplementary material The online version of this article (10.1186/s12864-019-5962-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Guangyuan Wang
- Shandong Province Key Laboratory of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Changcheng Road, No.700, Qingdao, 266109, China
| | - Lili Xu
- Shandong Province Key Laboratory of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Changcheng Road, No.700, Qingdao, 266109, China
| | - Hao Yu
- Shandong Province Key Laboratory of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Changcheng Road, No.700, Qingdao, 266109, China
| | - Jie Gao
- Shandong Province Key Laboratory of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Changcheng Road, No.700, Qingdao, 266109, China
| | - Lizhong Guo
- Shandong Province Key Laboratory of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Changcheng Road, No.700, Qingdao, 266109, China.
| |
Collapse
|
37
|
Uhrig RG, Schläpfer P, Roschitzki B, Hirsch-Hoffmann M, Gruissem W. Diurnal changes in concerted plant protein phosphorylation and acetylation in Arabidopsis organs and seedlings. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 99:176-194. [PMID: 30920011 DOI: 10.1111/tpj.14315] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 02/24/2019] [Accepted: 02/26/2019] [Indexed: 05/22/2023]
Abstract
Protein phosphorylation and acetylation are the two most abundant post-translational modifications (PTMs) that regulate protein functions in eukaryotes. In plants, these PTMs have been investigated individually; however, their co-occurrence and dynamics on proteins is currently unknown. Using Arabidopsis thaliana, we quantified changes in protein phosphorylation, acetylation and protein abundance in leaf rosettes, roots, flowers, siliques and seedlings at the end of day (ED) and at the end of night (EN). This identified 2549 phosphorylated and 909 acetylated proteins, of which 1724 phosphorylated and 536 acetylated proteins were also quantified for changes in PTM abundance between ED and EN. Using a sequential dual-PTM workflow, we identified significant PTM changes and intersections in these organs and plant developmental stages. In particular, cellular process-, pathway- and protein-level analyses reveal that the phosphoproteome and acetylome predominantly intersect at the pathway- and cellular process-level at ED versus EN. We found 134 proteins involved in core plant cell processes, such as light harvesting and photosynthesis, translation, metabolism and cellular transport, that were both phosphorylated and acetylated. Our results establish connections between PTM motifs, PTM catalyzing enzymes and putative substrate networks. We also identified PTM motifs for further characterization of the regulatory mechanisms that control cellular processes during the diurnal cycle in different Arabidopsis organs and seedlings. The sequential dual-PTM analysis expands our understanding of diurnal plant cell regulation by PTMs and provides a useful resource for future analyses, while emphasizing the importance of analyzing multiple PTMs simultaneously to elucidate when, where and how they are involved in plant cell regulation.
Collapse
Affiliation(s)
- R Glen Uhrig
- Institute of Molecular Plant Biology, Department of Biology, ETH Zurich, 8092, Zurich, Switzerland
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Pascal Schläpfer
- Institute of Molecular Plant Biology, Department of Biology, ETH Zurich, 8092, Zurich, Switzerland
| | - Bernd Roschitzki
- Functional Genomics Center, ETH Zurich, 8092, Zurich, Switzerland
| | - Matthias Hirsch-Hoffmann
- Institute of Molecular Plant Biology, Department of Biology, ETH Zurich, 8092, Zurich, Switzerland
| | - Wilhelm Gruissem
- Institute of Molecular Plant Biology, Department of Biology, ETH Zurich, 8092, Zurich, Switzerland
- Advanced Plant Biotechnology Center, National Chung Hsing University, Taichung, 40227, Taiwan
| |
Collapse
|
38
|
Cao Y, Fan G, Wang Z, Gu Z. Phytoplasma-induced Changes in the Acetylome and Succinylome of Paulownia tomentosa Provide Evidence for Involvement of Acetylated Proteins in Witches' Broom Disease. Mol Cell Proteomics 2019; 18:1210-1226. [PMID: 30936209 PMCID: PMC6553929 DOI: 10.1074/mcp.ra118.001104] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 02/20/2019] [Indexed: 12/16/2022] Open
Abstract
Lysine acetylation and succinylation are post-translational modifications of proteins that have been shown to play roles in plants response to pathogen infection. Phytoplasma infection can directly alter multiple metabolic processes in the deciduous plant Paulownia and lead to Paulownia witches' broom (PaWB) disease, the major cause of Paulownia mortality worldwide. However, the extent and function of lysine aceylation and succinylation during phytoplasma infection have yet to be explored. Here, we investigated the changes in the proteome, acetylome, and succinylome of phytoplasma-infected Paulownia tomentosa seedlings using quantitative mass spectrometry. In total, we identified 8963 proteins, 2893 acetylated proteins (5558 acetylation sites), and 1271 succinylated proteins (1970 succinylation sites), with 425 (533 sites) simultaneously acetylated and succinylated. Comparative analysis revealed that 276 proteins, 546 acetylated proteins (741 acetylation sites) and 5 succinylated proteins (5 succinylation sites) were regulated in response to phytoplasma infection, suggesting that acetylation may be more important than succinylation in PaWB. Enzymatic assays showed that acetylation of specific sites in protochlorophyllide reductase and RuBisCO, key enzymes in chlorophyll and starch biosynthesis, respectively, modifies their activity in phytoplasma-infected seedlings. On the basis of these results, we propose a model to elucidate the molecular mechanism of responses to PaWB and offer a resource for functional studies on the effects of acetylation on protein function.
Collapse
Affiliation(s)
| | - Guoqiang Fan
- From the ‡Institute of Paulownia and
- §College of Forestry, Henan Agricultural University, Zhengzhou, Henan, 450002, P. R. China
| | - Zhe Wang
- From the ‡Institute of Paulownia and
| | - Zhibin Gu
- From the ‡Institute of Paulownia and
| |
Collapse
|
39
|
Xue C, Liu S, Chen C, Zhu J, Yang X, Zhou Y, Guo R, Liu X, Gong Z. Global Proteome Analysis Links Lysine Acetylation to Diverse Functions in Oryza Sativa. Proteomics 2019; 18. [PMID: 29106068 DOI: 10.1002/pmic.201700036] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 10/11/2017] [Indexed: 01/26/2023]
Abstract
Lysine acetylation (Kac) is an important protein post-translational modification in both eukaryotes and prokaryotes. Herein, we report the results of a global proteome analysis of Kac and its diverse functions in rice (Oryza sativa). We identified 1353 Kac sites in 866 proteins in rice seedlings. A total of 11 Kac motifs are conserved, and 45% of the identified proteins are localized to the chloroplast. Among all acetylated proteins, 38 Kac sites are combined in core histones. Bioinformatics analysis revealed that Kac occurs on a diverse range of proteins involved in a wide variety of biological processes, especially photosynthesis. Protein-protein interaction networks of the identified proteins provided further evidence that Kac contributes to a wide range of regulatory functions. Furthermore, we demonstrated that the acetylation level of histone H3 (lysine 27 and 36) is increased in response to cold stress. In summary, our approach comprehensively profiles the regulatory roles of Kac in the growth and development of rice.
Collapse
Affiliation(s)
- Chao Xue
- Jiangsu Key Laboratory of Crop Genetics and Physiology Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, P. R. China
| | - Shuai Liu
- Jiangsu Key Laboratory of Crop Genetics and Physiology Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, P. R. China
| | - Chen Chen
- Jiangsu Key Laboratory of Crop Genetics and Physiology Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, P. R. China
| | - Jun Zhu
- Jingjie PTM BioLab (Hangzhou) Co. Ltd., Hangzhou, P. R. China
| | - Xibin Yang
- Jingjie PTM BioLab (Hangzhou) Co. Ltd., Hangzhou, P. R. China
| | - Yong Zhou
- Jiangsu Key Laboratory of Crop Genetics and Physiology Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, P. R. China
| | - Rui Guo
- Jiangsu Key Laboratory of Crop Genetics and Physiology Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, P. R. China
| | - Xiaoyu Liu
- Jiangsu Key Laboratory of Crop Genetics and Physiology Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, P. R. China
| | - Zhiyun Gong
- Jiangsu Key Laboratory of Crop Genetics and Physiology Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, P. R. China
| |
Collapse
|
40
|
Jiang J, Gai Z, Wang Y, Fan K, Sun L, Wang H, Ding Z. Comprehensive proteome analyses of lysine acetylation in tea leaves by sensing nitrogen nutrition. BMC Genomics 2018; 19:840. [PMID: 30477445 PMCID: PMC6258439 DOI: 10.1186/s12864-018-5250-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Accepted: 11/14/2018] [Indexed: 02/02/2023] Open
Abstract
Background Nε-Acetylation of lysine residues, a frequently occurring post-translational modification, plays important functions in regulating physiology and metabolism. However, the information of global overview of protein acetylome under nitrogen-starvation/resupply in tea (Camellia sinensis) leaves was limited. And the full function of lysine acetylated proteins of tea plants in nitrogen absorption and assimilation remains unclear. Results Here, we performed the global review of lysine acetylome in tea leaves under nitrogen (N)-starvation/resupply, using peptide prefractionation, immunoaffinity enrichment, and coupling with high sensitive LC-MS/MS combined with affinity purification analysis. Altogether, 2229 lysine acetylation sites on 1286 proteins were identified, of which 16 conserved motifs in E*KacK, Kac*K, Kac*R, Kac*HK, Kac*N, Kac*S, Kac*T, Kac*D, were extracted from 2180 acetylated peptides. Approximately, 36.76% of the acetylated lysines were located in the regions of ordered secondary structures. The most of the identified lysine acetylation proteins were located in the chloroplast (39%) and cytoplasm (29%). The largest group of acetylated proteins consisted of many enzymes, such as ATP synthase, ribosomal proteins and malate dehydrogenase [NADP], which were related to metabolism (38%) in the biological process. These acetylated proteins were mainly enriched in three primary protein complexes of photosynthesis: photosystem I, photosystem II and the cytochrome b6/f complex. And some acetylated proteins related to glycolysis and secondary metabolite biosynthesis were increased/decreased under N-resupply. Moreover, the PPI (protein-protein interaction) analysis revealed that the diverse interactions of identified acetylated proteins mainly involved in photosynthesis and ribosome. Conclusion The results suggested that lysine acetylated proteins might play regulating roles in metabolic process in tea leaves. The critical regulatory roles mainly involved in diverse aspects of metabolic processes, especially in photosynthesis, glycolysis and secondary metabolism. A lot of proteins related to the photosynthesis and glycolysis were found to be acetylated, including LHCA1, LHCA3, LHCB6, psaE, psaD, psaN, GAPDH, PEPC, ENL and petC. And some proteins related to flavonoids were also found to be acetylated, including PAL, DFR, naringenin 3-dioxygenase and CHI. The provided data may serve as important resources for exploring the physiological, biochemical, and genetic role of lysine acetylation in tea plants. Data are available via ProteomeXchange with identifier PXD008931. Electronic supplementary material The online version of this article (10.1186/s12864-018-5250-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jutang Jiang
- Tea Research Institute, Qingdao Agricultural University, 700 Changcheng road, Qingdao, 266109, Shandong, China
| | - Zhongshuai Gai
- College of Life Science, Yantai University, Yantai, Shandong, China
| | - Yu Wang
- Tea Research Institute, Qingdao Agricultural University, 700 Changcheng road, Qingdao, 266109, Shandong, China
| | - Kai Fan
- Tea Research Institute, Qingdao Agricultural University, 700 Changcheng road, Qingdao, 266109, Shandong, China
| | - Litao Sun
- Tea Research Institute, Qingdao Agricultural University, 700 Changcheng road, Qingdao, 266109, Shandong, China
| | - Hui Wang
- Rizhao Tea Research Institute of Shandong, Rizhao, Shandong, China
| | - Zhaotang Ding
- Tea Research Institute, Qingdao Agricultural University, 700 Changcheng road, Qingdao, 266109, Shandong, China.
| |
Collapse
|
41
|
Li Z, Wang Y, Bello BK, Ajadi AA, Tong X, Chang Y, Zhang J. Construction of a Quantitative Acetylomic Tissue Atlas in Rice ( Oryza sativa L.). Molecules 2018; 23:molecules23112843. [PMID: 30388832 PMCID: PMC6278296 DOI: 10.3390/molecules23112843] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 10/30/2018] [Accepted: 10/31/2018] [Indexed: 12/31/2022] Open
Abstract
PKA (protein lysine acetylation) is a key post-translational modification involved in the regulation of various biological processes in rice. So far, rice acetylome data is very limited due to the highly-dynamic pattern of protein expression and PKA modification. In this study, we performed a comprehensive quantitative acetylome profile on four typical rice tissues, i.e., the callus, root, leaf, and panicle, by using a mass spectrometry (MS)-based, label-free approach. The identification of 1536 acetylsites on 1454 acetylpeptides from 890 acetylproteins represented one of the largest acetylome datasets on rice. A total of 1445 peptides on 887 proteins were differentially acetylated, and are extensively involved in protein translation, chloroplast development, and photosynthesis, flowering and pollen fertility, and root meristem activity, indicating the important roles of PKA in rice tissue development and functions. The current study provides an overall view of the acetylation events in rice tissues, as well as clues to reveal the function of PKA proteins in physiologically-relevant tissues.
Collapse
Affiliation(s)
- Zhiyong Li
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China.
| | - Yifeng Wang
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China.
| | - Babatunde Kazeem Bello
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China.
| | - Abolore Adijat Ajadi
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China.
| | - Xiaohong Tong
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China.
| | - Yuxiao Chang
- Agricultural Genomes Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China.
| | - Jian Zhang
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China.
| |
Collapse
|
42
|
Sharma C, Kumar S, Saripalli G, Jain N, Raghuvanshi S, Sharma JB, Prabhu KV, Sharma PK, Balyan HS, Gupta PK. H3K4/K9 acetylation and Lr28-mediated expression of six leaf rust responsive genes in wheat (Triticum aestivum). Mol Genet Genomics 2018; 294:227-241. [PMID: 30298213 DOI: 10.1007/s00438-018-1500-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 09/28/2018] [Indexed: 10/28/2022]
Abstract
Development of leaf rust-resistant cultivars is a priority during wheat breeding, since leaf rust causes major losses in yield. Resistance against leaf rust due to Lr genes is partly controlled by epigenetic modifications including histone acetylation that is known to respond to biotic/abiotic stresses. In the present study, enrichment of H3K4ac and H3K9ac in promoters of six defense responsive genes (N-acetyltransferase, WRKY 40, WRKY 70, ASR1, Peroxidase 12 and Sarcosine oxidase) was compared with their expression in a pair of near-isogenic lines (NILs) for the gene Lr28 following inoculation with leaf rust pathotype '77-5'; ChIP-qPCR was used for this purpose. The proximal and distal promoters of these genes contained a number of motifs that are known to respond to biotic stresses. The enrichment of two acetylation marks changed with passage of time; changes in expression of two of the six genes (N-acetyltransferase and peroxidase12), largely matched with changes in H3K4/H3K9 acetylation patterns of the two promoter regions. For example, enrichment of both the marks matched with higher expression of N-acetyltransferase gene in susceptible NIL and the deacetylation (H3K4ac) largely matched with reduced gene expression in resistant NIL. In peroxidase12, enrichment of H3K4ac and H3K9ac largely matched with higher expression in both the NILs. In the remaining four genes, changes in H3 acetylation did not always match with gene expression levels. This indicated complexity in the regulation of the expression of these remaining four genes, which may be controlled by other epigenetic/genetic regulatory mechanisms that need further analysis.
Collapse
Affiliation(s)
- Chanchal Sharma
- Department of Genetics and Plant Breeding, Ch. Charan Singh University, Meerut, 250004, India.,Department of Biotechnology, College of Engineering, Daegu University, Gyeongsan, Gyeongbuk, 38453, South Korea
| | - Santosh Kumar
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021, India
| | - Gautam Saripalli
- Department of Genetics and Plant Breeding, Ch. Charan Singh University, Meerut, 250004, India
| | - Neelu Jain
- Division of Genetics, ICAR-Indian Agricultural Research Institute (IARI), Pusa, New Delhi, 110022, India
| | - Saurabh Raghuvanshi
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021, India
| | - J B Sharma
- Division of Genetics, ICAR-Indian Agricultural Research Institute (IARI), Pusa, New Delhi, 110022, India
| | - K V Prabhu
- Division of Genetics, ICAR-Indian Agricultural Research Institute (IARI), Pusa, New Delhi, 110022, India
| | - P K Sharma
- Department of Genetics and Plant Breeding, Ch. Charan Singh University, Meerut, 250004, India
| | - H S Balyan
- Department of Genetics and Plant Breeding, Ch. Charan Singh University, Meerut, 250004, India
| | - P K Gupta
- Department of Genetics and Plant Breeding, Ch. Charan Singh University, Meerut, 250004, India.
| |
Collapse
|
43
|
Liu S, Xue C, Fang Y, Chen G, Peng X, Zhou Y, Chen C, Liu G, Gu M, Wang K, Zhang W, Wu Y, Gong Z. Global Involvement of Lysine Crotonylation in Protein Modification and Transcription Regulation in Rice. Mol Cell Proteomics 2018; 17:1922-1936. [PMID: 30021883 DOI: 10.1074/mcp.ra118.000640] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 06/07/2018] [Indexed: 11/06/2022] Open
Abstract
Lysine crotonylation (Kcr) is a newly discovered posttranslational modification (PTM) existing in mammals. A global crotonylome analysis was undertaken in rice (Oryza sativa L. japonica) using high accuracy nano-LC-MS/MS in combination with crotonylated peptide enrichment. A total of 1,265 lysine crotonylation sites were identified on 690 proteins in rice seedlings. Subcellular localization analysis revealed that 51% of the crotonylated proteins identified were localized in chloroplasts. The photosynthesis-associated proteins were also mostly enriched in total crotonylated proteins. In addition, a genomic localization analysis of histone Kcr by ChIP-seq was performed to assess the relevance between histone Kcr and the genome. Of the 10,923 identified peak regions, the majority (86.7%) of the enriched peaks were located in gene body, especially exons. Furthermore, the degree of histone Kcr modification was positively correlated with gene expression in genic regions. Compared with other published histone modification data, the Kcr was co-located with the active histone modifications. Interestingly, histone Kcr-facilitated expression of genes with existing active histone modifications. In addition, 77% of histone Kcr modifications overlapped with DNase hypersensitive sites (DHSs) in intergenic regions of the rice genome and might mark other cis-regulatory DNA elements that are different from IPA1, a transcription activator in rice seedlings. Overall, our results provide a comprehensive understanding of the biological functions of the crotonylome and new active histone modification in transcriptional regulation in plants.
Collapse
Affiliation(s)
- Shuai Liu
- From the ‡Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou 225009, China
| | - Chao Xue
- From the ‡Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou 225009, China
| | - Yuan Fang
- §The State Key Laboratory of Crop Genetics and Germplasm Enhancement, Bioinformatics Center, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| | - Gang Chen
- From the ‡Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou 225009, China
| | - Xiaojun Peng
- ¶Jingjie PTM BioLab (Hangzhou) Co. Ltd., Hangzhou 310018, China
| | - Yong Zhou
- From the ‡Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou 225009, China
| | - Chen Chen
- From the ‡Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou 225009, China
| | - Guanqing Liu
- From the ‡Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou 225009, China
| | - Minghong Gu
- From the ‡Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou 225009, China
| | - Kai Wang
- ‖Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wenli Zhang
- §The State Key Laboratory of Crop Genetics and Germplasm Enhancement, Bioinformatics Center, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| | - Yufeng Wu
- §The State Key Laboratory of Crop Genetics and Germplasm Enhancement, Bioinformatics Center, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China;
| | - Zhiyun Gong
- From the ‡Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou 225009, China;
| |
Collapse
|
44
|
Li H, Harwood JD, Liu T, Chu D. Novel proteome and acetylome of Bemisia tabaci Q in response to Cardinium infection. BMC Genomics 2018; 19:523. [PMID: 29976144 PMCID: PMC6034306 DOI: 10.1186/s12864-018-4907-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 06/29/2018] [Indexed: 12/21/2022] Open
Abstract
Background It has become increasingly clear that symbionts have crucial evolutionary and ecological ramifications for their host arthropods. However, little is known whether these symbiont infections influence the proteome and lysine acetylome of their host arthropods. Here we performed experiments to investigate the proteomes and acetylomes of Cardinium-infected (C*+) and -uninfected (C−) Bemisia tabaci Q with identical backgrounds, through the combination of affinity enrichment and high-resolution LC-MS/MS analysis. Results Of the 3353 proteins whose levels were quantitated in proteome, a total of 146 proteins dividing into 77 up-regulated and 69 down-regulated proteins were discovered to be differentially expressed as having at least a 1.2-fold change when C*+ strain was compared with C− strain. Furthermore, a total of 528 lysine acetylation sites in 283 protein groups were identified, among which 356 sites in 202 proteins were quantified. The comparison of acetylomes revealed 30 sites in 26 lysine acetylation proteins (Kac) were quantified as up-regulated targets and 35 sites in 29 Kac proteins were quantified as down-regulated targets. Functional analysis showed that these differentially expressed proteins and Kac proteins were mainly involved in diverse physiological processes related to development, immune responses and energy metabolism, such as retinol metabolism, methane metabolism and fatty acid degradation. Notably, protein interaction network analyses demonstrated widespread interactions modulated by protein acetylation. Conclusion Here we show the proteome and acetylom of B. tabaci Q in response to the symbiont Cardinium infection. This is the first study to utilize the tool of acetylome analysis for revealing physiological responses of arthropods to its symbiont infection, which will provide an important resource for exploring the arthropod-symbiont interaction. Electronic supplementary material The online version of this article (10.1186/s12864-018-4907-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hongran Li
- Key Laboratory of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, 266109, Shandong, China
| | - James D Harwood
- Key Laboratory of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, 266109, Shandong, China
| | - Tongxian Liu
- Key Laboratory of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, 266109, Shandong, China
| | - Dong Chu
- Key Laboratory of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, 266109, Shandong, China.
| |
Collapse
|
45
|
Kelley DR. E3 Ubiquitin Ligases: Key Regulators of Hormone Signaling in Plants. Mol Cell Proteomics 2018; 17:1047-1054. [PMID: 29514858 PMCID: PMC5986243 DOI: 10.1074/mcp.mr117.000476] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 02/09/2018] [Indexed: 02/05/2023] Open
Abstract
Ubiquitin-mediated control of protein stability is central to most aspects of plant hormone signaling. Attachment of ubiquitin to target proteins occurs via an enzymatic cascade with the final step being catalyzed by a family of enzymes known as E3 ubiquitin ligases, which have been classified based on their protein domains and structures. Although E3 ubiquitin ligases are conserved among eukaryotes, in plants they are well-known to fulfill unique roles as central regulators of phytohormone signaling, including hormone perception and regulation of hormone biosynthesis. This review will highlight up-to-date findings that have refined well-known E3 ligase-substrate interactions and defined novel E3 ligase substrates that mediate numerous hormone signaling pathways. Additionally, examples of how particular E3 ligases may mediate hormone crosstalk will be discussed as an emerging theme. Looking forward, promising experimental approaches and methods that will provide deeper mechanistic insight into the roles of E3 ubiquitin ligases in plants will be considered.
Collapse
Affiliation(s)
- Dior R Kelley
- From the ‡Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011
| |
Collapse
|
46
|
Hui M, Cheng J, Sha Z. First comprehensive analysis of lysine acetylation in Alvinocaris longirostris from the deep-sea hydrothermal vents. BMC Genomics 2018; 19:352. [PMID: 29747590 PMCID: PMC5946511 DOI: 10.1186/s12864-018-4745-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 04/30/2018] [Indexed: 11/27/2022] Open
Abstract
Background Deep-sea hydrothermal vents are unique chemoautotrophic ecosystems with harsh conditions. Alvinocaris longirostris is one of the dominant crustacean species inhabiting in these extreme environments. It is significant to clarify mechanisms in their adaptation to the vents. Lysine acetylation has been known to play critical roles in the regulation of many cellular processes. However, its function in A. longirostris and even marine invertebrates remains elusive. Our study is the first, to our knowledge, to comprehensively investigate lysine acetylome in A. longirostris. Results In total, 501 unique acetylation sites from 206 proteins were identified by combination of affinity enrichment and high-sensitive-massspectrometer. It was revealed that Arg, His and Lys occurred most frequently at the + 1 position downstream of the acetylation sites, which were all alkaline amino acids and positively charged. Functional analysis revealed that the protein acetylation was involved in diverse cellular processes, such as biosynthesis of amino acids, citrate cycle, fatty acid degradation and oxidative phosphorylation. Acetylated proteins were found enriched in mitochondrion and peroxisome, and many stress response related proteins were also discovered to be acetylated, like arginine kinases, heat shock protein 70, and hemocyanins. In the two hemocyanins, nine acetylation sites were identified, among which one acetylation site was unique in A. longirostris when compared with other shallow water shrimps. Further studies are warranted to verify its function. Conclusion The lysine acetylome of A. longirostris is investigated for the first time and brings new insights into the regulation function of the lysine acetylation. The results supply abundant resources for exploring the functions of acetylation in A. longirostris and other shrimps. Electronic supplementary material The online version of this article (10.1186/s12864-018-4745-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Min Hui
- Laboratory of Marine Organism Taxonomy and Phylogeny, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiao Cheng
- Laboratory of Marine Organism Taxonomy and Phylogeny, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhongli Sha
- Laboratory of Marine Organism Taxonomy and Phylogeny, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China. .,Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China.
| |
Collapse
|
47
|
Ren W, Xie J, Hou X, Li X, Guo H, Hu N, Kong L, Zhang J, Chang C, Wu Z. Potential molecular mechanisms of overgrazing-induced dwarfism in sheepgrass (Leymus chinensis) analyzed using proteomic data. BMC PLANT BIOLOGY 2018; 18:81. [PMID: 29739327 PMCID: PMC5941328 DOI: 10.1186/s12870-018-1304-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 04/30/2018] [Indexed: 06/01/2023]
Abstract
BACKGROUND This study was designed to reveal potential molecular mechanisms of long-term overgrazing-induced dwarfism in sheepgrass (Leymus chinensis). METHODS An electrospray ionisation mass spectrometry system was used to generate proteomic data of dwarf sheepgrass from a long-term overgrazed rangeland and normal sheepgrass from a long-term enclosed rangeland. Differentially expressed proteins (DEPs) between dwarf and normal sheepgrass were identified, after which their potential functions and interactions with each other were predicted. The expression of key DEPs was confirmed by high-performance liquid chromatography mass spectrometry (HPLC-MS) using a multiple reaction monitoring method. RESULTS Compared with normal sheepgrass, a total of 51 upregulated and 53 downregulated proteins were identified in dwarf sheepgrass. The amino acids biosynthesis pathway was differentially enriched between the two conditions presenting DEPs, such as SAT5_ARATH and DAPA_MAIZE. The protein-protein interaction (PPI) network revealed a possible interaction between RPOB2_LEPTE, A0A023H9M8_9STRA, ATPB_DIOEL, RBL_AMOTI and DNAK_GRATL. Four modules were also extracted from the PPI network. The HPLC-MS analysis confirmed the upregulation and downregulation of ATPB_DIOEL and DNAK_GRATL, respectively in dwarf samples compared with in the controls. CONCLUSIONS The upregulated ATPB_DIOEL and downregulated DNAK_GRATL as well as proteins that interact with them, such as RPOB2_LEPTE, A0A023H9M8_9STRA and RBL_AMOTI, may be associated with the long-term overgrazing-induced dwarfism in sheepgrass.
Collapse
Affiliation(s)
- Weibo Ren
- Institute of Grassland Research, Chinese Academy of Agriculture Sciences, No.120 East Wulanchabu Road, Hohhot, 010010, Inner Mongolia, China
| | - Jihong Xie
- Institute of Grassland Research, Chinese Academy of Agriculture Sciences, No.120 East Wulanchabu Road, Hohhot, 010010, Inner Mongolia, China
| | - Xiangyang Hou
- Institute of Grassland Research, Chinese Academy of Agriculture Sciences, No.120 East Wulanchabu Road, Hohhot, 010010, Inner Mongolia, China
| | - Xiliang Li
- Institute of Grassland Research, Chinese Academy of Agriculture Sciences, No.120 East Wulanchabu Road, Hohhot, 010010, Inner Mongolia, China
| | - Huiqin Guo
- Faculty of life sciences, Inner Mongolia Agriculture University, Hohhot, 010018, Inner Mongolia, China
| | - Ningning Hu
- Institute of Grassland Research, Chinese Academy of Agriculture Sciences, No.120 East Wulanchabu Road, Hohhot, 010010, Inner Mongolia, China
| | - Lingqi Kong
- Institute of Grassland Research, Chinese Academy of Agriculture Sciences, No.120 East Wulanchabu Road, Hohhot, 010010, Inner Mongolia, China
| | - Jize Zhang
- Institute of Grassland Research, Chinese Academy of Agriculture Sciences, No.120 East Wulanchabu Road, Hohhot, 010010, Inner Mongolia, China
| | - Chun Chang
- Institute of Grassland Research, Chinese Academy of Agriculture Sciences, No.120 East Wulanchabu Road, Hohhot, 010010, Inner Mongolia, China
| | - Zinian Wu
- Institute of Grassland Research, Chinese Academy of Agriculture Sciences, No.120 East Wulanchabu Road, Hohhot, 010010, Inner Mongolia, China.
| |
Collapse
|
48
|
Systematic analysis of the lysine malonylome in common wheat. BMC Genomics 2018; 19:209. [PMID: 29558883 PMCID: PMC5859436 DOI: 10.1186/s12864-018-4535-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 02/06/2018] [Indexed: 01/19/2023] Open
Abstract
Background Protein lysine malonylation, a newly discovered post-translational modification (PTM), plays an important role in diverse metabolic processes in both eukaryotes and prokaryotes. Common wheat is a major global cereal crop. However, the functions of lysine malonylation are relatively unknown in this crop. Here, a global analysis of lysine malonylation was performed in wheat. Results In total, 342 lysine malonylated sites were identified in 233 proteins. Bioinformatics analysis showed that the frequency of arginine (R) in position + 1 was highest, and a modification motif, KmaR, was identified. The malonylated proteins were located in multiple subcellular compartments, especially in the cytosol (45%) and chloroplast (30%). The identified proteins were found to be involved in diverse pathways, such as carbon metabolism, the Calvin cycle, and the biosynthesis of amino acids, suggesting an important role for lysine malonylation in these processes. Protein interaction network analysis revealed eight highly interconnected clusters of malonylated proteins, and 137 malonylated proteins were mapped to the protein network database. Moreover, five proteins were simultaneously modified by lysine malonylation, acetylation and succinylation, suggesting that these three PTMs may coordinately regulate the function of many proteins in common wheat. Conclusions Our results suggest that lysine malonylation is involved in a variety of biological processes, especially carbon fixation in photosynthetic organisms. These data represent the first report of the lysine malonylome in common wheat and provide an important dataset for further exploring the physiological role of lysine malonylation in wheat and likely all plants. Electronic supplementary material The online version of this article (10.1186/s12864-018-4535-y) contains supplementary material, which is available to authorized users.
Collapse
|
49
|
Greer SM, Bern M, Becker C, Brodbelt JS. Extending Proteome Coverage by Combining MS/MS Methods and a Modified Bioinformatics Platform Adapted for Database Searching of Positive and Negative Polarity 193 nm Ultraviolet Photodissociation Mass Spectra. J Proteome Res 2018; 17:1340-1347. [DOI: 10.1021/acs.jproteome.7b00673] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Sylvester M. Greer
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Marshall Bern
- Protein
Metrics,
Inc., San Carlos, California 94070, United States
| | | | - Jennifer S. Brodbelt
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
50
|
Liu S, Yu F, Yang Z, Wang T, Xiong H, Chang C, Yu W, Li N. Establishment of Dimethyl Labeling-based Quantitative Acetylproteomics in Arabidopsis. Mol Cell Proteomics 2018; 17:1010-1027. [PMID: 29440448 DOI: 10.1074/mcp.ra117.000530] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 01/18/2018] [Indexed: 12/19/2022] Open
Abstract
Protein acetylation, one of many types of post-translational modifications (PTMs), is involved in a variety of biological and cellular processes. In the present study, we applied both CsCl density gradient (CDG) centrifugation-based protein fractionation and a dimethyl-labeling-based 4C quantitative PTM proteomics workflow in the study of dynamic acetylproteomic changes in Arabidopsis. This workflow integrates the dimethyl chemical labeling with chromatography-based acetylpeptide separation and enrichment followed by mass spectrometry (MS) analysis, the extracted ion chromatogram (XIC) quantitation-based computational analysis of mass spectrometry data to measure dynamic changes of acetylpeptide level using an in-house software program, named Stable isotope-based Quantitation-Dimethyl labeling (SQUA-D), and finally the confirmation of ethylene hormone-regulated acetylation using immunoblot analysis. Eventually, using this proteomic approach, 7456 unambiguous acetylation sites were found from 2638 different acetylproteins, and 5250 acetylation sites, including 5233 sites on lysine side chain and 17 sites on protein N termini, were identified repetitively. Out of these repetitively discovered acetylation sites, 4228 sites on lysine side chain (i.e. 80.5%) are novel. These acetylproteins are exemplified by the histone superfamily, ribosomal and heat shock proteins, and proteins related to stress/stimulus responses and energy metabolism. The novel acetylproteins enriched by the CDG centrifugation fractionation contain many cellular trafficking proteins, membrane-bound receptors, and receptor-like kinases, which are mostly involved in brassinosteroid, light, gravity, and development signaling. In addition, we identified 12 highly conserved acetylation site motifs within histones, P-glycoproteins, actin depolymerizing factors, ATPases, transcription factors, and receptor-like kinases. Using SQUA-D software, we have quantified 33 ethylene hormone-enhanced and 31 hormone-suppressed acetylpeptide groups or called unique PTM peptide arrays (UPAs) that share the identical unique PTM site pattern (UPSP). This CDG centrifugation protein fractionation in combination with dimethyl labeling-based quantitative PTM proteomics, and SQUA-D may be applied in the quantitation of any PTM proteins in any model eukaryotes and agricultural crops as well as tissue samples of animals and human beings.
Collapse
Affiliation(s)
- Shichang Liu
- From the ‡Division of Life Science, Energy Institute, Institute for the Environment, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Fengchao Yu
- §Division of Biomedical Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR, China.,¶Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Zhu Yang
- From the ‡Division of Life Science, Energy Institute, Institute for the Environment, The Hong Kong University of Science and Technology, Hong Kong SAR, China.,‖The Hong Kong University of Science and Technology, Shenzhen Research Institute, Shenzhen, Guangdong, 518057, China
| | - Tingliang Wang
- **Tsinghua-Peking Joint Center for Life Sciences, Center for Structural Biology, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China
| | - Hairong Xiong
- ‡‡College of Life Science, South-central University for Nationalities, Wuhan, 430074, China
| | - Caren Chang
- §§Department of Cell Biology and Molecular Genetics, University of Maryland, Maryland 20742-5815
| | - Weichuan Yu
- §Division of Biomedical Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR, China; .,¶Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Ning Li
- From the ‡Division of Life Science, Energy Institute, Institute for the Environment, The Hong Kong University of Science and Technology, Hong Kong SAR, China; .,‖The Hong Kong University of Science and Technology, Shenzhen Research Institute, Shenzhen, Guangdong, 518057, China
| |
Collapse
|