1
|
Masella G, Silva F, Corti E, Azkona G, Madeira MF, Tomé ÂR, Ferreira SG, Cunha RA, Duarte CB, Santos M. The amygdala NT3-TrkC pathway underlies inter-individual differences in fear extinction and related synaptic plasticity. Mol Psychiatry 2024; 29:1322-1337. [PMID: 38233468 PMCID: PMC11189811 DOI: 10.1038/s41380-024-02412-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 12/29/2023] [Accepted: 01/04/2024] [Indexed: 01/19/2024]
Abstract
Fear-related pathologies are among the most prevalent psychiatric conditions, having inappropriate learned fear and resistance to extinction as cardinal features. Exposure therapy represents a promising therapeutic approach, the efficiency of which depends on inter-individual variation in fear extinction learning, which neurobiological basis is unknown. We characterized a model of extinction learning, whereby fear-conditioned mice were categorized as extinction (EXT)-success or EXT-failure, according to their inherent ability to extinguish fear. In the lateral amygdala, GluN2A-containing NMDAR are required for LTP and stabilization of fear memories, while GluN2B-containing NMDAR are required for LTD and fear extinction. EXT-success mice showed attenuated LTP, strong LTD and higher levels of synaptic GluN2B, while EXT-failure mice showed strong LTP, no LTD and higher levels of synaptic GluN2A. Neurotrophin 3 (NT3) infusion in the lateral amygdala was sufficient to rescue extinction deficits in EXT-failure mice. Mechanistically, activation of tropomyosin receptor kinase C (TrkC) with NT3 in EXT-failure slices attenuated lateral amygdala LTP, in a GluN2B-dependent manner. Conversely, blocking endogenous NT3-TrkC signaling with TrkC-Fc chimera in EXT-success slices strengthened lateral amygdala LTP. Our data support a key role for the NT3-TrkC system in inter-individual differences in fear extinction in rodents, through modulation of amygdalar NMDAR composition and synaptic plasticity.
Collapse
Affiliation(s)
- Gianluca Masella
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Institute of Interdisciplinary Research, University of Coimbra (iiiUC), Coimbra, Portugal
| | - Francisca Silva
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Institute of Interdisciplinary Research, University of Coimbra (iiiUC), Coimbra, Portugal
| | - Elisa Corti
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Institute of Interdisciplinary Research, University of Coimbra (iiiUC), Coimbra, Portugal
| | - Garikoitz Azkona
- Department of Basic Psychological Processes and Their Development, School of Psychology, University of the Basque Country (UPV/EHU), San Sebastian, Spain
| | - Maria Francisca Madeira
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Institute of Interdisciplinary Research, University of Coimbra (iiiUC), Coimbra, Portugal
| | - Ângelo R Tomé
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Samira G Ferreira
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Institute of Interdisciplinary Research, University of Coimbra (iiiUC), Coimbra, Portugal
| | - Rodrigo A Cunha
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Carlos B Duarte
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Mónica Santos
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.
- Institute of Interdisciplinary Research, University of Coimbra (iiiUC), Coimbra, Portugal.
- Centre for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
2
|
Laricchiuta D, Gimenez J, Sciamanna G, Termine A, Fabrizio C, Della Valle F, Caioli S, Saba L, De Bardi M, Balsamo F, Panuccio A, Passarello N, Mattioni A, Bisicchia E, Zona C, Orlando V, Petrosini L. Synaptic and transcriptomic features of cortical and amygdala pyramidal neurons predict inefficient fear extinction. Cell Rep 2023; 42:113066. [PMID: 37656620 DOI: 10.1016/j.celrep.2023.113066] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 04/08/2023] [Accepted: 08/17/2023] [Indexed: 09/03/2023] Open
Abstract
Fear-related disorders arise from inefficient fear extinction and have immeasurable social and economic costs. Here, we characterize mouse phenotypes that spontaneously show fear-independent behavioral traits predicting adaptive or maladaptive fear extinction. We find that, already before fear conditioning, specific morphological, electrophysiological, and transcriptomic patterns of cortical and amygdala pyramidal neurons predispose to fear-related disorders. Finally, by using an optogenetic approach, we show the possibility to rescue inefficient fear extinction by activating infralimbic pyramidal neurons and to impair fear extinction by activating prelimbic pyramidal neurons.
Collapse
Affiliation(s)
| | | | - Giuseppe Sciamanna
- IRCCS Santa Lucia Foundation, 00143 Rome, Italy; Saint Camillus International University of Health and Medical Sciences, 00131 Rome, Italy
| | | | | | - Francesco Della Valle
- King Abdullah University of Science and Technology (KAUST), Biological Environmental Science and Engineering Division, KAUST Environmental Epigenetics Program, Thuwal 23955-6900, Saudi Arabia
| | - Silvia Caioli
- Unit of Neurology, IRCCS Neuromed, 86077 Pozzilli, Isernia, Italy
| | - Luana Saba
- University of Campus Biomedico, 00128 Rome, Italy
| | | | - Francesca Balsamo
- IRCCS Santa Lucia Foundation, 00143 Rome, Italy; Department of Human Sciences, Guglielmo Marconi University, 00166 Rome, Italy
| | - Anna Panuccio
- IRCCS Santa Lucia Foundation, 00143 Rome, Italy; Department of Psychology, University Sapienza of Rome, 00185 Rome, Italy
| | - Noemi Passarello
- IRCCS Santa Lucia Foundation, 00143 Rome, Italy; Department of Humanities, Federico II University of Naples, 80138 Naples, Italy
| | | | | | - Cristina Zona
- Department of Systems Medicine, Tor Vergata University of Rome, 00133 Rome, Italy
| | - Valerio Orlando
- King Abdullah University of Science and Technology (KAUST), Biological Environmental Science and Engineering Division, KAUST Environmental Epigenetics Program, Thuwal 23955-6900, Saudi Arabia.
| | | |
Collapse
|
3
|
Sphingolipid control of cognitive functions in health and disease. Prog Lipid Res 2022; 86:101162. [DOI: 10.1016/j.plipres.2022.101162] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/10/2022] [Accepted: 03/12/2022] [Indexed: 12/14/2022]
|
4
|
Termine A, Fabrizio C, Gimenez J, Panuccio A, Balsamo F, Passarello N, Caioli S, Saba L, De Bardi M, Della Valle F, Orlando V, Petrosini L, Laricchiuta D. Transcriptomic and Network Analyses Reveal Immune Modulation by Endocannabinoids in Approach/Avoidance Traits. Int J Mol Sci 2022; 23:ijms23052538. [PMID: 35269678 PMCID: PMC8910341 DOI: 10.3390/ijms23052538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 02/17/2022] [Accepted: 02/23/2022] [Indexed: 02/04/2023] Open
Abstract
Approach and avoidance (A/A) tendencies are stable behavioral traits in responding to rewarding and fearful stimuli. They represent the superordinate division of emotion, and individual differences in such traits are associated with disease susceptibility. The neural circuitry underlying A/A traits is retained to be the cortico-limbic pathway including the amygdala, the central hub for the emotional processing. Furthermore, A/A-specific individual differences are associated with the activity of the endocannabinoid system (ECS) and especially of CB1 receptors whose density and functionality in amygdala differ according to A/A traits. ECS markedly interacts with the immune system (IS). However, how the interplay between ECS and IS is associated with A/A individual differences is still ill-defined. To fill this gap, here we analyzed the interaction between the gene expression of ECS and immune system (IS) in relation to individual differences. To unveil the deep architecture of ECS-IS interaction, we performed cell-specific transcriptomics analysis. Differential gene expression profiling, functional enrichment, and protein–protein interaction network analyses were performed in amygdala pyramidal neurons of mice showing different A/A behavioral tendencies. Several altered pro-inflammatory pathways were identified as associated with individual differences in A/A traits, indicating the chronic activation of the adaptive immune response sustained by the interplay between endocannabinoids and the IS. Furthermore, results showed that the interaction between the two systems modulates synaptic plasticity and neuronal metabolism in individual difference-specific manner. Deepening our knowledge about ECS/IS interaction may provide useful targets for treatment and prevention of psychopathology associated with A/A traits.
Collapse
Affiliation(s)
- Andrea Termine
- Data Science Unit, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy; (A.T.); (C.F.)
| | - Carlo Fabrizio
- Data Science Unit, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy; (A.T.); (C.F.)
| | - Juliette Gimenez
- Epigenetics and Genome Reprogramming Laboratory, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy;
| | - Anna Panuccio
- Experimental and Behavioral Neurophysiology Lab, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy; (A.P.); (F.B.); (N.P.); (L.P.)
- Department of Psychology, University Sapienza of Rome, 00185 Rome, Italy
| | - Francesca Balsamo
- Experimental and Behavioral Neurophysiology Lab, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy; (A.P.); (F.B.); (N.P.); (L.P.)
- Department of Human Sciences, Guglielmo Marconi University, 00193 Rome, Italy
| | - Noemi Passarello
- Experimental and Behavioral Neurophysiology Lab, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy; (A.P.); (F.B.); (N.P.); (L.P.)
- Department of Humanities, Federico II University of Naples, 80131 Naples, Italy
| | - Silvia Caioli
- Unit of Neurology, IRCCS Neuromed, 86077 Pozzilli, Italy;
| | - Luana Saba
- Department of Sciences and Technologies for Humans and Environment, University of Campus Biomedico, 00128 Rome, Italy;
| | - Marco De Bardi
- Neuroimmunology Unit, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy;
| | - Francesco Della Valle
- KAUST Environmental Epigenetics Program, Biological Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), 4700 KAUST, Thuwal 23955, Saudi Arabia; (F.D.V.); (V.O.)
| | - Valerio Orlando
- KAUST Environmental Epigenetics Program, Biological Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), 4700 KAUST, Thuwal 23955, Saudi Arabia; (F.D.V.); (V.O.)
| | - Laura Petrosini
- Experimental and Behavioral Neurophysiology Lab, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy; (A.P.); (F.B.); (N.P.); (L.P.)
| | - Daniela Laricchiuta
- Experimental and Behavioral Neurophysiology Lab, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy; (A.P.); (F.B.); (N.P.); (L.P.)
- Correspondence:
| |
Collapse
|
5
|
Shallcross J, Wu L, Wilkinson CS, Knackstedt LA, Schwendt M. Increased mGlu5 mRNA expression in BLA glutamate neurons facilitates resilience to the long-term effects of a single predator scent stress exposure. Brain Struct Funct 2021; 226:2279-2293. [PMID: 34175993 PMCID: PMC10416208 DOI: 10.1007/s00429-021-02326-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 06/17/2021] [Indexed: 12/28/2022]
Abstract
Post-traumatic stress disorder (PTSD) develops in a subset of individuals exposed to a trauma with core features being increased anxiety and impaired fear extinction. To model the heterogeneity of PTSD behavioral responses, we exposed male Sprague-Dawley rats to predator scent stress once for 10 min and then assessed anxiety-like behavior 7 days later using the elevated plus maze and acoustic startle response. Rats displaying anxiety-like behavior in both tasks were classified as stress Susceptible, and rats exhibiting behavior no different from un-exposed Controls were classified as stress Resilient. In Resilient rats, we previously found increased mRNA expression of mGlu5 in the amygdala and prefrontal cortex (PFC) and CB1 in the amygdala. Here, we performed fluorescent in situ hybridization (FISH) to determine the subregion and cell-type-specific expression of these genes in Resilient rats 3 weeks after TMT exposure. Resilient rats displayed increased mGlu5 mRNA expression in the basolateral amygdala (BLA) and the infralimbic and prelimbic regions of the PFC and increased BLA CB1 mRNA. These increases were limited to glutamatergic cells. To test the necessity of mGlu5 for attenuating TMT-conditioned contextual fear 3 weeks after TMT conditioning, intra-BLA infusions of the mGlu5 negative allosteric modulator MTEP were administered prior to context re-exposure. In TMT-exposed Resilient rats, but not Controls, MTEP increased freezing on the day of administration, which extinguished over two additional un-drugged sessions. These results suggest that increased mGlu5 expression in BLA glutamate neurons contributes to the behavioral flexibility observed in stress-Resilient animals by facilitating a capacity for extinguishing contextual fear associations.
Collapse
Affiliation(s)
- John Shallcross
- Psychology Department, Behavioral and Cognitive Neuroscience Program, University of Florida, 114 Psychology Building, 945 Center Drive, Gainesville, FL, 32611-2250, USA
| | - Lizhen Wu
- Psychology Department, Behavioral and Cognitive Neuroscience Program, University of Florida, 114 Psychology Building, 945 Center Drive, Gainesville, FL, 32611-2250, USA
| | - Courtney S Wilkinson
- Psychology Department, Behavioral and Cognitive Neuroscience Program, University of Florida, 114 Psychology Building, 945 Center Drive, Gainesville, FL, 32611-2250, USA
- Center for Addiction Research and Education (CARE), University of Florida, Gainesville, USA
| | - Lori A Knackstedt
- Psychology Department, Behavioral and Cognitive Neuroscience Program, University of Florida, 114 Psychology Building, 945 Center Drive, Gainesville, FL, 32611-2250, USA
- Center for Addiction Research and Education (CARE), University of Florida, Gainesville, USA
| | - Marek Schwendt
- Psychology Department, Behavioral and Cognitive Neuroscience Program, University of Florida, 114 Psychology Building, 945 Center Drive, Gainesville, FL, 32611-2250, USA.
- Center for Addiction Research and Education (CARE), University of Florida, Gainesville, USA.
| |
Collapse
|
6
|
Laricchiuta D, Sciamanna G, Gimenez J, Termine A, Fabrizio C, Caioli S, Balsamo F, Panuccio A, De Bardi M, Saba L, Passarello N, Cutuli D, Mattioni A, Zona C, Orlando V, Petrosini L. Optogenetic Stimulation of Prelimbic Pyramidal Neurons Maintains Fear Memories and Modulates Amygdala Pyramidal Neuron Transcriptome. Int J Mol Sci 2021; 22:ijms22020810. [PMID: 33467450 PMCID: PMC7830910 DOI: 10.3390/ijms22020810] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/12/2021] [Accepted: 01/12/2021] [Indexed: 12/26/2022] Open
Abstract
Fear extinction requires coordinated neural activity within the amygdala and medial prefrontal cortex (mPFC). Any behavior has a transcriptomic signature that is modified by environmental experiences, and specific genes are involved in functional plasticity and synaptic wiring during fear extinction. Here, we investigated the effects of optogenetic manipulations of prelimbic (PrL) pyramidal neurons and amygdala gene expression to analyze the specific transcriptional pathways associated to adaptive and maladaptive fear extinction. To this aim, transgenic mice were (or not) fear-conditioned and during the extinction phase they received optogenetic (or sham) stimulations over photo-activable PrL pyramidal neurons. At the end of behavioral testing, electrophysiological (neural cellular excitability and Excitatory Post-Synaptic Currents) and morphological (spinogenesis) correlates were evaluated in the PrL pyramidal neurons. Furthermore, transcriptomic cell-specific RNA-analyses (differential gene expression profiling and functional enrichment analyses) were performed in amygdala pyramidal neurons. Our results show that the optogenetic activation of PrL pyramidal neurons in fear-conditioned mice induces fear extinction deficits, reflected in an increase of cellular excitability, excitatory neurotransmission, and spinogenesis of PrL pyramidal neurons, and associated to strong modifications of the transcriptome of amygdala pyramidal neurons. Understanding the electrophysiological, morphological, and transcriptomic architecture of fear extinction may facilitate the comprehension of fear-related disorders.
Collapse
Affiliation(s)
- Daniela Laricchiuta
- Department of Experimental Neuroscience, IRCCS Fondazione Santa Lucia, 00143 Rome, Italy; (G.S.); (J.G.); (A.T.); (C.F.); (F.B.); (A.P.); (M.D.B.); (L.S.); (N.P.); (D.C.); (A.M.); (V.O.); (L.P.)
- Correspondence:
| | - Giuseppe Sciamanna
- Department of Experimental Neuroscience, IRCCS Fondazione Santa Lucia, 00143 Rome, Italy; (G.S.); (J.G.); (A.T.); (C.F.); (F.B.); (A.P.); (M.D.B.); (L.S.); (N.P.); (D.C.); (A.M.); (V.O.); (L.P.)
| | - Juliette Gimenez
- Department of Experimental Neuroscience, IRCCS Fondazione Santa Lucia, 00143 Rome, Italy; (G.S.); (J.G.); (A.T.); (C.F.); (F.B.); (A.P.); (M.D.B.); (L.S.); (N.P.); (D.C.); (A.M.); (V.O.); (L.P.)
| | - Andrea Termine
- Department of Experimental Neuroscience, IRCCS Fondazione Santa Lucia, 00143 Rome, Italy; (G.S.); (J.G.); (A.T.); (C.F.); (F.B.); (A.P.); (M.D.B.); (L.S.); (N.P.); (D.C.); (A.M.); (V.O.); (L.P.)
- Department of Systems Medicine, Tor Vergata University of Rome, 00133 Rome, Italy;
| | - Carlo Fabrizio
- Department of Experimental Neuroscience, IRCCS Fondazione Santa Lucia, 00143 Rome, Italy; (G.S.); (J.G.); (A.T.); (C.F.); (F.B.); (A.P.); (M.D.B.); (L.S.); (N.P.); (D.C.); (A.M.); (V.O.); (L.P.)
- Department of Systems Medicine, Tor Vergata University of Rome, 00133 Rome, Italy;
| | - Silvia Caioli
- Unit of Neurology, IRCCS Neuromed, 86077 Pozzilli, Italy;
| | - Francesca Balsamo
- Department of Experimental Neuroscience, IRCCS Fondazione Santa Lucia, 00143 Rome, Italy; (G.S.); (J.G.); (A.T.); (C.F.); (F.B.); (A.P.); (M.D.B.); (L.S.); (N.P.); (D.C.); (A.M.); (V.O.); (L.P.)
| | - Anna Panuccio
- Department of Experimental Neuroscience, IRCCS Fondazione Santa Lucia, 00143 Rome, Italy; (G.S.); (J.G.); (A.T.); (C.F.); (F.B.); (A.P.); (M.D.B.); (L.S.); (N.P.); (D.C.); (A.M.); (V.O.); (L.P.)
- Department of Psychology, University “Sapienza” of Rome, 00185 Rome, Italy
| | - Marco De Bardi
- Department of Experimental Neuroscience, IRCCS Fondazione Santa Lucia, 00143 Rome, Italy; (G.S.); (J.G.); (A.T.); (C.F.); (F.B.); (A.P.); (M.D.B.); (L.S.); (N.P.); (D.C.); (A.M.); (V.O.); (L.P.)
| | - Luana Saba
- Department of Experimental Neuroscience, IRCCS Fondazione Santa Lucia, 00143 Rome, Italy; (G.S.); (J.G.); (A.T.); (C.F.); (F.B.); (A.P.); (M.D.B.); (L.S.); (N.P.); (D.C.); (A.M.); (V.O.); (L.P.)
| | - Noemi Passarello
- Department of Experimental Neuroscience, IRCCS Fondazione Santa Lucia, 00143 Rome, Italy; (G.S.); (J.G.); (A.T.); (C.F.); (F.B.); (A.P.); (M.D.B.); (L.S.); (N.P.); (D.C.); (A.M.); (V.O.); (L.P.)
| | - Debora Cutuli
- Department of Experimental Neuroscience, IRCCS Fondazione Santa Lucia, 00143 Rome, Italy; (G.S.); (J.G.); (A.T.); (C.F.); (F.B.); (A.P.); (M.D.B.); (L.S.); (N.P.); (D.C.); (A.M.); (V.O.); (L.P.)
- Department of Psychology, University “Sapienza” of Rome, 00185 Rome, Italy
| | - Anna Mattioni
- Department of Experimental Neuroscience, IRCCS Fondazione Santa Lucia, 00143 Rome, Italy; (G.S.); (J.G.); (A.T.); (C.F.); (F.B.); (A.P.); (M.D.B.); (L.S.); (N.P.); (D.C.); (A.M.); (V.O.); (L.P.)
| | - Cristina Zona
- Department of Systems Medicine, Tor Vergata University of Rome, 00133 Rome, Italy;
| | - Valerio Orlando
- Department of Experimental Neuroscience, IRCCS Fondazione Santa Lucia, 00143 Rome, Italy; (G.S.); (J.G.); (A.T.); (C.F.); (F.B.); (A.P.); (M.D.B.); (L.S.); (N.P.); (D.C.); (A.M.); (V.O.); (L.P.)
- Biological Environmental Science and Engineering Division, KAUST Environmental Epigenetics Program, Thuwal 23955-6900, Saudi Arabia
| | - Laura Petrosini
- Department of Experimental Neuroscience, IRCCS Fondazione Santa Lucia, 00143 Rome, Italy; (G.S.); (J.G.); (A.T.); (C.F.); (F.B.); (A.P.); (M.D.B.); (L.S.); (N.P.); (D.C.); (A.M.); (V.O.); (L.P.)
| |
Collapse
|
7
|
Kalinichenko LS, Abdel-Hafiz L, Wang AL, Mühle C, Rösel N, Schumacher F, Kleuser B, Smaga I, Frankowska M, Filip M, Schaller G, Richter-Schmidinger T, Lenz B, Gulbins E, Kornhuber J, Oliveira AWC, Barros M, Huston JP, Müller CP. Neutral Sphingomyelinase is an Affective Valence-Dependent Regulator of Learning and Memory. Cereb Cortex 2021; 31:1316-1333. [PMID: 33043975 DOI: 10.1093/cercor/bhaa298] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 09/11/2020] [Accepted: 09/11/2020] [Indexed: 12/16/2022] Open
Abstract
Sphingolipids and enzymes of the sphingolipid rheostat determine synaptic appearance and signaling in the brain, but sphingolipid contribution to normal behavioral plasticity is little understood. Here we asked how the sphingolipid rheostat contributes to learning and memory of various dimensions. We investigated the role of these lipids in the mechanisms of two different types of memory, such as appetitively and aversively motivated memory, which are considered to be mediated by different neural mechanisms. We found an association between superior performance in short- and long-term appetitively motivated learning and regionally enhanced neutral sphingomyelinase (NSM) activity. An opposite interaction was observed in an aversively motivated task. A valence-dissociating role of NSM in learning was confirmed in mice with genetically reduced NSM activity. This role may be mediated by the NSM control of N-methyl-d-aspartate receptor subunit expression. In a translational approach, we confirmed a positive association of serum NSM activity with long-term appetitively motivated memory in nonhuman primates and in healthy humans. Altogether, these data suggest a new sphingolipid mechanism of de-novo learning and memory, which is based on NSM activity.
Collapse
Affiliation(s)
- Liubov S Kalinichenko
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nuremberg, Erlangen 91054, Germany
| | - Laila Abdel-Hafiz
- Center for Behavioral Neuroscience, Institute of Experimental Psychology, University of Düsseldorf, Düsseldorf 40225, Germany
| | - An-Li Wang
- Center for Behavioral Neuroscience, Institute of Experimental Psychology, University of Düsseldorf, Düsseldorf 40225, Germany
| | - Christiane Mühle
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nuremberg, Erlangen 91054, Germany
| | - Nadine Rösel
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nuremberg, Erlangen 91054, Germany
| | - Fabian Schumacher
- Department of Toxicology, Faculty of Mathematics and Natural Science, Institute of Nutritional Science, University of Potsdam, Potsdam 14558, Germany.,Department of Molecular Biology, University of Duisburg-Essen, Essen 45147, Germany
| | - Burkhard Kleuser
- Department of Toxicology, Faculty of Mathematics and Natural Science, Institute of Nutritional Science, University of Potsdam, Potsdam 14558, Germany
| | - Irena Smaga
- Department of Drug Addiction Pharmacology, Polish Academy of Sciences, Maj Institute of Pharmacology, Kraków 31-343, Poland
| | - Malgorzata Frankowska
- Department of Drug Addiction Pharmacology, Polish Academy of Sciences, Maj Institute of Pharmacology, Kraków 31-343, Poland
| | - Malgorzata Filip
- Department of Drug Addiction Pharmacology, Polish Academy of Sciences, Maj Institute of Pharmacology, Kraków 31-343, Poland
| | - Gerd Schaller
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nuremberg, Erlangen 91054, Germany
| | - Tanja Richter-Schmidinger
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nuremberg, Erlangen 91054, Germany
| | - Bernd Lenz
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nuremberg, Erlangen 91054, Germany.,Department of Addictive Behavior and Addiction Medicine, Central Institute of Mental Health (CIMH), Medical Faculty Mannheim, Heidelberg University, Mannheim 68159, Germany
| | - Erich Gulbins
- Department of Molecular Biology, University of Duisburg-Essen, Essen 45147, Germany.,Department of Surgery, College of Medicine, University of Cincinnati, Cincinnati, OH 45267-0558, USA
| | - Johannes Kornhuber
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nuremberg, Erlangen 91054, Germany
| | - André W C Oliveira
- Department of Pharmacy, School of Health Sciences, University of Brasilia, Brasilia, DF 70910-900, Brazil
| | - Marilia Barros
- Department of Pharmacy, School of Health Sciences, University of Brasilia, Brasilia, DF 70910-900, Brazil.,Primate Center, Institute of Biology, University of Brasilia, Brasilia 70910-900, Brazil
| | - Joseph P Huston
- Center for Behavioral Neuroscience, Institute of Experimental Psychology, University of Düsseldorf, Düsseldorf 40225, Germany
| | - Christian P Müller
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nuremberg, Erlangen 91054, Germany
| |
Collapse
|
8
|
CB 1 Activity Drives the Selection of Navigational Strategies: A Behavioral and c-Fos Immunoreactivity Study. Int J Mol Sci 2020; 21:ijms21031072. [PMID: 32041135 PMCID: PMC7036945 DOI: 10.3390/ijms21031072] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 01/29/2020] [Accepted: 01/31/2020] [Indexed: 11/26/2022] Open
Abstract
To promote efficient explorative behaviors, subjects adaptively select spatial navigational strategies based on landmarks or a cognitive map. The hippocampus works alone or in conjunction with the dorsal striatum, both representing the neuronal underpinnings of the navigational strategies organized on the basis of different systems of spatial coordinate integration. The high expression of cannabinoid type 1 (CB1) receptors in structures related to spatial learning—such as the hippocampus, dorsal striatum and amygdala—renders the endocannabinoid system a critical target to study the balance between landmark- and cognitive map-based navigational strategies. In the present study, mice treated with the CB1-inverse agonist/antagonist AM251 or vehicle were trained on a Circular Hole Board, a task that could be solved through either navigational strategy. At the end of the behavioral testing, c-Fos immunoreactivity was evaluated in specific nuclei of the hippocampus, dorsal striatum and amygdala. AM251 treatment impaired spatial learning and modified the pattern of the performed navigational strategies as well as the c-Fos immunoreactivity in the hippocampus, dorsal striatum and amygdala. The present findings shed light on the involvement of CB1 receptors as part of the selection system of the navigational strategies implemented to efficiently solve the spatial problem.
Collapse
|
9
|
Abstract
The measurement of Pavlovian forms of fear extinction offers a relatively simple behavioral preparation that is nonetheless tractable, from a translational perspective, as an approach to study mechanisms of exposure therapy and biological underpinnings of anxiety and trauma-related disorders such as post-traumatic stress disorder (PTSD). Deficient fear extinction is considered a robust clinical endophenotype for these disorders and, as such, has particular significance in the current "age of RDoC (research domain criteria)." Various rodent models of impaired extinction have thus been generated with the objective of approximating this clinical, relapse prone aberrant extinction learning. These models have helped to reveal neurobiological correlates of extinction circuitry failure, gene variants, and other mechanisms underlying deficient fear extinction. In addition, they are increasingly serving as tools to investigate ways to therapeutically overcome poor extinction to support long-term retention of extinction memory and thus protection against various forms of fear relapse; modeled in the laboratory by measuring spontaneous recovery, reinstatement and renewal of fear. In the current article, we review models of impaired extinction built around (1) experimentally induced brain region and neural circuit disruptions (2) spontaneously-arising and laboratory-induced genetic modifications, or (3) exposure to environmental insults, including stress, drugs of abuse, and unhealthy diet. Collectively, these models have been instrumental in advancing in our understanding of extinction failure and underlying susceptibilities at the neural, genetic, molecular, and neurochemical levels; generating renewed interest in developing novel, targeted and effective therapeutic treatments for anxiety and trauma-related disorders.
Collapse
Affiliation(s)
- Nicolas Singewald
- Department of Pharmacology and Toxicology, Institute of Pharmacy, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria.
| | - Andrew Holmes
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD USA
| |
Collapse
|
10
|
Anodal transcranial direct current stimulation affects auditory cortex plasticity in normal-hearing and noise-exposed rats. Brain Stimul 2018; 11:1008-1023. [DOI: 10.1016/j.brs.2018.05.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 05/10/2018] [Accepted: 05/28/2018] [Indexed: 12/20/2022] Open
|
11
|
Laricchiuta D, Andolina D, Angelucci F, Gelfo F, Berretta E, Puglisi-Allegra S, Petrosini L. Cerebellar BDNF Promotes Exploration and Seeking for Novelty. Int J Neuropsychopharmacol 2018; 21:485-498. [PMID: 29471437 PMCID: PMC5932472 DOI: 10.1093/ijnp/pyy015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 01/29/2018] [Accepted: 02/13/2018] [Indexed: 12/11/2022] Open
Abstract
Background Approach system considered a motivational system that activates reward-seeking behavior is associated with exploration/impulsivity, whereas avoidance system considered an attentional system that promotes inhibition of appetitive responses is associated with active overt withdrawal. Approach and avoidance dispositions are modulated by distinct neurochemical profiles and synaptic patterns. However, the precise working of neurons and trafficking of molecules in the brain activity predisposing to approach and avoidance are yet unclear. Methods In 3 phenotypes of inbred mice, avoiding, balancing, and approaching mice, selected by using the Approach/Avoidance Y-maze, we analyzed endogenous brain levels of brain derived neurotrophic factor, one of the main secretory proteins with pleiotropic action. To verify the effects of the acute increase of brain derived neurotrophic factor, balancing and avoiding mice were bilaterally brain derived neurotrophic factor-infused in the cortical cerebellar regions. Results Approaching animals showed high levels of explorative behavior and response to novelty and exhibited higher brain derived neurotrophic factor levels in the cerebellar structures in comparison to the other 2 phenotypes of mice. Interestingly, brain derived neurotrophic factor-infused balancing and avoiding mice significantly increased their explorative behavior and response to novelty. Conclusions Cerebellar brain derived neurotrophic factor may play a role in explorative and novelty-seeking responses that sustain the approach predisposition.
Collapse
Affiliation(s)
- Daniela Laricchiuta
- Fondazione Santa Lucia, Rome, Italy
- Department of Psychology, Faculty of Medicine and Psychology, University “Sapienza” of Rome, Rome, Italy
| | - Diego Andolina
- Fondazione Santa Lucia, Rome, Italy
- Department of Psychology, Faculty of Medicine and Psychology, University “Sapienza” of Rome, Rome, Italy
| | - Francesco Angelucci
- Fondazione Santa Lucia, Rome, Italy
- Memory Clinic, Department of Neurology, Charles University, 2nd Faculty of Medicine and Motol University Hospital, Prague, Czech Republic
| | - Francesca Gelfo
- Fondazione Santa Lucia, Rome, Italy
- Department of TeCoS, Guglielmo Marconi University, Rome, Italy
| | - Erica Berretta
- Fondazione Santa Lucia, Rome, Italy
- Department of Psychology, Faculty of Medicine and Psychology, University “Sapienza” of Rome, Rome, Italy
- Behavioral Neuroscience PhD Programme
| | - Stefano Puglisi-Allegra
- Fondazione Santa Lucia, Rome, Italy
- Department of Psychology, Faculty of Medicine and Psychology, University “Sapienza” of Rome, Rome, Italy
| | - Laura Petrosini
- Fondazione Santa Lucia, Rome, Italy
- Department of Psychology, Faculty of Medicine and Psychology, University “Sapienza” of Rome, Rome, Italy
| |
Collapse
|
12
|
Zhao ZA, Ning YL, Li P, Yang N, Peng Y, Xiong RP, Zhao Y, Liu D, Zeng XJ, Chen JF, Zhou YG. Widespread hyperphosphorylated tau in the working memory circuit early after cortical impact injury of brain (Original study). Behav Brain Res 2017; 323:146-153. [DOI: 10.1016/j.bbr.2017.02.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 01/26/2017] [Accepted: 02/01/2017] [Indexed: 12/14/2022]
|