1
|
Yang SN, Shi Y, Berggren PO. The anterior chamber of the eye technology and its anatomical, optical, and immunological bases. Physiol Rev 2024; 104:881-929. [PMID: 38206586 PMCID: PMC11381035 DOI: 10.1152/physrev.00024.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 11/30/2023] [Accepted: 01/05/2024] [Indexed: 01/12/2024] Open
Abstract
The anterior chamber of the eye (ACE) is distinct in its anatomy, optics, and immunology. This guarantees that the eye perceives visual information in the context of physiology even when encountering adverse incidents like inflammation. In addition, this endows the ACE with the special nursery bed iris enriched in vasculatures and nerves. The ACE constitutes a confined space enclosing an oxygen/nutrient-rich, immune-privileged, and less stressful milieu as well as an optically transparent medium. Therefore, aside from visual perception, the ACE unexpectedly serves as an excellent transplantation site for different body parts and a unique platform for noninvasive, longitudinal, and intravital microimaging of different grafts. On the basis of these merits, the ACE technology has evolved from the prototypical through the conventional to the advanced version. Studies using this technology as a versatile biomedical research platform have led to a diverse range of basic knowledge and in-depth understanding of a variety of cells, tissues, and organs as well as artificial biomaterials, pharmaceuticals, and abiotic substances. Remarkably, the technology turns in vivo dynamic imaging of the morphological characteristics, organotypic features, developmental fates, and specific functions of intracameral grafts into reality under physiological and pathological conditions. Here we review the anatomical, optical, and immunological bases as well as technical details of the ACE technology. Moreover, we discuss major achievements obtained and potential prospective avenues for this technology.
Collapse
Affiliation(s)
- Shao-Nian Yang
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Stockholm, Sweden
| | - Yue Shi
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Stockholm, Sweden
| | - Per-Olof Berggren
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
2
|
Uncommon Transplantation Sites: Transplantation of Islets and Islet Organoids in the Anterior Chamber of the Eye of Rodents and Monkeys. Methods Mol Biol 2022; 2592:21-36. [PMID: 36507983 DOI: 10.1007/978-1-0716-2807-2_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The anterior chamber of the eye is a highly vascularized and innervated location that is also particularly rich in oxygen and immune privileged. This uncommon transplantation site offers unique possibilities for the observation of the transplanted material as well as for local pharmacological intervention. Transplantation of islets and islet organoids to the anterior chamber of the eye of mice and monkeys facilitates a multitude of new approaches for research into islet physiology and pathophysiology and for the treatment of diabetes. We now present a short overview of the experimental possibilities and describe an updated protocol for transplantation of islets and islet organoids into mice and monkeys.
Collapse
|
3
|
Saydmohammed M, Jha A, Mahajan V, Gavlock D, Shun TY, DeBiasio R, Lefever D, Li X, Reese C, Kershaw EE, Yechoor V, Behari J, Soto-Gutierrez A, Vernetti L, Stern A, Gough A, Miedel MT, Lansing Taylor D. Quantifying the progression of non-alcoholic fatty liver disease in human biomimetic liver microphysiology systems with fluorescent protein biosensors. Exp Biol Med (Maywood) 2021; 246:2420-2441. [PMID: 33957803 PMCID: PMC8606957 DOI: 10.1177/15353702211009228] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 03/23/2021] [Indexed: 12/12/2022] Open
Abstract
Metabolic syndrome is a complex disease that involves multiple organ systems including a critical role for the liver. Non-alcoholic fatty liver disease (NAFLD) is a key component of the metabolic syndrome and fatty liver is linked to a range of metabolic dysfunctions that occur in approximately 25% of the population. A panel of experts recently agreed that the acronym, NAFLD, did not properly characterize this heterogeneous disease given the associated metabolic abnormalities such as type 2 diabetes mellitus (T2D), obesity, and hypertension. Therefore, metabolic dysfunction-associated fatty liver disease (MAFLD) has been proposed as the new term to cover the heterogeneity identified in the NAFLD patient population. Although many rodent models of NAFLD/NASH have been developed, they do not recapitulate the full disease spectrum in patients. Therefore, a platform has evolved initially focused on human biomimetic liver microphysiology systems that integrates fluorescent protein biosensors along with other key metrics, the microphysiology systems database, and quantitative systems pharmacology. Quantitative systems pharmacology is being applied to investigate the mechanisms of NAFLD/MAFLD progression to select molecular targets for fluorescent protein biosensors, to integrate computational and experimental methods to predict drugs for repurposing, and to facilitate novel drug development. Fluorescent protein biosensors are critical components of the platform since they enable monitoring of the pathophysiology of disease progression by defining and quantifying the temporal and spatial dynamics of protein functions in the biosensor cells, and serve as minimally invasive biomarkers of the physiological state of the microphysiology system experimental disease models. Here, we summarize the progress in developing human microphysiology system disease models of NAFLD/MAFLD from several laboratories, developing fluorescent protein biosensors to monitor and to measure NAFLD/MAFLD disease progression and implementation of quantitative systems pharmacology with the goal of repurposing drugs and guiding the creation of novel therapeutics.
Collapse
Affiliation(s)
- Manush Saydmohammed
- University of Pittsburgh Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Anupma Jha
- University of Pittsburgh Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Vineet Mahajan
- University of Pittsburgh Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Dillon Gavlock
- University of Pittsburgh Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Tong Ying Shun
- University of Pittsburgh Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Richard DeBiasio
- University of Pittsburgh Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Daniel Lefever
- University of Pittsburgh Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Xiang Li
- University of Pittsburgh Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Celeste Reese
- University of Pittsburgh Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Erin E Kershaw
- Department of Medicine, Division of Endocrinology and Metabolism, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Vijay Yechoor
- Department of Medicine, Division of Endocrinology and Metabolism, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Jaideep Behari
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, Pittsburgh, PA 15261, USA
- UPMC Liver Clinic, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Alejandro Soto-Gutierrez
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Larry Vernetti
- University of Pittsburgh Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Andrew Stern
- University of Pittsburgh Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Albert Gough
- University of Pittsburgh Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Mark T Miedel
- University of Pittsburgh Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - D Lansing Taylor
- University of Pittsburgh Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| |
Collapse
|
4
|
Hu Q, Li L, Zhai Z, Wang Q, Liao S. Vitamin B 12 Inhibits Streptozotocin-Induced Islet β-Cell Oxidative Stress and Apoptosis by Activating Peroxisome Proliferator-Activated Receptor- γ Signaling Pathway. J BIOMATER TISS ENG 2021. [DOI: 10.1166/jbt.2021.2778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The present study aimed to investigate the effects of vitamin B12 on islet β-cell (INS-1) induced by streptozotocin (STZ) and the potential mechanisms. In this study, CCK8 was used to detect cell viability and TUNEL assay was used to detect apoptosis levels of
treated INS-1 cells. The expression level of oxidative stress factors was measured by ELISA. Furthermore, western blot assay was used to detect the expression of PPAR-γ and apoptotic factors in treated INS-1 cells. Vitamin B12 improves STZ-induced insulin secretion
in INS-1 cells, oxidative stress injury and apoptosis. Moreover, Vitamin B12 can activate the PPAR-γ signaling pathway and inhibit STZ-induced INS-1 cell damage. Taken together, our study demonstrated that vitamin B12 inhibits streptozotocin-induced islet
β-cell oxidative stress and apoptosis by activating PPAR-γ signaling pathway.
Collapse
Affiliation(s)
- Qiaosheng Hu
- Department of Clinical Nutrition, Lianshui County People’s Hospital, Jiangsu, 223400, China
| | - Lihua Li
- Department of Clinical Nutrition, Lianshui County People’s Hospital, Jiangsu, 223400, China
| | - Zhongshu Zhai
- Department of Endocrinology, Lianshui County People’s Hospital, Jiangsu, 223400, China
| | - Quansheng Wang
- Department of Endocrinology, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical Universtiy Jiangsu, 210019, China
| | - Shuaiju Liao
- Department of Endocrinology, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical Universtiy Jiangsu, 210019, China
| |
Collapse
|
5
|
Abstract
Diabetes develops due to deficient functional β cell mass, insulin resistance, or both. Yet, various challenges in understanding the mechanisms underlying diabetes development in vivo remain to be overcome owing to the lack of appropriate intravital imaging technologies. To meet these challenges, we have exploited the anterior chamber of the eye (ACE) as a novel imaging site to understand diabetes basics and clinics in vivo. We have developed a technology platform transplanting pancreatic islets into the ACE where they later on can be imaged non-invasively for long time. It turns out that the ACE serves as an optimal imaging site and provides implanted islets with an oxygen-rich milieu and an immune-privileged niche where they undergo optimal engraftment, rich vascularization and dense innervation, preserve organotypic features and live with satisfactory viability and functionality. The ACE technology has led to a series of significant observations. It enables in vivo microscopy of islet cytoarchitecture, function and viability in the physiological context and intravital imaging of a variety of pathological events such as autoimmune insulitis, defects in β cell function and mass and insulin resistance during diabetes development in a real-time manner. Furthermore, application of the ACE technology in humanized mice and non-human primates verifies translational and clinical values of the technology. In this article, we describe the ACE technology in detail, review accumulated knowledge gained by means of the ACE technology and delineate prospective avenues for the ACE technology.
Collapse
|
6
|
Frank JA, Broichhagen J, Yushchenko DA, Trauner D, Schultz C, Hodson DJ. Optical tools for understanding the complexity of β-cell signalling and insulin release. Nat Rev Endocrinol 2018; 14:721-737. [PMID: 30356209 DOI: 10.1038/s41574-018-0105-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Following stimulation, pancreatic β-cells must orchestrate a plethora of signalling events to ensure the appropriate release of insulin and maintenance of normal glucose homeostasis. Failure at any point in this cascade leads to impaired insulin secretion, elevated blood levels of glucose and eventually type 2 diabetes mellitus. Likewise, β-cell replacement or regeneration strategies for the treatment of both type 1 and type 2 diabetes mellitus might fail if the correct cell signalling phenotype cannot be faithfully recreated. However, current understanding of β-cell function is complicated because of the highly dynamic nature of their intracellular and intercellular signalling as well as insulin release itself. β-Cells must precisely integrate multiple signals stemming from multiple cues, often with differing intensities, frequencies and cellular and subcellular localizations, before converging these signals onto insulin exocytosis. In this respect, optical approaches with high resolution in space and time are extremely useful for properly deciphering the complexity of β-cell signalling. An increased understanding of β-cell signalling might identify new mechanisms underlying insulin release, with relevance for future drug therapy and de novo stem cell engineering of functional islets.
Collapse
Affiliation(s)
- James A Frank
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Johannes Broichhagen
- Department of Chemical Biology, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Dmytro A Yushchenko
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Dirk Trauner
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemistry, New York University, New York, NY, USA
| | - Carsten Schultz
- European Molecular Biology Laboratory (EMBL), Cell Biology and Biophysics Unit, Heidelberg, Germany.
- Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, OR, USA.
| | - David J Hodson
- Institute of Metabolism and Systems Research (IMSR) and Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham, UK.
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK.
| |
Collapse
|
7
|
Nasteska D, Hodson DJ. The role of beta cell heterogeneity in islet function and insulin release. J Mol Endocrinol 2018; 61:R43-R60. [PMID: 29661799 PMCID: PMC5976077 DOI: 10.1530/jme-18-0011] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 04/16/2018] [Indexed: 12/15/2022]
Abstract
It is becoming increasingly apparent that not all insulin-secreting beta cells are equal. Subtle differences exist at the transcriptomic and protein expression levels, with repercussions for beta cell survival/proliferation, calcium signalling and insulin release. Notably, beta cell heterogeneity displays plasticity during development, metabolic stress and type 2 diabetes mellitus (T2DM). Thus, heterogeneity or lack thereof may be an important contributor to beta cell failure during T2DM in both rodents and humans. The present review will discuss the molecular and cellular features of beta cell heterogeneity at both the single-cell and islet level, explore how this influences islet function and insulin release and look into the alterations that may occur during obesity and T2DM.
Collapse
Affiliation(s)
- Daniela Nasteska
- Institute of Metabolism and Systems Research (IMSR)University of Birmingham, Edgbaston, UK
- Centre for EndocrinologyDiabetes and Metabolism, Birmingham Health Partners, Birmingham, UK
- COMPARE University of Birmingham and University of Nottingham MidlandsBirmingham, UK
| | - David J Hodson
- Institute of Metabolism and Systems Research (IMSR)University of Birmingham, Edgbaston, UK
- Centre for EndocrinologyDiabetes and Metabolism, Birmingham Health Partners, Birmingham, UK
- COMPARE University of Birmingham and University of Nottingham MidlandsBirmingham, UK
| |
Collapse
|
8
|
Paschen M, Moede T, Valladolid-Acebes I, Leibiger B, Moruzzi N, Jacob S, García-Prieto CF, Brismar K, Leibiger IB, Berggren PO. Diet-induced β-cell insulin resistance results in reversible loss of functional β-cell mass. FASEB J 2018; 33:204-218. [PMID: 29957055 PMCID: PMC6355083 DOI: 10.1096/fj.201800826r] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Although convincing in genetic models, the relevance of β-cell insulin resistance in diet-induced type 2 diabetes (T2DM) remains unclear. Exemplified by diabetes-prone, male, C57B1/6J mice being fed different combinations of Western-style diet, we show that β-cell insulin resistance occurs early during T2DM progression and is due to a combination of lipotoxicity and increased β-cell workload. Within 8 wk of being fed a high-fat, high-sucrose diet, mice became obese, developed impaired insulin and glucose tolerances, and displayed noncompensatory insulin release, due, at least in part, to reduced expression of syntaxin-1A. Through reporter islets transplanted to the anterior chamber of the eye, we demonstrated a concomitant loss of functional β-cell mass. When mice were changed from diabetogenic diet to normal chow diet, the diabetes phenotype was reversed, suggesting a remarkable plasticity of functional β-cell mass in the early phase of T2DM development. Our data reinforce the relevance of diet composition as an environmental factor determining different routes of diabetes progression in a given genetic background. Employing the in vivo reporter islet–monitoring approach will allow researchers to define key times in the dynamics of reversible loss of functional β-cell mass and, thus, to investigate the underlying, molecular mechanisms involved in the progression toward T2DM manifestation.—Paschen, M., Moede, T., Valladolid-Acebes, I., Leibiger, B., Moruzzi, N., Jacob, S., García-Prieto, C. F., Brismar, K., Leibiger, I. B., Berggren, P.-O. Diet-induced β-cell insulin resistance results in reversible loss of functional β-cell mass.
Collapse
Affiliation(s)
- Meike Paschen
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Stockholm, Sweden
| | - Tilo Moede
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Stockholm, Sweden
| | - Ismael Valladolid-Acebes
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Stockholm, Sweden
| | - Barbara Leibiger
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Stockholm, Sweden
| | - Noah Moruzzi
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Stockholm, Sweden
| | - Stefan Jacob
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Stockholm, Sweden
| | - Concha F García-Prieto
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Stockholm, Sweden
| | - Kerstin Brismar
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Stockholm, Sweden
| | - Ingo B Leibiger
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Stockholm, Sweden
| | - Per-Olof Berggren
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
9
|
Benson RA, Garcon F, Recino A, Ferdinand JR, Clatworthy MR, Waldmann H, Brewer JM, Okkenhaug K, Cooke A, Garside P, Wållberg M. Non-Invasive Multiphoton Imaging of Islets Transplanted Into the Pinna of the NOD Mouse Ear Reveals the Immediate Effect of Anti-CD3 Treatment in Autoimmune Diabetes. Front Immunol 2018; 9:1006. [PMID: 29867981 PMCID: PMC5968092 DOI: 10.3389/fimmu.2018.01006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 04/23/2018] [Indexed: 12/16/2022] Open
Abstract
We present a novel and readily accessible method facilitating cellular time-resolved imaging of transplanted pancreatic islets. Grafting of islets to the mouse ear pinna allows non-invasive, in vivo longitudinal imaging of events in the islets and enables improved acquisition of experimental data and use of fewer experimental animals than is possible using invasive techniques, as the same mouse can be assessed for the presence of islet infiltrating cells before and after immune intervention. We have applied this method to investigating therapeutic protection of beta cells through the well-established use of anti-CD3 injection, and have acquired unprecedented data on the nature and rapidity of the effect on the islet infiltrating T cells. We demonstrate that infusion of anti-CD3 antibody leads to immediate effects on islet infiltrating T cells in islet grafts in the pinna of the ear, and causes them to increase their speed and displacement within 20 min of infusion. This technique overcomes several technical challenges associated with intravital imaging of pancreatic immune responses and facilitates routine study of beta islet cell development, differentiation, and function in health and disease.
Collapse
Affiliation(s)
- Robert A. Benson
- College of Medical, Veterinary & Life Sciences, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Fabien Garcon
- Laboratory of Lymphocyte Signalling and Development, Babraham Institute, Cambridge, United Kingdom
| | - Asha Recino
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - John R. Ferdinand
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Menna R. Clatworthy
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Herman Waldmann
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - James M. Brewer
- College of Medical, Veterinary & Life Sciences, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Klaus Okkenhaug
- Laboratory of Lymphocyte Signalling and Development, Babraham Institute, Cambridge, United Kingdom
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Anne Cooke
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Paul Garside
- College of Medical, Veterinary & Life Sciences, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Maja Wållberg
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
10
|
Varhue WB, Langman L, Kelly-Goss M, Lataillade M, Brayman KL, Peirce-Cottler S, Swami NS. Deformability-based microfluidic separation of pancreatic islets from exocrine acinar tissue for transplant applications. LAB ON A CHIP 2017; 17:3682-3691. [PMID: 28975176 DOI: 10.1039/c7lc00890b] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The long-term management of type-1 diabetes (T1D) is currently achieved through lifelong exogenous insulin injections. Although there is no cure for T1D, transplantation of pancreatic islets of Langerhans has the potential to restore normal endocrine function versus the morbidity of hypoglycemic unawareness that is commonly associated with sudden death among fragile diabetics. However, since endocrine islet tissues form a small proportion of the pancreas, sufficient islet numbers can be reached only by combining islets from multiple organ donors and the transplant plug contains significantly high levels of exocrine acinar tissue, thereby exacerbating immune responses. Hence, lifelong administration of immunosuppressants is required after transplantation, which can stress islet cells. The density gradient method that is currently used to separate islets from acinar tissue causes islets to be sparsely distributed over the centrifuged bins, so that the transplant sample obtained by combining multiple bins also contains significant acinar tissue levels. We show that in comparison to the significant size and density overlaps between the islet and acinar tissue populations post-organ digestion, their deformability overlaps are minimal. This feature is utilized to design a microfluidic separation strategy, wherein tangential flows enable selective deformation of acinar populations towards the bifurcating waste stream and sequential switching of hydrodynamic resistance enables the collection of rigid islets. Using 25 bifurcating daughter channels, a throughput of ∼300 islets per hour per device is obtained for enabling islet enrichment from relatively dilute starting levels to purity levels that meet the transplant criteria, as well as to further enhance islet purity from samples following density gradient enrichment. Based on confirmation of viability and functionality of the microfluidic-isolated islets using insulin secretion analysis and an angiogenesis assay, we envision utilizing this strategy to generate small-volume transplant plugs with high islet purity and significantly reduced acinar levels for minimizing immune responses after transplantation.
Collapse
Affiliation(s)
- Walter B Varhue
- Department of Electrical & Computer Engineering, University of Virginia, Charlottesville, VA 22904, USA.
| | - Linda Langman
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA 22904, USA
| | - Molly Kelly-Goss
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22904, USA
| | - Morgan Lataillade
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22904, USA
| | - Kenneth L Brayman
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA 22904, USA
| | - Shayn Peirce-Cottler
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22904, USA
| | - Nathan S Swami
- Department of Electrical & Computer Engineering, University of Virginia, Charlottesville, VA 22904, USA.
| |
Collapse
|
11
|
Leibiger IB, Berggren PO. Intraocular in vivo imaging of pancreatic islet cell physiology/pathology. Mol Metab 2017; 6:1002-1009. [PMID: 28951824 PMCID: PMC5605725 DOI: 10.1016/j.molmet.2017.03.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 03/07/2017] [Accepted: 03/18/2017] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Diabetes mellitus has reached epidemic proportions and requires new strategies for treatment. Unfortunately, the efficacy of treatment regimens on maintaining/re-gaining functional beta cell mass can, at the present, only be determined indirectly. Direct monitoring of beta cell mass is complicated by the anatomy of the endocrine pancreas, which consists of thousands to a million of discrete micro-organs, i.e. islets of Langerhans, which are scattered throughout the pancreas. SCOPE OF REVIEW Here, we review the progress made over the last years using the anterior chamber of the eye as a transplantation site for functional imaging of pancreatic islet cells in the living organism. Islets engrafted on the iris are vascularized and innervated and the cornea, serving as a natural body-window, allows for microscopic, non-invasive, longitudinal evaluation of islet/beta cell function and survival with single-cell resolution in health and disease. MAJOR CONCLUSIONS Data provided by us and others demonstrate the high versatility of this imaging platform. The use of 'reporter islets' engrafted in the eye, reporting on the status of in situ endogenous islets in the pancreas of the same animal, allows the identification of key-events in the development and progression of diabetes. This will not only serve as a versatile research tool but will also lay the foundation for a personalized medicine approach and will serve as a screening platform for new drugs and/or treatment protocols. 'Metabolic' islet transplantation, in which islets engrafted in the eye replace the endogenous beta cells, will allow for the establishment of islet-specific transgenic models and 'humanized' mouse models as well as serving as the basis for a new clinical transplantation site for the cure of diabetes.
Collapse
Affiliation(s)
- Ingo B. Leibiger
- The Rolf Luft Research Center for Diabetes and Endocrinology, L1:03 Karolinska Institutet, SE-171 76 Stockholm, Sweden
| | - Per-Olof Berggren
- The Rolf Luft Research Center for Diabetes and Endocrinology, L1:03 Karolinska Institutet, SE-171 76 Stockholm, Sweden
| |
Collapse
|
12
|
Mukherjee S, Chattopadhyay M, Bhattacharya S, Dasgupta S, Hussain S, Bharadwaj SK, Talukdar D, Usmani A, Pradhan BS, Majumdar SS, Chattopadhyay P, Mukhopadhyay S, Maity TK, Chaudhuri MK, Bhattacharya S. A Small Insulinomimetic Molecule Also Improves Insulin Sensitivity in Diabetic Mice. PLoS One 2017; 12:e0169809. [PMID: 28072841 PMCID: PMC5224995 DOI: 10.1371/journal.pone.0169809] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 12/21/2016] [Indexed: 12/18/2022] Open
Abstract
Dramatic increase of diabetes over the globe is in tandem with the increase in insulin requirement. This is because destruction and dysfunction of pancreatic β-cells are of common occurrence in both Type1 diabetes and Type2 diabetes, and insulin injection becomes a compulsion. Because of several problems associated with insulin injection, orally active insulin mimetic compounds would be ideal substitute. Here we report a small molecule, a peroxyvanadate compound i.e. DmpzH[VO(O2)2(dmpz)], henceforth referred as dmp, which specifically binds to insulin receptor with considerable affinity (KD-1.17μM) thus activating insulin receptor tyrosine kinase and its downstream signaling molecules resulting increased uptake of [14C] 2 Deoxy-glucose. Oral administration of dmp to streptozotocin treated BALB/c mice lowers blood glucose level and markedly stimulates glucose and fatty acid uptake by skeletal muscle and adipose tissue respectively. In db/db mice, it greatly improves insulin sensitivity through excess expression of PPARγ and its target genes i.e. adiponectin, CD36 and aP2. Study on the underlying mechanism demonstrated that excess expression of Wnt3a decreased PPARγ whereas dmp suppression of Wnt3a gene increased PPARγ expression which subsequently augmented adiponectin. Increased production of adiponectin in db/db mice due to dmp effected lowering of circulatory TG and FFA levels, activates AMPK in skeletal muscle and this stimulates mitochondrial biogenesis and bioenergetics. Decrease of lipid load along with increased mitochondrial activity greatly improves energy homeostasis which has been found to be correlated with the increased insulin sensitivity. The results obtained with dmp, therefore, strongly indicate that dmp could be a potential candidate for insulin replacement therapy.
Collapse
Affiliation(s)
- Sandip Mukherjee
- Cellular and Molecular Endocrinology Laboratory, Centre for Advanced Studies in Zoology, School of Life Science, Visva-Bharati (A Central University), Santiniketan, West Bengal, India
| | - Mrittika Chattopadhyay
- Cellular and Molecular Endocrinology Laboratory, Centre for Advanced Studies in Zoology, School of Life Science, Visva-Bharati (A Central University), Santiniketan, West Bengal, India
| | | | - Suman Dasgupta
- Department of Molecular Biology and Biotechnology, Tezpur University, Assam, India
| | - Sahid Hussain
- Department of Chemical Sciences, Tezpur University, Assam, India
| | | | | | - Abul Usmani
- Division of Cellular Endocrinology, National Institute of Immunology, New Delhi, India
| | - Bhola S Pradhan
- Division of Cellular Endocrinology, National Institute of Immunology, New Delhi, India
| | - Subeer S Majumdar
- Division of Cellular Endocrinology, National Institute of Immunology, New Delhi, India
| | | | - Satinath Mukhopadhyay
- Department of Endocrinology & Metabolism, Institute of Post-Graduate Medical Education & Research-Seth Sukhlal Karnani Memorial (IPGME&R−SSKM) Hospital, Kolkata, West Bengal, India
| | | | - Mihir K. Chaudhuri
- Department of Chemical Sciences, Tezpur University, Assam, India
- * E-mail: (SB); (MKC)
| | - Samir Bhattacharya
- Cellular and Molecular Endocrinology Laboratory, Centre for Advanced Studies in Zoology, School of Life Science, Visva-Bharati (A Central University), Santiniketan, West Bengal, India
- * E-mail: (SB); (MKC)
| |
Collapse
|