1
|
Xie C, Liu X, Li W, Yao Z, Men H, Li Z. The role of miRNAs as biomarkers in heterotopic ossification. EFORT Open Rev 2024; 9:1120-1133. [PMID: 39620561 PMCID: PMC11619732 DOI: 10.1530/eor-22-0100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/08/2024] Open
Abstract
Fibrodysplasia ossificans progressiva and progressive osseous heteroplasia are genetic forms of heterotopic ossification (HO). Fibrodysplasia ossificans progressiva is caused by ACVR1 gene mutations, while progressive osseous heteroplasia is caused by GNAS gene mutations. Nongenetic HO typically occurs after trauma or surgery, with an occurrence rate of 20-60%. It can also be observed in conditions such as diffuse idiopathic skeletal hyperostosis, spinal ligament ossification, ankylosing spondylitis, and skeletal fluorosis. The exact cause of nongenetic HO is not entirely clear. More than 100 types of miRNAs have been identified as being linked to the development of HO. Some miRNAs are promising potential biomarkers for traumatic HO and ossification of the posterior longitudinal ligament. These findings further emphasize the significant role miRNAs play in the pathogenesis and progression of bone disorders. Repeated investigations into the function of a specific miRNA are infrequent and yield inconsistent results, possibly because of variable experimental conditions. It is hypothesized that miRNAs can enhance osteogenesis for the management of fractures and bone defects. However, further research is required to validate this hypothesis.
Collapse
Affiliation(s)
- Chen Xie
- Trauma center, The 960th Hospital of PLA, Jinan, Shandong, China
| | - Xiao Liu
- Department of Basic Medical Sciences, The 960th Hospital of PLA, Jinan, Shandong, China
| | - Wenbao Li
- Trauma center, The 960th Hospital of PLA, Jinan, Shandong, China
| | - Zhaozhe Yao
- Trauma center, The 960th Hospital of PLA, Jinan, Shandong, China
| | - Hongyue Men
- Trauma center, The 960th Hospital of PLA, Jinan, Shandong, China
| | - Zongyu Li
- Trauma center, The 960th Hospital of PLA, Jinan, Shandong, China
| |
Collapse
|
2
|
Kharaz YA, Zamboulis DE, Fang Y, Welting TJM, Peffers MJ, Comerford EJ. Small RNA signatures of the anterior cruciate ligament from patients with knee joint osteoarthritis. Front Mol Biosci 2023; 10:1266088. [PMID: 38187089 PMCID: PMC10768046 DOI: 10.3389/fmolb.2023.1266088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 12/05/2023] [Indexed: 01/09/2024] Open
Abstract
Introduction: The anterior cruciate ligament (ACL) is susceptible to degeneration, resulting in joint pain, reduced mobility, and osteoarthritis development. There is currently a paucity of knowledge on how anterior cruciate ligament degeneration and disease leads to osteoarthritis. Small non-coding RNAs (sncRNAs), such as microRNAs and small nucleolar RNA (snoRNA), have diverse roles, including regulation of gene expression. Methods: We profiled the sncRNAs of diseased osteoarthritic ACLs to provide novel insights into osteoarthritis development. Small RNA sequencing from the ACLs of non- or end-stage human osteoarthritic knee joints was performed. Significantly differentially expressed sncRNAs were defined, and bioinformatics analysis was undertaken. Results and Discussion: A total of 184 sncRNAs were differentially expressed: 68 small nucleolar RNAs, 26 small nuclear RNAs (snRNAs), and 90 microRNAs. We identified both novel and recognized (miR-206, -365, and -29b and -29c) osteoarthritis-related microRNAs and other sncRNAs (including SNORD72, SNORD113, and SNORD114). Significant pathway enrichment of differentially expressed miRNAs includes differentiation of the muscle, inflammation, proliferation of chondrocytes, and fibrosis. Putative mRNAs of the microRNA target genes were associated with the canonical pathways "hepatic fibrosis signaling" and "osteoarthritis." The establishing sncRNA signatures of ACL disease during osteoarthritis could serve as novel biomarkers and potential therapeutic targets in ACL degeneration and osteoarthritis development.
Collapse
Affiliation(s)
- Yalda A. Kharaz
- Department of Musculoskeletal Ageing Sciences, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Danae E. Zamboulis
- Comparative Biomedical Sciences, Royal Veterinary College, London, United Kingdom
| | - Yongxiang Fang
- Centre for Genomic Research, Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Tim J. M. Welting
- Department of Orthopaedic Surgery, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Mandy J. Peffers
- Department of Musculoskeletal Ageing Sciences, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Eithne J. Comerford
- Department of Musculoskeletal Ageing Sciences, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
- Institute of Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
3
|
Zhang H, Zhang Q, Yuan Z, Dong J. Non-coding RNAs in ossification of the posterior longitudinal ligament. Front Genet 2022; 13:1069575. [PMID: 36506306 PMCID: PMC9729789 DOI: 10.3389/fgene.2022.1069575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 11/14/2022] [Indexed: 11/25/2022] Open
Abstract
Ossification of the posterior longitudinal ligament (OPLL) is a kind of disease that involves a variety of factors leading to ectopic bone deposition of the spinal ligament. Although the detailed mechanism is not clear, genetic factors play important roles in the development of this disease. Noncoding RNA (ncRNA) refers to an RNA molecule that is not translated into a protein but participates in the regulation of gene expression. Functionally important types of ncRNA associated with OPLL include long noncoding RNA, microRNA, and circular RNA. We listed the differentially expressed ncRNAs in OPLL patients and normal controls to find the ncRNAs most relevant to the pathogenesis of the disease. The potential regulatory networks of ncRNA in OPLL cells were analyzed based on their most abundant signal transduction pathway data. The analysis of the highly connected ncRNAs in the regulatory network suggests that they play an important role in OPLL. These findings provide new directions for the study of OPLL pathogenesis and therapeutic targets. In this paper, we reviewed and analyzed the literature on ncRNAs in OPLL published in recent years, aiming to help doctors better understand and treat this disease.
Collapse
|
4
|
Won YI, Lee CH, Yuh WT, Kwon SW, Kim CH, Chung CK. Genetic Odyssey to Ossification of the Posterior Longitudinal Ligament in the Cervical Spine: A Systematic Review. Neurospine 2022; 19:299-306. [PMID: 35793933 PMCID: PMC9260552 DOI: 10.14245/ns.2244038.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 05/24/2022] [Indexed: 11/25/2022] Open
Abstract
Despite numerous studies, the pathogenesis of ossification of the posterior longitudinal ligament (OPLL) is still unclear. Previous genetic studies proposed variations in genes related to bone and collagen as a cause of OPLL. It is unclear whether the upregulations of those genes are the cause of OPLL or an intermediate result of endochondral ossification process. Causal variations may be in the inflammation-related genes supported by clinical and updated genomic studies. OPLL demonstrates features of genetic diseases but can also be induced by mechanical stress by itself. OPLL may be a combination of various diseases that share ossification as a common pathway and can be divided into genetic and idiopathic. The phenotype of OPLL can be divided into continuous (including mixed) and segmental (including localized) based on the histopathology, prognosis, and appearance. Continuous OPLL shows substantial overexpression of osteoblast-specific genes, frequent upper cervical involvement, common progression, and need for surgery, whereas segmental OPLL shows moderate-to-high expression of these genes and is often clinically silent. Genetic OPLL seems to share clinical features with the continuous type, while idiopathic OPLL shares features with the segmental type. Further genomic studies are needed to elucidate the relationship between genetic OPLL and phenotype of OPLL.
Collapse
Affiliation(s)
- Young Il Won
- Department of Neurosurgery, Seoul National University Hospital, Seoul, Korea
- Department of Neurosurgery, Chungnam National University Sejong Hospital, Sejong, Korea
| | - Chang-Hyun Lee
- Department of Neurosurgery, Seoul National University Hospital, Seoul, Korea
- Corresponding Author Chang-Hyun Lee Department of Neurosurgery, Seoul National University Hospital, 101 Daehakro, Jongro-gu, Seoul 03080, Korea
| | - Woon Tak Yuh
- Department of Neurosurgery, Seoul National University Hospital, Seoul, Korea
| | - Shin Won Kwon
- Department of Neurosurgery, Seoul National University Hospital, Seoul, Korea
| | - Chi Heon Kim
- Department of Neurosurgery, Seoul National University Hospital, Seoul, Korea
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul, Korea
| | - Chun Kee Chung
- Department of Neurosurgery, Seoul National University Hospital, Seoul, Korea
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul, Korea
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, Korea
| |
Collapse
|
5
|
Small extracellular vesicle-mediated miR-320e transmission promotes osteogenesis in OPLL by targeting TAK1. Nat Commun 2022; 13:2467. [PMID: 35513391 PMCID: PMC9072352 DOI: 10.1038/s41467-022-29029-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 02/24/2022] [Indexed: 12/22/2022] Open
Abstract
Ossification of the posterior longitudinal ligament (OPLL) is an emerging spinal disease caused by heterotopic ossification of the posterior longitudinal ligament. The pathological mechanism is poorly understood, which hinders the development of nonsurgical treatments. Here, we set out to explore the function and mechanism of small extracellular vesicles (sEVs) in OPLL. Global miRNA sequencings are performed on sEVs derived from ligament cells of normal and OPLL patients, and we have showed that miR-320e is abundantly expressed in OPLL-derived sEVs compare to other sEVs. Treatment with either sEVs or miR-320e significantly promote the osteoblastic differentiation of normal longitudinal ligament cells and mesenchymal stem cells and inhibit the osteoclastic differentiation of monocytes. Through a mechanistic study, we find that TAK1 is a downstream target of miR-320e, and we further validate these findings in vivo using OPLL model mice. Together, our data demonstrate that OPLL ligament cells secrete ossification-promoting sEVs that contribute to the development of ossification through the miR-320e/TAK1 axis. The pathological mechanisms that lead to Ossification of the posterior longitudinal ligament (OPLL) are unclear. Here, the authors show that OPLL ligament cells produce small extracellular vesicles that induce ossification via miR-320e/TAK1 signaling in mice and human posterior longitudinal ligament cells.
Collapse
|
6
|
Kawaguchi Y. Biomarker Research Approach to the Pathogenesis of Ossification of the Spinal Ligament: A Review. Spine Surg Relat Res 2022; 6:224-232. [PMID: 35800628 PMCID: PMC9200417 DOI: 10.22603/ssrr.2021-0229] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 12/31/2021] [Indexed: 11/05/2022] Open
Abstract
The ossification of the spinal ligaments (OSL) is characterized by ectopic new bone formation in the spinal ligament. However, the etiology of OSL has not yet been fully elucidated. This review paper summarizes the contents of previous reviews, introduces recent advances in the study of OSL and discusses future perspectives. A review of the literature that investigated the biomarkers involved in OPLL was published in 2019. The review cited 11 reports in which a calcium phosphate metabolism marker, bone turnover markers, sclerostin, dickkopf-1, secreted frizzled-related protein-1, fibroblast growth factor-23, fibronectin, menatetrenone, leptin, pentosidine, and hypersensitive C-reactive protein were examined as markers. Data published in 2021 noted that non-coding RNAs might be useful biomarkers for OSL. In addition, triglycerides, uric acid, gene expression levels of interleukin-17 receptor C, chemokine (C-X-C motif) ligand 7 (CXCL7) in the serum reportedly are biomarkers of OSL. However, several issues have been raised in previous studies. Therefore, biomarkers have yet to be conclusively investigated. Research using biomarkers is very important in clarifying pathomechanisms. Results for studies using biomarkers might also be useful for the treatment of patients with OSL in the near future.
Collapse
|
7
|
Qian X, Wu B, Xu C, Qi Z. Hepatitis C Virus Infection Cycle-Specific MicroRNA Profiling Reveals Stage-Specific miR-4423-3p Targets RIG-I to Facilitate Infection. Front Cell Infect Microbiol 2022; 12:851917. [PMID: 35402303 PMCID: PMC8987439 DOI: 10.3389/fcimb.2022.851917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 02/22/2022] [Indexed: 11/13/2022] Open
Abstract
Hepatitis C virus (HCV) infection is one of the main causes of chronic liver diseases, the disorders of which involve multiple pathological processes and elements including host factors such as non-coding small RNAs. Although several genes have been reported to be correlated with HCV infection, the potential regulatory network has not been deciphered clearly. By small RNA sequencing, we clarified the expression profile of microRNAs (miRNAs) in HCV-infected Huh7 and Huh7.5.1 cells and identified 6 dysregulated miRNAs with the same expression trend and 32 dysregulated miRNAs with different expression trends during different stages of HCV life cycle. By looking into each infection stage, we found that 6 miRNAs were entry stage specific, 4 miRNAs were replication stage specific, and 1 miRNA was related to the transmission stage. Moreover, due to the fact that Huh7.5.1 cells have a retinoic acid-inducible gene 1 (RIG-I) mutation which causes reduced production of interferons (IFNs), we here focused on the miRNAs of different trends to decipher the RIG-I/IFN specific miRNAs. Among them, miR-4423-3p showed a significant promotive effect on HCV infection by suppressing RIG-I/IFN pathway through direct binding to RIG-I mRNA. Together, the results displayed novel insights into the miRNA regulatory networks in HCV infection and progression, thus providing a prosperous perspective into the establishment of novel therapeutic and diagnostic targets of the disease.
Collapse
Affiliation(s)
- Xijing Qian
- Department of Microbiology, Faculty of Naval Medicine, Naval Medical University, Shanghai, China
| | - Bingan Wu
- Department of Microbiology, Faculty of Naval Medicine, Naval Medical University, Shanghai, China
| | - Chen Xu
- Spine Center, Department of Orthopedics, Shanghai Changzheng Hospital Affiliated to Naval Medical University, Shanghai, China
| | - Zhongtian Qi
- Department of Microbiology, Faculty of Naval Medicine, Naval Medical University, Shanghai, China
| |
Collapse
|
8
|
Zhang B, Chen G, Yang X, Fan T, Chen X, Chen Z. Dysregulation of MicroRNAs in Hypertrophy and Ossification of Ligamentum Flavum: New Advances, Challenges, and Potential Directions. Front Genet 2021; 12:641575. [PMID: 33912216 PMCID: PMC8075056 DOI: 10.3389/fgene.2021.641575] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 03/03/2021] [Indexed: 12/13/2022] Open
Abstract
Pathological changes in the ligamentum flavum (LF) can be defined as a process of chronic progressive aberrations in the nature and structure of ligamentous tissues characterized by increased thickness, reduced elasticity, local calcification, or aggravated ossification, which may cause severe myelopathy, radiculopathy, or both. Hypertrophy of ligamentum flavum (HLF) and ossification of ligamentum flavum (OLF) are clinically common entities. Though accumulated evidence has indicated both genetic and environmental factors could contribute to the initiation and progression of HLF/OLF, the definite pathogenesis remains fully unclear. MicroRNAs (miRNAs), one of the important epigenetic modifications, are short single-stranded RNA molecules that regulate protein-coding gene expression at posttranscriptional level, which can disclose the mechanism underlying diseases, identify valuable biomarkers, and explore potential therapeutic targets. Considering that miRNAs play a central role in regulating gene expression, we summarized current studies from the point of view of miRNA-related molecular regulation networks in HLF/OLF. Exploratory studies revealed a variety of miRNA expression profiles and identified a battery of upregulated and downregulated miRNAs in OLF/HLF patients through microarray datasets or transcriptome sequencing. Experimental studies validated the roles of specific miRNAs (e.g., miR-132-3p, miR-199b-5p in OLF, miR-155, and miR-21 in HLF) in regulating fibrosis or osteogenesis differentiation of LF cells and related target genes or molecular signaling pathways. Finally, we discussed the perspectives and challenges of miRNA-based molecular mechanism, diagnostic biomarkers, and therapeutic targets of HLF/OLF.
Collapse
Affiliation(s)
- Baoliang Zhang
- Orthopaedic Department, Peking University Third Hospital, Beijing, China
| | - Guanghui Chen
- Orthopaedic Department, Peking University Third Hospital, Beijing, China
| | - Xiaoxi Yang
- Orthopaedic Department, Peking University Third Hospital, Beijing, China
| | - Tianqi Fan
- Orthopaedic Department, Peking University Third Hospital, Beijing, China
| | - Xi Chen
- Orthopaedic Department, Peking University Third Hospital, Beijing, China
| | - Zhongqiang Chen
- Orthopaedic Department, Peking University Third Hospital, Beijing, China
| |
Collapse
|
9
|
Xu C, Luo S, Wei L, Wu H, Gu W, Zhou W, Sun B, Hu B, Zhou H, Liu Y, Chen H, Ye X, Yuan W. Integrated transcriptome and proteome analyses identify novel regulatory network of nucleus pulposus cells in intervertebral disc degeneration. BMC Med Genomics 2021; 14:40. [PMID: 33536009 PMCID: PMC7860219 DOI: 10.1186/s12920-021-00889-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 01/27/2021] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Degeneration of intervertebral disc is a major cause of lower back pain and neck pain. Studies have tried to unveil the regulatory network using either transcriptomic or proteomic analysis. However, neither have fully elucidated the exact mechanism of degeneration process. Since post-transcriptional regulation may affect gene expression by modulating the translational process of mRNA to protein product, a combined transcriptomic and proteomic study may provide more insight into the key regulatory network of Intervertebral disc degeneration. METHODS In order to obtain the proteomic and transcriptomic data, we performed label-free proteome analysis on freshly isolated nucleus pulposus cells and obtained transcriptome profiling data from the Gene Expression Omnibus repository. To identify the key regulatory network of intervertebral disc degeneration in nucleus pulposus cells, we performed bioinformatic analyses and established a protein-RNA interacting network. To validate the candidate genes, we performed in vitro experimentation and immunochemistry labeling to identify their potential function during nucleus pulposus degeneration. RESULTS The label-free proteome analysis identified altogether 656 proteins, and 503 of which were differentially expressed between nucleus pulposus cells from degenerated or normal disc cells. Using the existing nucleus pulposus transcriptomic profiling data, we integrated the proteomic and transcriptomic data of nucleus pulposus cells, and established a protein-RNA interacting network to show the combined regulatory network of intervertebral disc degeneration. In the network, we found 9 genes showed significant changes, and 6 of which (CHI3L1, KRT19, COL6A2, DPT, TNFAIP6 and COL11A2) showed concordant changes in both protein and mRNA level. Further functional analysis showed these candidates can significantly affect the degeneration of the nucleus pulposus cell when altering their expression. CONCLUSIONS This study is the first to use combined analysis of proteomic and transcriptomic profiling data to identify novel regulatory network of nucleus pulposus cells in intervertebral disc degeneration. Our established protein-RNA interacting network demonstrated novel regulatory mechanisms and key genes that may play vital roles in the pathogenesis of intervertebral disc degeneration.
Collapse
Affiliation(s)
- Chen Xu
- Spine Center, Department of Orthopaedics, Changzheng Hospital, Naval Medical University, Shanghai, 200003, China
| | - Shengchang Luo
- Spine Center, Department of Orthopaedics, Changzheng Hospital, Naval Medical University, Shanghai, 200003, China
- Microsurgery Center, Department of Orthopaedics, Changzheng Hospital, Naval Medical University, Shanghai, 200003, China
- Department of Orthopaedics, The First People's Hospital of Huzhou, Huzhou, 200003, China
| | - Leixin Wei
- Spine Center, Department of Orthopaedics, Changzheng Hospital, Naval Medical University, Shanghai, 200003, China
| | - Huiqiao Wu
- Spine Center, Department of Orthopaedics, Changzheng Hospital, Naval Medical University, Shanghai, 200003, China
| | - Wei Gu
- Spine Center, Department of Orthopaedics, Changzheng Hospital, Naval Medical University, Shanghai, 200003, China
| | - Wenchao Zhou
- Spine Center, Department of Orthopaedics, Changzheng Hospital, Naval Medical University, Shanghai, 200003, China
| | - Baifeng Sun
- Spine Center, Department of Orthopaedics, Changzheng Hospital, Naval Medical University, Shanghai, 200003, China
| | - Bo Hu
- Spine Center, Department of Orthopaedics, Changzheng Hospital, Naval Medical University, Shanghai, 200003, China
| | - Hongyu Zhou
- Spine Center, Department of Orthopaedics, Changzheng Hospital, Naval Medical University, Shanghai, 200003, China
| | - Yang Liu
- Spine Center, Department of Orthopaedics, Changzheng Hospital, Naval Medical University, Shanghai, 200003, China
| | - Huajiang Chen
- Spine Center, Department of Orthopaedics, Changzheng Hospital, Naval Medical University, Shanghai, 200003, China.
| | - Xiaojian Ye
- Microsurgery Center, Department of Orthopaedics, Changzheng Hospital, Naval Medical University, Shanghai, 200003, China.
- Department of Orthopaedics, Tongren Hospital, Shanghai Jiao Tong University, Shanghai, 200050, China.
| | - Wen Yuan
- Spine Center, Department of Orthopaedics, Changzheng Hospital, Naval Medical University, Shanghai, 200003, China.
| |
Collapse
|
10
|
Methylation-mediated down-regulation of microRNA-497-195 cluster confers osteogenic differentiation in ossification of the posterior longitudinal ligament of the spine via ADORA2A. Biochem J 2020; 477:2249-2261. [PMID: 32432317 DOI: 10.1042/bcj20200157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 05/13/2020] [Accepted: 05/20/2020] [Indexed: 12/20/2022]
Abstract
Aberrant expression of microRNAs (miRNAs) has been associated with spinal ossification of the posterior longitudinal ligament (OPLL). Our initial bioinformatic analysis identified differentially expressed ADORA2A in OPLL and its regulatory miRNAs miR-497 and miR-195. Hence, this study was conducted to clarify the functional relevance of miR-497-195 cluster in OPLL, which may implicate in Adenosine A2A (ADORA2A). PLL tissues were collected from OPLL and non-OPLL patients, followed by quantification of miR-497, miR-195 and ADORA2A expression. The expression of miR-497, miR-195 and/or ADORA2A was altered in posterior longitudinal ligament (PLL) cells, which then were stimulated with cyclic mechanical stress (CMS). We validated that ADORA2A was expressed highly, while miR-497 and miR-195 were down-regulated in PLL tissues of OPLL patients. miR-195 and miR-497 expression in CMS-treated PLL cells was restored by a demethylation reagent 5-aza-2'-deoxycytidine (AZA). Moreover, expression of miR-195 and miR-497 was decreased by promoting promoter CpG island methylation. ADORA2A was verified as the target of miR-195 and miR-497. Overexpression of miR-195 and miR-497 diminished expression of osteogenic factors in PLL cells by inactivating the cAMP/PKA signaling pathway via down-regulation of ADORA2A. Collectively, miR-497-195 cluster augments osteogenic differentiation of PLL cells by inhibiting ADORA2A-dependent cAMP/PKA signaling pathway.
Collapse
|
11
|
Wu J, Liang J, Li M, Lin M, Mai L, Huang X, Liang J, Hu Y, Huang Y. Modulation of miRNAs by vitamin C in H2O2‑exposed human umbilical vein endothelial cells. Int J Mol Med 2020; 46:2150-2160. [PMID: 33125125 PMCID: PMC7595655 DOI: 10.3892/ijmm.2020.4753] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 09/08/2020] [Indexed: 12/17/2022] Open
Abstract
Vitamin C plays a protective role in oxidative damage by blocking the effects of free radicals. The present study investigated the mechanisms through which vitamin C partly mediates anti‑apoptotic and antioxidant functions via the regulation of microRNAs (miRNAs or miRs). For this purpose, a global miRNA expression analysis on human umbilical vein endothelial cells (HUVECs) treated with vitamin C was conducted using microarrays containing human precursor and mature miRNA probes. The results revealed that there were 42 identical miRNAs among the differentially expressed miRNAs in the HUVEC group and H2O2 + vitamin C‑treated HUVEC group compared to the H2O2‑exposed HUVEC group, including 41 upregulated miRNAs and 1 down‑regulated miRNA. Using bioinformatics analysis, differentially expressed miRNAs were investigated to identify novel target mRNAs and signaling pathways. Pathway enrichment analyses revealed that apoptosis, the mitogen‑activated protein kinase (MAPK) signaling pathway, phosphoinositide 3‑kinase (PI3K)/Akt signaling pathway and oxidative phosphorylation were significantly enriched. The results from western blot analysis demonstrated that the interleukin (IL)10, matrix metalloproteinase (MMP)2, cAMP‑response element binding protein (CREB) and p‑CREB protein expression levels in HUVECs transfected with hsa‑miR‑3928‑5p and induced by H2O2 were significantly downregulated; the MAPK9, caspase‑3 (CASP3) and p‑CASP3 protein expression levels in HUVECs transfected with hsa‑miR‑323a‑5p and induced by H2O2 were significantly downregulated. The present study therefore demonstrates that vitamin C partly exerts protective effects on HUVECs through the regulation of miRNA/mRNA axis expression.
Collapse
Affiliation(s)
- Jiandi Wu
- Department of Cardiology, Affiliated Foshan Hospital, Southern Medical University
| | - Jingjing Liang
- Department of Cardiology, Shunde Hospital, Southern Medical University, Foshan, Guangdong 528308, P.R. China
| | - Meijun Li
- Department of Cardiology, Shunde Hospital, Southern Medical University, Foshan, Guangdong 528308, P.R. China
| | - Mingzhuo Lin
- Department of Cardiology, Shunde Hospital, Southern Medical University, Foshan, Guangdong 528308, P.R. China
| | - Linlin Mai
- Department of Cardiology, Shunde Hospital, Southern Medical University, Foshan, Guangdong 528308, P.R. China
| | - Xiaohui Huang
- Department of Cardiology, Shunde Hospital, Southern Medical University, Foshan, Guangdong 528308, P.R. China
| | - Jianqiu Liang
- Department of Cardiology, Affiliated Foshan Hospital, Southern Medical University
| | - Yunzhao Hu
- Department of Cardiology, Shunde Hospital, Southern Medical University, Foshan, Guangdong 528308, P.R. China
| | - Yuli Huang
- Department of Cardiology, Shunde Hospital, Southern Medical University, Foshan, Guangdong 528308, P.R. China
- The George Institute for Global Health, Newtown, New South Wales 2042, Australia
| |
Collapse
|
12
|
Gao Y, Mo W, Zhong L, Jia H, Xu Y, Zhang J, Xu X, Shen W, Wang F, Li T, Liu P, Zhang S. Downregulation of Ubiquitin Inhibits the Aggressive Phenotypes of Esophageal Squamous Cell Carcinoma. Technol Cancer Res Treat 2020; 19:1533033820973282. [PMID: 33176591 PMCID: PMC7672754 DOI: 10.1177/1533033820973282] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Purpose: Esophageal cancer is one of the most common malignancies worldwide. Ubiquitin-dependent degradation of regulatory proteins reportedly plays a central role in diverse cellular processes. This study investigated the expression levels of ubiquitin in esophageal squamous cell carcinoma tissues and the functions of ubiquitin in the context of esophageal squamous cell carcinoma progression. Methods: The expression of ubiquitin in esophageal squamous cell carcinoma and normal esophageal samples was determined via immunohistochemistry. Serum ubiquitin levels were determined by enzyme-linked immunosorbent assay. The association between serum ubiquitin level and clinicopathological factors was analyzed. Real-time PCR analysis was employed to measure the mRNA levels of the ubiquitin coding genes ubiquitin B and ubiquitin C. Proliferation assays, colony formation assays, and Transwell-based assays were used to determine the influence of ubiquitin on cell growth and cell invasion. Proteomic analysis was performed to identify the proteins associated with ubiquitin. Results: Ubiquitin expression in esophageal squamous cell carcinoma tissues was markedly higher than that in normal and tumor adjacent tissues. The levels of ubiquitin in esophageal squamous cell carcinoma serum samples were significantly higher than those in healthy controls. Serum ubiquitin levels were correlated with tumor stage and lymph node metastasis. To silence the expression of ubiquitin, we knocked down the ubiquitin coding genes ubiquitin B and ubiquitin C in TE-1 and Eca-109 cells. Silencing ubiquitin resulted in the suppression of cell growth, chemoresistance, colony formation and cell migration in esophageal squamous cell carcinoma cells. Proteomic analysis in esophageal squamous cell carcinoma cells showed that knockdown of ubiquitin coding genes deregulated the expression of 159 proteins (92 were upregulated and 67 were downregulated) involved in multiple pathways. These proteins included ferritin light chain, ferritin heavy chain, cellular retinoic acid-binding protein 2, and DNA replication factor 1. Conclusion: Ubiquitin expression is upregulated in esophageal squamous cell carcinoma tissues and serum samples. Serum ubiquitin levels were correlated with tumor stage and lymph node metastasis. Downregulation of ubiquitin suppresses the aggressive phenotypes of esophageal squamous cell carcinoma cells by complex mechanisms; ubiquitin may represent a novel target for the treatment of esophageal squamous cell carcinoma.
Collapse
Affiliation(s)
- Yi Gao
- Department of Gastroenterology, 38044The Affiliated Jiangyin Hospital of Xuzhou Medical University, Jiangyin, People's Republic of China
| | - Wei Mo
- School of Radiation Medicine and Protection and State Key Laboratory of Radiation Medicine and Protection, 74565Medical College of Soochow University, Suzhou, People's Republic of China
| | - Li Zhong
- School of Radiation Medicine and Protection and State Key Laboratory of Radiation Medicine and Protection, 74565Medical College of Soochow University, Suzhou, People's Republic of China
| | - Huimin Jia
- School of Radiation Medicine and Protection and State Key Laboratory of Radiation Medicine and Protection, 74565Medical College of Soochow University, Suzhou, People's Republic of China
| | - Yiren Xu
- Department of Gastroenterology, 38044The Affiliated Jiangyin Hospital of Xuzhou Medical University, Jiangyin, People's Republic of China
| | - Ji Zhang
- Department of Gastroenterology, 38044The Affiliated Jiangyin Hospital of Xuzhou Medical University, Jiangyin, People's Republic of China
| | - Xiaohui Xu
- Department of General Surgery, The First People's Hospital of Taicang City, Taicang Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Weidong Shen
- Department of Gastroenterology, 38044The Affiliated Jiangyin Hospital of Xuzhou Medical University, Jiangyin, People's Republic of China
| | - Fangjun Wang
- Department of Gastroenterology, 38044The Affiliated Jiangyin Hospital of Xuzhou Medical University, Jiangyin, People's Republic of China
| | - Tengfei Li
- Department of Gastroenterology, 38044The Affiliated Jiangyin Hospital of Xuzhou Medical University, Jiangyin, People's Republic of China
| | - Pengfei Liu
- Department of Gastroenterology, 38044The Affiliated Jiangyin Hospital of Xuzhou Medical University, Jiangyin, People's Republic of China
| | - Shuyu Zhang
- School of Radiation Medicine and Protection and State Key Laboratory of Radiation Medicine and Protection, 74565Medical College of Soochow University, Suzhou, People's Republic of China.,Second Affiliated Hospital of Chengdu Medical College (China National Nuclear Corporation 416 Hospital), Chengdu, People's Republic of China
| |
Collapse
|
13
|
Wang Y, Niu H, Liu Y, Yang H, Zhang M, Wang L. Promoting effect of long non-coding RNA SNHG1 on osteogenic differentiation of fibroblastic cells from the posterior longitudinal ligament by the microRNA-320b/IFNGR1 network. Cell Cycle 2020; 19:2836-2850. [PMID: 33017569 PMCID: PMC7714528 DOI: 10.1080/15384101.2020.1827188] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 08/13/2020] [Accepted: 08/18/2020] [Indexed: 01/24/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) have been noted to influence the progression of ossification of posterior longitudinal ligament (OPLL). The work aims to probe the effect of lncRNA SNHG1 on osteogenic differentiation of ligament fibroblastic cells (LFCs). Aberrantly expressed lncRNAs in ossified PLL tissues were screened out by microarray analysis. Gain- and loss-of function experiments of SNHG1 were performed to identify its role in osteogenic differentiation of LFCs. The downstream molecules of SNHG1 were explored. Altered expression of miR-320b was introduced in LFCs as well. The interactions among SNHG1, miR-320b and IFNGR1 were identified. Consequently, SNHG1 was found highly expressed in OPLL patients. Silencing of SNHG1 inhibited BMP-2, RUNX2 and OCN expression and the ALP activity and reduced osteogenic differentiation of LFCs. Importantly, SNHG1 could and upregulate IFNGR1 through serving as a sponge for miR-320b. Over-expression of miR-320b inhibited osteogenic differentiation of LFCs and inactivated the JAK/STAT signaling pathway. Further administration of Fedratinib, a JAK2-specific agonist, increased osteogenic differentiation of LFCs. To conclude, the study suggested that SNHG1 could upregulate IFNGR1 by sequestering miR-320b and activate the JAK/STAT signaling. Silencing of SNHG1 could reduce the osteogenic differentiation and mineralization of LFCs. The study may offer new insights into OPLL treatment.
Collapse
Affiliation(s)
- Yuqiang Wang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China
| | - Huixia Niu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China
| | - Yilin Liu
- Department of Orthopedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China
| | - Hao Yang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China
| | - Min Zhang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China
| | - Limin Wang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China
| |
Collapse
|
14
|
Qian X, Xu C, Wu B, Tang H, Zhao P, Qi Z. SNORD126 Promotes Hepatitis C Virus Infection by Upregulating Claudin-1 via Activation of PI3K-AKT Signaling Pathway. Front Microbiol 2020; 11:565590. [PMID: 33042070 PMCID: PMC7522514 DOI: 10.3389/fmicb.2020.565590] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 08/17/2020] [Indexed: 12/22/2022] Open
Abstract
Hepatitis C virus (HCV) infection involves a variety of viral and host factors, some of which promote the infection process. A small nucleolar RNA, C/D box 126 (SNORD126), was previously shown to be associated with hepatocellular carcinoma (HCC). However, the role of SNORD126 in HCV infection, which is one of the primary reasons for HCC development, has not been elucidated. In the present study, using small nucleolar RNA profiling, we observed that SNORD126 was significantly downregulated during HCV infection in both Huh7 and Huh7.5.1 cells. In addition, overexpression of SNORD126 enhanced HCV entry into host cells, whereas SNORD126 knockdown showed the opposite effect, suggesting that SNORD126 promotes HCV infection, especially through viral entry. Further functional analysis revealed that SNORD126 could enhance the expression level of claudin-1 (CLDN1), a key HCV entry factor, by increasing the levels of phosphorylated AKT. Additionally, the function of SNORD126 in HCV infection was associated with ribonucleoprotein (RNP) complexes. In summary, our findings demonstrate that oncogenic SNORD126 levels are decreased during HCV infection probably due to the host defense reaction, and SNORD126 may be important to promote viral entry by increasing CLDN1 expression through activation of the PI3K-AKT pathway, the mechanism of which is partly associated with SNORD126-mediated snoRNA RNP (snoRNP) function. Our work here provides initial evidence that endogenous snoRNA takes part in HCV infection and shows potential as a diagnostic or antiviral agent.
Collapse
Affiliation(s)
- Xijing Qian
- Department of Microbiology, Second Military Medical University, Shanghai, China
| | - Chen Xu
- Spine Center, Department of Orthopedics, Changzheng Hospital Affiliated to Second Military Medical University, Shanghai, China
| | - Bingan Wu
- Department of Microbiology, Second Military Medical University, Shanghai, China
| | - Hailin Tang
- Department of Microbiology, Second Military Medical University, Shanghai, China
| | - Ping Zhao
- Department of Microbiology, Second Military Medical University, Shanghai, China
| | - Zhongtian Qi
- Department of Microbiology, Second Military Medical University, Shanghai, China
| |
Collapse
|
15
|
miR-29a-5p Targets SATB2 and Regulates the SIRT1/Smad3 Deacetylation Pathway to Inhibit Thoracic Ligamentum Flavum Cell Osteogenesis. Spine (Phila Pa 1976) 2020; 45:E1057-E1065. [PMID: 32205703 DOI: 10.1097/brs.0000000000003505] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN Experimental analysis of the thoracic ligamentum flavum cell osteogenic differentiation process. OBJECTIVE This study aimed to explore the role of miR-29a-5p and special AT-rich sequence-binding protein 2 (SATB2) in a pathological osteogenic process. SUMMARY OF BACKGROUND DATA Thoracic ossification of the ligamentum flavum (TOLF) is an uncommon disease wherein ligaments within the spine undergo progressive ossification, resulting in stenosis of the spinal canal and myelopathy. MiR-29a-5p was found to be downregulated in ligament cells from ossified ligament tissue in a previous study. However, whether miR-29a-5p is involved in the process of TOLF has not been investigated. METHODS The expression of miR-29a-5p in ligament tissues or in the context of TOLF osteogenic cell differentiation was measured via qRT-PCR. Alkaline phosphatase activity assay and Alizarin red staining were used to analyze cellular osteogenesis. The protein-level expression of SATB2, SIRT1, and Smad3 were measured via immunohistochemistry or western blotting. Dual luciferase reporter assays and western blotting were used to confirm that miR-29a targets SATB2. RESULTS SATB2 was found to be upregulated and miR-29a-5p was downregulated in TOLF tissue. We additionally observed decreased miR-29a-5p expression during the process of TOLF osteogenic cell differentiation, and there was a marked reduction in the expression of key mediators of osteogenesis when miR-29a-5p was overexpressed. Consistent with this, when miR-29a-5p was inhibited this led to enhanced osteogenic cell differentiation of these cells. We further found miR-29a-5p to directly target and suppress the expression of SATB2. Knock-down of SATB2 was sufficient to reduce the ability of miR-29a-5p to inhibit osteogenesis, and this also led to decreased SIRT1 expression and Smad3 acetylation. CONCLUSION Together our findings indicate that miR-29a-5p is able to prevent thoracic ligamentum flavum cell osteogenesis at least in part via targeting SATB2 and thereby suppressing the SIRT1/Smad3 deacetylation pathway. LEVEL OF EVIDENCE N/A.
Collapse
|
16
|
Cai Z, Liu W, Chen K, Wang P, Xie Z, Li J, Li M, Cen S, Ye G, Li Z, Su Z, Ma M, Wu Y, Shen H. Aberrantly Expressed lncRNAs and mRNAs of Osteogenically Differentiated Mesenchymal Stem Cells in Ossification of the Posterior Longitudinal Ligament. Front Genet 2020; 11:896. [PMID: 32849851 PMCID: PMC7426401 DOI: 10.3389/fgene.2020.00896] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 07/20/2020] [Indexed: 12/16/2022] Open
Abstract
Ectopic bone formation is the chief characteristic of ossification of the posterior longitudinal ligament (OPLL). Emerging evidence has revealed that long non-coding RNAs (lncRNAs) can regulate the osteogenic differentiation of mesenchymal stem cells (MSCs), which are the main cells responsible for bone formation. However, the role of lncRNAs in the pathogenesis of OPLL remains unclear. In this study, 725 aberrantly expressed lncRNAs and 664 mRNAs in osteogenically differentiated MSCs from OPLL patients (OPLL MSCs) were identified by microarrays and confirmed by qRT-PCR assays. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses showed that the most enriched pathways included the p53, JAK-STAT, and PI3K-Akt signaling pathways. The co-expression network showed the interactions between the aberrantly expressed lncRNAs and mRNAs in OPLL MSCs, and the potential targets and transcription factors of the lncRNAs were predicted. Our research demonstrated the aberrantly expressed lncRNA and mRNA and the potential regulatory networks involved in the ectopic bone formation of OPLL. These findings imply that lncRNAs may play a vital role in OPLL, which provides a new perspective on the pathogenesis of OPLL.
Collapse
Affiliation(s)
- Zhaopeng Cai
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Wenjie Liu
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China.,Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Keng Chen
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Peng Wang
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Zhongyu Xie
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Jinteng Li
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Ming Li
- Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shuizhong Cen
- Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Guiwen Ye
- Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhaofeng Li
- Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zepeng Su
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Mengjun Ma
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Yanfeng Wu
- Center for Biotherapy, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Huiyong Shen
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China.,Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
17
|
Wang Z, Shen W, Li X, Feng Y, Qian K, Wang G, Gao Y, Xu X, Zhang S, Yue L, Cao J. The PPARγ Agonist Rosiglitazone Enhances the Radiosensitivity of Human Pancreatic Cancer Cells. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:3099-3110. [PMID: 32801648 PMCID: PMC7410396 DOI: 10.2147/dddt.s242557] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 07/03/2020] [Indexed: 01/29/2023]
Abstract
Purpose As radiation therapy is widely used for the management of pancreatic cancer, identifying novel targets to improve the radiosensitivity of cancer cells is beneficial. Rosiglitazone, a specific peroxisome proliferator-activated receptor γ (PPARγ) agonist, has an inhibitory effect on various types of cancer cells. The purpose of this paper is to investigate the effect of rosiglitazone on the radiosensitivity of pancreatic cancer cells and the potential mechanism. Materials and Methods PPARγ expression in pancreatic cancer and adjacent tissues was evaluated using immunohistochemistry analysis. The viability, migration and invasion ability of PANC1 and PaTu8988 cells were detected using MTT assay, scratch-wound assay and transwell invasion assay. The effect of rosiglitazone on radiosensitivity of the cells was determined using the clonogenic assay. PANC1 cells were inoculated into BALB/c mice to establish tumors. Microarray was used to investigate changes of genes involved. Results Higher PPARγ expression was demonstrated in pancreatic cancer tissues compared with para-carcinoma tissues. Rosiglitazone inhibited the cell viability and enhanced the radiation-induced anti-migration and anti-invasion effect. Rosiglitazone potentiated the radiosensitivity of pancreatic cancer cells and PANC1 xenografts. Microarray analysis revealed that rosiglitazone plus radiation altered the expression of multiple genes and affected multiple pathways. Conclusion Rosiglitazone enhances the radiosensitivity of human pancreatic cancer cells in vitro and in vivo via complex mechanisms.
Collapse
Affiliation(s)
- Zhenyu Wang
- School of Radiation Medicine and Protection (SRMP) of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Suzhou 215123, People's Republic of China
| | - Wenhao Shen
- School of Radiation Medicine and Protection (SRMP) of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Suzhou 215123, People's Republic of China
| | - Xugang Li
- Department of Radiotherapy, Anshan Cancer Hospital, Anshan 114036, People's Republic of China
| | - Yang Feng
- School of Radiation Medicine and Protection (SRMP) of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Suzhou 215123, People's Republic of China
| | - Kun Qian
- School of Radiation Medicine and Protection (SRMP) of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Suzhou 215123, People's Republic of China
| | - Gaoren Wang
- Nantong Tumor Hospital, Affiliated Tumor Hospital of Nantong University, Nantong 226361, People's Republic of China
| | - Yiying Gao
- School of Radiation Medicine and Protection (SRMP) of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Suzhou 215123, People's Republic of China
| | - Xiaohui Xu
- Department of General Surgery, The First People's Hospital of Taicang, Taicang Affiliated Hospital of Soochow University, Suzhou 215400, People's Republic of China
| | - Shuyu Zhang
- School of Radiation Medicine and Protection (SRMP) of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Suzhou 215123, People's Republic of China
| | - Ling Yue
- School of Radiation Medicine and Protection (SRMP) of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Suzhou 215123, People's Republic of China
| | - Jianping Cao
- School of Radiation Medicine and Protection (SRMP) of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Suzhou 215123, People's Republic of China
| |
Collapse
|
18
|
Liu N, Zhang Z, Li L, Shen X, Sun B, Wang R, Zhong H, Shi Q, Wei L, Zhang Y, Wang Y, Xu C, Liu Y, Yuan W. MicroRNA-181 regulates the development of Ossification of Posterior longitudinal ligament via Epigenetic Modulation by targeting PBX1. Theranostics 2020; 10:7492-7509. [PMID: 32685001 PMCID: PMC7359103 DOI: 10.7150/thno.44309] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 06/02/2020] [Indexed: 12/24/2022] Open
Abstract
Objectives: Ossification of the posterior longitudinal ligament (OPLL) presents as the development of heterotopic ossification in the posterior longitudinal ligament of the spine. The etiology of OPLL is genetically linked, as shown by its high prevalence in Asian populations. However, the molecular mechanism of the disease remains obscure. In this study, we explored the function and mechanism of OPLL-specific microRNAs. Methods: The expression levels of the ossification-related OPLL-specific miR-181 family were measured in normal or OPLL ligament tissues. The effect of miR-181a on the ossification of normal or pathogenic ligament cells was tested using real-time polymerase chain reaction (PCR), Western blot, alizarin red staining and alkaline phosphatase (ALP) staining. The candidate targets of miR-181 were screened using a dual luciferase reporter assay and functional analysis. The link between miR-181a and its target PBX1 was investigated using chromatin immunoprecipitation, followed by real-time PCR detection. Histological and immunohistochemical analysis as well as micro-CT scanning were used to evaluate the effects of miR-181 and its antagonist using both tip-toe-walking OPLL mice and in vivo bone formation assays. Results: Using bioinformatic analysis, we found that miR-181a-5p is predicted to play important roles in the development of OPLL. Overexpression of miR-181a-5p significantly increased the expression of ossification-related genes, staining level of alizarin red and ALP activity, while the inhibition of miR-181a-5p by treatment with an antagomir had the opposite effects. Functional analysis identified PBX1 as a direct target of miR-181a-5p, and we determined that PBX1 was responsible for miR-181a-5p's osteogenic phenotype. By chromatin immunoprecipitation assay, we found that miR-181a-5p controls ligament cell ossification by regulating PBX1-mediated modulation of histone methylation and acetylation levels in the promoter region of osteogenesis-related genes. Additionally, using an in vivo model, we confirmed that miR-181a-5p can substantially increase the bone formation ability of posterior ligament cells and cause increased osteophyte formation in the cervical spine of tip-toe-walking mice. Conclusions: Our data unveiled the mechanism by which the miR-181a-5p/PBX1 axis functions in the development of OPLL, and it revealed the therapeutic effects of the miR-181a-5p antagomir in preventing OPLL development both in vivo and in vitro. Our work is the first to demonstrate that microRNA perturbation could modulate the development of OPLL through epigenetic regulation.
Collapse
Affiliation(s)
- Ning Liu
- Department of Orthopedics, Changzheng Hospital Affiliated to Second Military Medical University, 415th Feng Yang Road, Shanghai, 200003, PR China
| | - Zicheng Zhang
- Undergraduate Brigade, Changhai Hospital Affiliated to Second Military Medical University, 168th Chang Hai Road, Shanghai, 200433, China
| | - Li Li
- Research Center of Developmental Biology, Second Military Medical University, 800th Xiang Yin Road, Shanghai, 200433, PR China
| | - Xiaolong Shen
- Department of Orthopedics, Changzheng Hospital Affiliated to Second Military Medical University, 415th Feng Yang Road, Shanghai, 200003, PR China
| | - Baifeng Sun
- Department of Orthopedics, Changzheng Hospital Affiliated to Second Military Medical University, 415th Feng Yang Road, Shanghai, 200003, PR China
| | - Ruizhe Wang
- Department of Orthopedics, Changzheng Hospital Affiliated to Second Military Medical University, 415th Feng Yang Road, Shanghai, 200003, PR China
| | - Huajian Zhong
- Department of Orthopedics, Changzheng Hospital Affiliated to Second Military Medical University, 415th Feng Yang Road, Shanghai, 200003, PR China
| | - Qianghui Shi
- Department of Orthopedics, Changzheng Hospital Affiliated to Second Military Medical University, 415th Feng Yang Road, Shanghai, 200003, PR China
| | - Leixin Wei
- Department of Orthopedics, Changzheng Hospital Affiliated to Second Military Medical University, 415th Feng Yang Road, Shanghai, 200003, PR China
| | - Yizhi Zhang
- Department of Orthopedics, Changzheng Hospital Affiliated to Second Military Medical University, 415th Feng Yang Road, Shanghai, 200003, PR China
| | - Yue Wang
- Research Center of Developmental Biology, Second Military Medical University, 800th Xiang Yin Road, Shanghai, 200433, PR China
| | - Chen Xu
- Department of Orthopedics, Changzheng Hospital Affiliated to Second Military Medical University, 415th Feng Yang Road, Shanghai, 200003, PR China
| | - Yang Liu
- Department of Orthopedics, Changzheng Hospital Affiliated to Second Military Medical University, 415th Feng Yang Road, Shanghai, 200003, PR China
| | - Wen Yuan
- Department of Orthopedics, Changzheng Hospital Affiliated to Second Military Medical University, 415th Feng Yang Road, Shanghai, 200003, PR China
| |
Collapse
|
19
|
Xu G, Liu C, Liang T, Qin Z, Yu CJ, Zhang Z, Jiang J, Chen J, Zhan X. Integrated miRNA-mRNA network revealing the key molecular characteristics of ossification of the posterior longitudinal ligament. Medicine (Baltimore) 2020; 99:e20268. [PMID: 32481304 PMCID: PMC7249941 DOI: 10.1097/md.0000000000020268] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Ossification of the posterior longitudinal ligament (OPLL) refers to an ectopic ossification disease originating from the posterior longitudinal ligament of the spine. Pressing on the spinal cord or nerve roots can cause limb sensory and motor disorders, significantly reducing the patient's quality of life. At present, the pathogenesis of OPLL is still unclear. The purpose of this study is to integrate microRNA (miRNA)-mRNA biological information data to further analyze the important molecules in the pathogenesis of OPLL, so as to provide targets for future OPLL molecular therapy. METHODS miRNA and mRNA expression profiles of GSE69787 were downloaded from Gene Expression Omnibus database and analyzed by edge R package. Funrich software was used to predict the target genes and transcription factors of de-miRNA. Gene ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analysis of differentially expressed genes (DEGs) were carried out based on CLUEGO plug-in in Cytoscape. Using data collected from a search tool for the retrieval of interacting genes online database, a protein-protein interaction (PPI) network was constructed using Cytoscape. The hub gene selection and module analysis of PPI network were carried out by cytoHubba and molecular complex detection, plug-ins of Cytoscape software respectively. RESULTS A total of 346 genes, including 247 up-regulated genes and 99 down-regulated genes were selected as DEGs. SP1 was identified as an upstream transcription factor of de-miRNAs. Notably, gene ontology enrichment analysis shows that up- and down-regulated DEGs are mainly involved in BP, such as skeletal structure morphogenesis, skeletal system development, and animal organ morphogenesis. Kyoto Encyclopedia of Genes and Genomes enrichment analysis indicated that only WNT signaling pathway was associated with osteogenic differentiation. Lymphoid enhancer binding factor 1 and wingless-type MMTV integration site family member 2 Wingless-Type MMTV Integration site family member 2 were identified as hub genes, miR-520d-3p, miR-4782-3p, miR-6766-3p, and miR-199b-5p were identified as key miRNAs. In addition, 2 important network modules were obtained from PPI network. CONCLUSIONS In this study, we established a potential miRNA-mRNA regulatory network associated with OPLL, revealing the key molecular mechanism of OPLL and providing targets for future treatment or prevent its occurrence.
Collapse
Affiliation(s)
- Guoyong Xu
- Guangxi Medical University
- Spine and Osteopathy Ward, The First Affiliated Hospital of Guangxi Medical University, Nanning, P. R. China
| | - Chong Liu
- Guangxi Medical University
- Spine and Osteopathy Ward, The First Affiliated Hospital of Guangxi Medical University, Nanning, P. R. China
| | - Tuo Liang
- Guangxi Medical University
- Spine and Osteopathy Ward, The First Affiliated Hospital of Guangxi Medical University, Nanning, P. R. China
| | - Zhaojie Qin
- Guangxi Medical University
- Spine and Osteopathy Ward, The First Affiliated Hospital of Guangxi Medical University, Nanning, P. R. China
| | - Chao Jie Yu
- Guangxi Medical University
- Spine and Osteopathy Ward, The First Affiliated Hospital of Guangxi Medical University, Nanning, P. R. China
| | - Zide Zhang
- Guangxi Medical University
- Spine and Osteopathy Ward, The First Affiliated Hospital of Guangxi Medical University, Nanning, P. R. China
| | - Jie Jiang
- Guangxi Medical University
- Spine and Osteopathy Ward, The First Affiliated Hospital of Guangxi Medical University, Nanning, P. R. China
| | - Jiarui Chen
- Guangxi Medical University
- Spine and Osteopathy Ward, The First Affiliated Hospital of Guangxi Medical University, Nanning, P. R. China
| | - Xinli Zhan
- Guangxi Medical University
- Spine and Osteopathy Ward, The First Affiliated Hospital of Guangxi Medical University, Nanning, P. R. China
| |
Collapse
|
20
|
Cheng S, Wang X, Zhang Q, He Y, Zhang X, Yang L, Shi J. Comparative Transcriptome Analysis Identifying the Different Molecular Genetic Markers Related to Production Performance and Meat Quality in Longissimus Dorsi Tissues of MG × STH and STH Sheep. Genes (Basel) 2020; 11:E183. [PMID: 32050672 PMCID: PMC7074365 DOI: 10.3390/genes11020183] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 02/05/2020] [Accepted: 02/07/2020] [Indexed: 12/24/2022] Open
Abstract
Crossbred sheep have many prominent traits, such as excellent production performance and high-quality meat, when compared to local sheep breeds. However, the genetic molecular markers related to these characteristics remain unclear. The crossbred MG × STH (small-tailed Han sheep (STH) × Mongolian sheep (MG)) breed and the STH breed were selected to measure production performance and meat quality. We used 14 indexes of production performance and meat quality, which in the MG × STH population showed significant differences compared to the STH breed. Subsequently, the longissimusdorsi from the two sheep were subjected to comparative transcriptomic analyses to identify differentially expressed genes (DEGs) related to production performance and meat quality. A total of 874 DEGs were identified between the two sheep groups. A total of 110 unique DEGs related to sheep production performance and meat quality were selected as the candidate DEGs. We found 6 production-performance-related and 30 meat-quality-related DEGs through a correlation analysis, including SPARC, ACVRL1, FNDC5 and FREM1. The expression levels of 11 DEGs were validated by real-time PCR, and the results were in accordance with the results of the comparative transcriptomic and correlation analyses. These results will assist in understanding sheep heterosis and molecular marker-assisted selection.
Collapse
Affiliation(s)
- Shuru Cheng
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (L.Y.); (J.S.)
| | - Xueying Wang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China;
| | - Quanwei Zhang
- College of Life Science and Biotechnology, Gansu Agricultural University, Lanzhou 730070, China; (Y.H.); (X.Z.)
| | - Yuqin He
- College of Life Science and Biotechnology, Gansu Agricultural University, Lanzhou 730070, China; (Y.H.); (X.Z.)
| | - Xia Zhang
- College of Life Science and Biotechnology, Gansu Agricultural University, Lanzhou 730070, China; (Y.H.); (X.Z.)
| | - Lei Yang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (L.Y.); (J.S.)
| | - Jinping Shi
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (L.Y.); (J.S.)
| |
Collapse
|
21
|
Wang P, Teng Z, Liu X, Liu X, Kong C, Lu S. A new single nucleotide polymorphism affects the predisposition to thoracic ossification of the posterior longitudinal ligament. J Orthop Surg Res 2019; 14:438. [PMID: 31831033 PMCID: PMC6909598 DOI: 10.1186/s13018-019-1481-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 11/20/2019] [Indexed: 01/13/2023] Open
Abstract
Background Thoracic ossification of the posterior longitudinal ligament (T-OPLL) is one of the common factors that cause thoracic spinal stenosis, which results in intractable myelopathy and radiculopathy. Our previous study first reported rs201153092A site mutation in the collagen 6A1 (COL6A1) gene as a potentially pathogenic locus for T-OPLL. We aimed to determine whether the rs201153092A site mutation causes abnormal expression of the COL6A1 in Han Chinese patients with T-OPLL and whether this locus is also associated with cervical-OPLL. Methods Peripheral blood was collected from a total of 60 patients with T-OPLL disease (30 patients carrying the rs201153092A site mutation in COL6A1 and 30 wild-type patients) and 400 northern Chinese individuals (200 cervical-OPLL patients and 200 control subjects) using the Sequenom system. The expression of COL6A1 was analyzed by enzyme-linked immunosorbent assay, reverse transcription-quantitative polymerase chain reaction, and Western blotting. Results rs201153092A mutation resulted in markedly increased COL6A1 gene expression levels in peripheral blood samples. The allele frequency and genotype frequency results showed that this locus is no difference between cervical-OPLL patients and controls. Conclusions The rs201153092A site mutation of COL6A1 can significantly increase the expression of COL6A1. The COL6A1 gene rs201153092A site polymorphism is a potential pathogenic mutation in T-OPLL disease, which may be only associated with the occurrence of T-OPLL.
Collapse
Affiliation(s)
- Peng Wang
- Department of Orthopedics, Xuanwu Hospital of Capital Medical University, 45 Changchun Street, Xicheng, Beijing, 100053, People's Republic of China
| | - Ze Teng
- Department of Radiology, Cancer Hospital Chinese Academy of Medical Sciences, Beijing, 100021, People's Republic of China
| | - Xiaoguang Liu
- Department of Orthopedics, Peking University Third Hospital, Beijing, 100191, People's Republic of China
| | - Xiao Liu
- Department of Orthopedics, Peking University Third Hospital, Beijing, 100191, People's Republic of China
| | - Chao Kong
- Department of Orthopedics, Xuanwu Hospital of Capital Medical University, 45 Changchun Street, Xicheng, Beijing, 100053, People's Republic of China
| | - Shibao Lu
- Department of Orthopedics, Xuanwu Hospital of Capital Medical University, 45 Changchun Street, Xicheng, Beijing, 100053, People's Republic of China.
| |
Collapse
|
22
|
Wang P, Teng Z, Liu X, Liu X, Kong C, Lu S. The COL6A1 rs201153092 single nucleotide polymorphism, associates with thoracic ossification of the posterior longitudinal ligament. Mol Med Rep 2019; 21:191-200. [PMID: 31939624 PMCID: PMC6896296 DOI: 10.3892/mmr.2019.10846] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 10/30/2019] [Indexed: 01/13/2023] Open
Abstract
Thoracic ossification of the posterior longitudinal ligament (T-OPLL) is one of the most common factors that causes thoracic spinal stenosis, resulting in intractable myelopathy and radiculopathy. Our previous study reported that the rs201153092 polymorphism present in the collagen 6A1 (COL6A1) gene was a potentially pathogenic locus for the development of T-OPLL. The present study aimed to determine whether the rs201153092 mutation causes abnormal expression of COL6A1 in Han Chinese patients with T-OPLL, and to examine the effects of this mutation on osteogenesis by establishing a model of osteogenic differentiation. COL6A1 gene mutant and wild-type mouse 3T3-E1 embryonic osteoblast models were constructed to induce the differentiation of these cells into osteoblasts. The potential of the mutation site to induce abnormal expression of the COL6A1 gene and osteogenic markers was assessed via reverse transcription-quantitative PCR and western blot analyses. The results demonstrated that the rs201153092A mutation site resulted in significantly increased COL6A1 gene expression levels in the OPLL tissues obtained following clinical surgery. This mutation was shown to play an important role in the development of T-OPLL by regulating the overexpression of the COL6A1 gene and significantly increasing the expression levels of osteogenic markers. The findings of the present study suggested that the rs201153092A mutant variant could increase the expression levels of COL6A1 and consequently play a role in the pathogenesis of T-OPLL.
Collapse
Affiliation(s)
- Peng Wang
- Department of Orthopedics, Xuanwu Hospital of Capital Medical University, Beijing 100053, P.R. China
| | - Ze Teng
- Department of Radiology, Cancer Hospital Chinese Academy of Medical Sciences, Beijing 100021, P.R. China
| | - Xiaoguang Liu
- Department of Orthopedics, Peking University Third Hospital, Beijing 100191, P.R. China
| | - Xiao Liu
- Department of Orthopedics, Peking University Third Hospital, Beijing 100191, P.R. China
| | - Chao Kong
- Department of Orthopedics, Xuanwu Hospital of Capital Medical University, Beijing 100053, P.R. China
| | - Shibao Lu
- Department of Orthopedics, Xuanwu Hospital of Capital Medical University, Beijing 100053, P.R. China
| |
Collapse
|
23
|
IL17RC affects the predisposition to thoracic ossification of the posterior longitudinal ligament. J Orthop Surg Res 2019; 14:210. [PMID: 31291973 PMCID: PMC6621948 DOI: 10.1186/s13018-019-1253-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 07/02/2019] [Indexed: 11/10/2022] Open
Abstract
Background Thoracic ossification of the posterior longitudinal ligament (T-OPLL) can cause thoracic spinal stenosis, which results in intractable myelopathy and radiculopathy. The etiology of T-OPLL is unknown and the condition is difficult to treat surgically. Whole-genome sequencing identified a genetic variant at rs199772854 of the interleukin 17 receptor C (IL17RC) gene as a potentially pathogenic locus associated with T-OPLL. We aimed to determine whether the rs199772854A site mutation causes abnormal expression of the IL17RC in Han Chinese patients with T-OPLL and predict the possible pathogenic mechanisms of T-OPLL. Analyses were performed to determine whether IL17RC is involved in the pathogenicity of T-OPLL. Methods Peripheral blood and OPLL tissue were collected from a total of 72 patients with T-OPLL disease (36 patients carrying the rs199772854A site mutation in IL17RC and 36 wild-type patients). The expression of IL17RC was analyzed by enzyme-linked immunosorbent assay, reverse transcription-quantitative polymerase chain reaction, immunohistochemistry, and Western blotting. Results rs199772854A mutation resulted in markedly increased IL17RC gene expression levels in peripheral blood samples and the OPLL tissue obtained following clinical surgery (P < 0.05). Conclusions The results suggest that the rs199772854A site mutation of IL17RC can significantly increase the expression of IL17RC. The IL17RC gene rs199772854A site polymorphism is a potential pathogenic mutation in T-OPLL disease, which may be associated with the occurrence of T-OPLL.
Collapse
|
24
|
Qiu Y, Gao Y, Yu D, Zhong L, Cai W, Ji J, Geng F, Tang G, Zhang H, Cao J, Zhang J, Zhang S. Genome-Wide Analysis Reveals Zinc Transporter ZIP9 Regulated by DNA Methylation Promotes Radiation-Induced Skin Fibrosis via the TGF-β Signaling Pathway. J Invest Dermatol 2019; 140:94-102.e7. [PMID: 31254515 DOI: 10.1016/j.jid.2019.04.027] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 04/16/2019] [Accepted: 04/29/2019] [Indexed: 01/12/2023]
Abstract
Radiation-induced skin fibrosis is a detrimental and chronic disorder that occurs after radiation exposure. DNA methylation has been characterized as an important regulatory mechanism of multiple pathological processes. In this study, we compared the genome-wide DNA methylation status in radiation-induced fibrotic skin and adjacent normal tissues of rats by methylated DNA immunoprecipitation sequencing. Radiation-induced fibrotic skin showed differentially methylated regions associated with 3,650 protein-coding genes, 72 microRNAs, 5,836 long noncoding RNAs and 3 piwi-interacting RNAs. By integrating the mRNA and methylation profiles, the zinc transporter SLC39A9/ZIP9 was investigated in greater detail. The protein level of ZIP9 was increased in irradiated skin tissues of humans, monkeys, and rats, especially in radiogenic fibrotic skin tissues. Radiation induced the demethylation of a CpG dinucleotide in exon 1 of ZIP9 that resulted in recruitment of the transcriptional factor Sp1 and increased ZIP9 expression. Overexpression of ZIP9 resulted in activation of the profibrotic transforming growth factor-β signaling pathway through protein kinase B in human fibroblasts. In addition, radiation-induced skin fibrosis was associated with increased zinc accumulation. The zinc chelator N,N,N',N'-tetrakis(2-pyridylmethyl)-1,2-ethylenediamine abrogated ZIP9-induced activation of the transforming growth factor-β signaling pathway and attenuated radiation-induced skin fibrosis in a rat model. In summary, our findings illustrate epigenetic regulation of ZIP9 and its critical role in promoting radiation-induced skin fibrosis.
Collapse
Affiliation(s)
- Yuyou Qiu
- Department of Radiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yiying Gao
- State Key Lab of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Daojiang Yu
- State Key Lab of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China; The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Li Zhong
- State Key Lab of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Weichao Cai
- The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Jiang Ji
- The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Fenghao Geng
- Radiation Medicine Department of Institute of Preventive Medicine, Fourth Military Medical University, Xi'an, China
| | - Guangyu Tang
- Department of Radiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Huojun Zhang
- Department of Radiation Oncology, Shanghai Changhai Hospital, the Second Military Medical University, Shanghai, China
| | - Jianping Cao
- State Key Lab of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China; The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Jie Zhang
- Radiation Medicine Department of Institute of Preventive Medicine, Fourth Military Medical University, Xi'an, China.
| | - Shuyu Zhang
- State Key Lab of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China; West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China; Second Affiliated Hospital of Chengdu Medical College (China National Nuclear Corporation 416 Hospital), Chengdu, China.
| |
Collapse
|
25
|
Xu C, Zhang H, Zhou W, Wu H, Shen X, Chen Y, Liao M, Liu Y, Yuan W. MicroRNA-10a, -210, and -563 as circulating biomarkers for ossification of the posterior longitudinal ligament. Spine J 2019; 19:735-743. [PMID: 30352301 DOI: 10.1016/j.spinee.2018.10.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 10/14/2018] [Accepted: 10/15/2018] [Indexed: 02/03/2023]
Abstract
BACKGROUND CONTEXT The presence of ossification of posterior longitudinal ligament (OPLL) can lead to symptomatic spinal cord compression and myelopathy. The surgical approach in patients with myelopathy is influenced by the presence of OPLL. Diagnose of OPLL currently requires computed tomography which incurs a large dose of radiation. Circulating disease-specific microRNAs (miRNAs) may serve as promising diagnostic markers with no radiation and easy accessibility for OPLL patients. PURPOSE The purpose of this study is to evaluate the accuracy and significance of OPLL-specific microRNAs in discriminating OPLL from normal and intervertebral disc degenerated (IDD) patients by detecting the microRNAs' plasma level. STUDY DESIGN/PATIENT SAMPLES The level of microRNAs in OPLL patients' plasma or serum were detected and compared to that of normal and IDD patients to evaluate the accuracy and significance of diagnosing OPLL. METHODS Taking advantage of the high through-put microRNA sequencing data, we selectively tested the ten most differentially regulated microRNAs in patients with: (1) radiologically diagnosed OPLL (n = 68), (2) radiologically diagnosed disc herniated patients with no evidence of OPLL (n = 45), (3) non-OPLL and nonmyelopathy patients (n = 53).The feasibility of the biomarkers in identifying OPLL was assessed through analysis of sensitivity, specificity, accuracy, negative predictive value, positive predictive value, and area under the curve (AUC) values. RESULTS Of the ten miRNAs validated, miR-10a-3p, miR-10a-5p, miR-563, miR-210-3p, and miR-218-3p showed significance between OPLL and non-OPLL blood samples. While miR-10a-5p, miR-563, and miR-210-3p showed high accuracy and significance in identifying OPLL from other groups individually, and an index that combines these miRNAs achieved the highest accuracy and AUC among these individual miRNAs. CONCLUSIONS Analysis of miR-10a-5p, miR-563, and miR-210-3p may be of important value in diagnosing OPLL. These markers maybe useful in a clinical setting in the early detection of OPLL patients by blood testing.
Collapse
Affiliation(s)
- Chen Xu
- Spine Center, Department of Orthopedics, Changzheng Hospital, Second Military Medical University, 415th Feng Yang Road, Shanghai 200003, PR China
| | - Hao Zhang
- Spine Center, Department of Orthopedics, Changzheng Hospital, Second Military Medical University, 415th Feng Yang Road, Shanghai 200003, PR China; Department of Soft Tissue Injury Surgery, 403 Clinical Department, 210th Hospital of PLA, 885th Chang Jiang Road, Dalian 116021, PR China
| | - Wenchao Zhou
- Spine Center, Department of Orthopedics, Changzheng Hospital, Second Military Medical University, 415th Feng Yang Road, Shanghai 200003, PR China
| | - Huiqiao Wu
- Spine Center, Department of Orthopedics, Changzheng Hospital, Second Military Medical University, 415th Feng Yang Road, Shanghai 200003, PR China
| | - Xiaolong Shen
- Spine Center, Department of Orthopedics, Changzheng Hospital, Second Military Medical University, 415th Feng Yang Road, Shanghai 200003, PR China
| | - Yuanyuan Chen
- Spine Center, Department of Orthopedics, Changzheng Hospital, Second Military Medical University, 415th Feng Yang Road, Shanghai 200003, PR China; Department of Orthopedic Surgery, Shanghai Sixth People's Hospital, Shanghai Jiaotong University, Shanghai 200233, PR China
| | - Mingfang Liao
- Laboratory of vascular biology, Department of Vascular Surgery, Changzheng Hospital, Second Military Medical University, 415th Feng Yang Road, Shanghai 200003, PR China
| | - Yang Liu
- Spine Center, Department of Orthopedics, Changzheng Hospital, Second Military Medical University, 415th Feng Yang Road, Shanghai 200003, PR China
| | - Wen Yuan
- Spine Center, Department of Orthopedics, Changzheng Hospital, Second Military Medical University, 415th Feng Yang Road, Shanghai 200003, PR China.
| |
Collapse
|
26
|
Sun L, Lu S, Bai M, Xiang L, Li J, Jia C, Jiang H. Integrative microRNA-mRNA Analysis of Muscle Tissues in Qianhua Mutton Merino and Small Tail Han Sheep Reveals Key Roles for oar-miR-655-3p and oar-miR-381-5p. DNA Cell Biol 2019; 38:423-435. [PMID: 30864845 DOI: 10.1089/dna.2018.4408] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The Qianhua Mutton Merino (QHMM) is a new variety of sheep (Ovis aries) with improved meat performance compared with the traditional Small Tail Han (STH) sheep variety. We recently reported the transcriptome profiling of longissimus muscle tissues between QHMM and STH sheep. In the present study, we aimed to evaluate key micro (mi)RNA-mRNA networks associated with sheep muscle growth and development. We used miRNA sequencing to obtain longissimus muscle miRNA profiles from QHMM and STH sheep. We identified a total of 153 known sheep miRNAs, of which 4 were differentially expressed (DE) between the 2 sheep varieties. We combined these results with mRNA library data to build an miRNA-mRNA network, including 26 target genes of the 4 DE miRNAs. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses showed that 26 target genes were significantly enriched in 86 biological processes, including muscle organogenesis, myoblast migration, cell proliferation, and adipose tissue development, and in 9 metabolic pathways, including carbohydrate, nucleotide, and amino acid metabolic pathways. oar-miR-655-3p and its target gene ACSM3 and oar-miR-381-5p and its target gene ABAT were selected for subsequent analysis based on GO and KEGG analyses. The binding sites of oar-miR-655-3p with ACSM3 and oar-miR-381-5p with ABAT were validated by a dual-luciferase reporter gene detection system. This represents the first integrative analysis of miRNA-mRNA networks in QHMM and STH muscles and suggests that DE miRNAs, especially oar-miR-655-3p and oar-miR-381-5p, play crucial roles in muscle growth and development.
Collapse
Affiliation(s)
- Limin Sun
- 1 College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Songyan Lu
- 2 Jilin Animal Disease Control Center, Changchun, China
| | - Man Bai
- 1 College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Lujie Xiang
- 1 College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Jiarong Li
- 1 College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Chao Jia
- 1 College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Huaizhi Jiang
- 1 College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| |
Collapse
|
27
|
Wang P, Liu X, Kong C, Liu X, Teng Z, Ma Y, Yong L, Liang C, He G, Lu S. Potential role of the IL17RC gene in the thoracic ossification of the posterior longitudinal ligament. Int J Mol Med 2019; 43:2005-2014. [PMID: 30864693 PMCID: PMC6443333 DOI: 10.3892/ijmm.2019.4130] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Accepted: 03/04/2019] [Indexed: 11/06/2022] Open
Abstract
The thoracic ossification of the posterior longitudinal ligament (T-OPLL) can cause thoracic spinal stenosis, which results in intractable myelopathy and radiculopathy. Our previous whole-genome sequencing study first reported rs199772854 in the interleukin 17 receptor C (IL17RC) gene as a potentially pathogenic loci for T-OPLL. The aim of the present study was to examine the effects of the IL17RC gene rs199772854A site mutation on osteogenesis by establishing a model of osteogenic differentiation. IL17RC gene mutation site and wild-type site mouse embryonic osteoblast (3T3-E1) models were constructed in order to induce the differentiation of the cells into osteoblasts. Whether the mutation site causes the abnormal expression of the IL17RC gene and osteogenic markers was analyzed by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and western blot analysis. The IL17RC gene rs199772854A site mutation was demonstrated to play a biological role through the overexpression of its own gene, and also to significantly increase the expression levels of osteogenic markers. Furthermore, the mutation upregulated the expression of the key proteins, tumor necrosis factor receptor (TNFR)-associated factor 6 (TRAF6) and nuclear factor (NF)-κB, in the interleukin (IL)-17 signaling axis. On the whole, the findings of this study suggest that the IL17RC gene rs199772854A loci mutation propels mouse embryonic osteoblasts towards osteogenic differentiation and may play an important role in the pathogenesis of T-OPLL. The IL17RC gene may promote osteogenesis through the IL-17 signaling pathway and may thus be involved in the process of ectopic osteogenesis in T-OPLL.
Collapse
Affiliation(s)
- Peng Wang
- Department of Orthopedics, Xuanwu Hospital of Capital Medical University, Beijing 100053, P.R. China
| | - Xiaoguang Liu
- Department of Orthopedics, Peking University Third Hospital, Beijing 100191, P.R. China
| | - Chao Kong
- Department of Orthopedics, Xuanwu Hospital of Capital Medical University, Beijing 100053, P.R. China
| | - Xiao Liu
- Department of Orthopedics, Peking University Third Hospital, Beijing 100191, P.R. China
| | - Ze Teng
- Department of Radiology, Cancer Hospital Chinese Academy of Medical Sciences, Beijing 100021, P.R. China
| | - Yunlong Ma
- Department of Orthopedics, Peking University Third Hospital, Beijing 100191, P.R. China
| | - Lei Yong
- Department of Orthopedics, Peking University Third Hospital, Beijing 100191, P.R. China
| | - Chen Liang
- Department of Orthopedics, Peking University Third Hospital, Beijing 100191, P.R. China
| | - Guanping He
- Department of Orthopedics, Peking University Third Hospital, Beijing 100191, P.R. China
| | - Shibao Lu
- Department of Orthopedics, Xuanwu Hospital of Capital Medical University, Beijing 100053, P.R. China
| |
Collapse
|
28
|
Liang C, Wang P, Liu X, Yang C, Ma Y, Yong L, Zhu B, Liu X, Liu Z. Whole-genome sequencing reveals novel genes in ossification of the posterior longitudinal ligament of the thoracic spine in the Chinese population. J Orthop Surg Res 2018; 13:324. [PMID: 30577800 PMCID: PMC6303868 DOI: 10.1186/s13018-018-1022-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 11/27/2018] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Ossification of the posterior longitudinal ligament (OPLL) of the spine is a complex, multifactorial disease. Although several genes that are linked to cervical OPLL susceptibility have been reported, specific genetic studies regarding thoracic OPLL are lacking. Whole-genome sequencing has been considered as an efficient strategy to search for disease-causing genes. METHODS We analysed whole-genome sequences in a cohort of 25 unrelated patients with thoracic OPLL. Bioinformatics analysis and various algorithms were used to predict deleterious variants. Sanger sequencing was used to confirm the variants. RESULTS Four deleterious mutations in three genes (c.2716C>T (p.Arg906Cys) in collagen type VI α6 (COL6A6); c.1946G>C (p.Gly649Ala) in collagen type IX α1 (COL9A1); and c.301T>C (p.Ser101Pro) and c.171A>G (p.Ile57Met) in toll-like receptor 1 (TLR1)) were successfully identified. All the variants were confirmed by Sanger sequencing. CONCLUSION The novel deleterious mutations of the three genes may contribute to the development of thoracic OPLL.
Collapse
Affiliation(s)
- Chen Liang
- Department of Orthopaedics, Peking University Third Hospital, No. 49, North Garden Road, Haidian District, Beijing, 100191, China
| | - Peng Wang
- Department of Orthopaedics, Peking University Third Hospital, No. 49, North Garden Road, Haidian District, Beijing, 100191, China
| | - Xiao Liu
- Department of Orthopaedics, Peking University Third Hospital, No. 49, North Garden Road, Haidian District, Beijing, 100191, China
| | - Chenlong Yang
- Department of Orthopaedics, Peking University Third Hospital, No. 49, North Garden Road, Haidian District, Beijing, 100191, China
| | - Yunlong Ma
- The Centre for Pain Medicine, Peking University Third Hospital, No. 49, North Garden Road, Haidian District, Beijing, 100191, China
| | - Lei Yong
- Department of Orthopaedics, Peking University Third Hospital, No. 49, North Garden Road, Haidian District, Beijing, 100191, China
| | - Bin Zhu
- The Centre for Pain Medicine, Peking University Third Hospital, No. 49, North Garden Road, Haidian District, Beijing, 100191, China
| | - Xiaoguang Liu
- Department of Orthopaedics, Peking University Third Hospital, No. 49, North Garden Road, Haidian District, Beijing, 100191, China.
| | - Zhongjun Liu
- Department of Orthopaedics, Peking University Third Hospital, No. 49, North Garden Road, Haidian District, Beijing, 100191, China
| |
Collapse
|
29
|
Zhang Q, Wang Q, Zhang Y, Cheng S, Hu J, Ma Y, Zhao X. Comprehensive Analysis of MicroRNA⁻Messenger RNA from White Yak Testis Reveals the Differentially Expressed Molecules Involved in Development and Reproduction. Int J Mol Sci 2018; 19:ijms19103083. [PMID: 30304826 PMCID: PMC6213350 DOI: 10.3390/ijms19103083] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 09/30/2018] [Accepted: 10/02/2018] [Indexed: 01/31/2023] Open
Abstract
Testis development is a vital and tightly regulated process in mammals. Understanding the biological mechanisms underlying testis development will benefit the animal reproduction industry. Expression changes in microRNA and messenger RNA in response to dynamic regulation effects have been associated with this process. However, very little is known about the roles of these molecules in yak development. Using whole-genome small RNA and messenger RNA sequencing, we performed a comprehensive analysis of the microRNA–messenger RNA interaction network expression in the testicles of Tianzhu white yaks during three developmental stages. Using Short Time-series Expression Miner analysis we identified 589 differentially expressed microRNAs (DERs) and 3383 differentially expressed messenger RNAs (DEGs) in the three age groups. A total of 93 unique DEGs are primarily involved in reproduction and testis development. Subsequently, four integration networks were constructed according to the DEGs and DERs in three biological processes. Nineteen DEGs were potentially regulated by 60 DERs, of which miR-574 and target gene AURKA played a crucial role in yak testis development and reproduction. The results of this study provide a basis for further exploration of the microRNA–messenger RNA interactions in testis development and reproduction and aid in uncovering the molecular mechanisms of spermatogenesis in male mammals.
Collapse
Affiliation(s)
- Quanwei Zhang
- College of Veterinary Medicine, Gansu Agriculture University, Lanzhou 730070, China.
- College of Life science and Technology, Gansu Agriculture University, Lanzhou 730070, China.
| | - Qi Wang
- College of Veterinary Medicine, Gansu Agriculture University, Lanzhou 730070, China.
| | - Yong Zhang
- College of Veterinary Medicine, Gansu Agriculture University, Lanzhou 730070, China.
- College of Life science and Technology, Gansu Agriculture University, Lanzhou 730070, China.
| | - Shuru Cheng
- College of Animal Science and Technology, Gansu Agriculture University, Lanzhou 730070, China.
| | - Junjie Hu
- College of Veterinary Medicine, Gansu Agriculture University, Lanzhou 730070, China.
| | - Youji Ma
- College of Animal Science and Technology, Gansu Agriculture University, Lanzhou 730070, China.
| | - Xingxu Zhao
- College of Veterinary Medicine, Gansu Agriculture University, Lanzhou 730070, China.
- College of Life science and Technology, Gansu Agriculture University, Lanzhou 730070, China.
| |
Collapse
|
30
|
Yang X, Qu X, Meng X, Li M, Fan D, Fan T, Huang AY, Chen Z, Zhang C. MiR-490-3p inhibits osteogenic differentiation in thoracic ligamentum flavum cells by targeting FOXO1. Int J Biol Sci 2018; 14:1457-1465. [PMID: 30262997 PMCID: PMC6158729 DOI: 10.7150/ijbs.26686] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Accepted: 07/16/2018] [Indexed: 01/13/2023] Open
Abstract
Thoracic ossification of the ligamentum flavum (TOLF) is a rare heterotopic ossification of spinal ligaments, which is the major cause of thoracic spinal canal stenosis and myelopathy. In this study, the roles of miR-490-3p and forkhead box O1 (FOXO1) in osteogenesis of human thoracic ligamentum flavum cells were investigated. MiR-490-3p was found to be down-regulated during osteogenic differentiation of thoracic ligamentum flavum cells, while their overexpression inhibited osteogenic differentiation. In addition, the analysis of target prediction and dual luciferase reporter assays supported that miR-490-3p directly targeted FOXO1 and suppressed the expression of FOXO1. Moreover, FOXO1 knockdown was displayed to attenuate the effect of miR-490-3p inhibition. ChIP assays showed that miR-490-3p negatively regulated the interaction of FOXO1 and RUNX2. These findings suggest that miR-490-3p performs an inhibitory role in osteogenic differentiation of thoracic ligamentum flavum cells by potentially targeting FOXO1.
Collapse
Affiliation(s)
- Xiaoxi Yang
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
| | - Xiaochen Qu
- Department of Orthopedics, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xiangyu Meng
- Central Laboratory, Peking University International Hospital, Beijing, China
| | - Mengtao Li
- Central Laboratory, Peking University International Hospital, Beijing, China
| | - Dongwei Fan
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
| | - Tianqi Fan
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
| | - Ann Y Huang
- Bone Research Laboratory, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Zhongqiang Chen
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
| | - Chi Zhang
- Central Laboratory, Peking University International Hospital, Beijing, China.,Bone Research Laboratory, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Department of Orthopedics, Peking University International Hospital, Beijing, China
| |
Collapse
|
31
|
Xu C, Zhang H, Gu W, Wu H, Chen Y, Zhou W, Sun B, Shen X, Zhang Z, Wang Y, Liu Y, Yuan W. The microRNA-10a/ID3/RUNX2 axis modulates the development of Ossification of Posterior Longitudinal Ligament. Sci Rep 2018; 8:9225. [PMID: 29907859 PMCID: PMC6003989 DOI: 10.1038/s41598-018-27514-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 05/31/2018] [Indexed: 01/07/2023] Open
Abstract
Ossification of the posterior longitudinal ligament (OPLL) presents as pathological heterotopic ossification of the spinal ligaments. However, its underlying molecular mechanism is still unclear. Our previous findings suggested that altered microRNA regulatory network are critical for the development of OPLL. Here, we set out to unveiling the detailed mechanism of those altered OPLL-specific microRNAs. We screened a set of differentially expressed OPLL-specific microRNAs from the previous sequencing data and showed that microRNA-10a actively modulates the ossification of posterior ligament cells in vitro. Using a tissue-engineered scaffold grown from 4-week-old BALB/c homozygous nude mice, we found that altered microRNA-10a expression in posterior ligament cells indeed affected the heterotopic bone formation in vivo. Furthermore, computational analysis showed that the negative ossification regulator ID3 is a functional target gene of microRNA-10a, and its expression was also significantly altered during microRNA-10a modulation both in vitro and in vivo. Also, we have demonstrated that the ossification promoting function of microRNA-10a requires ID3, as ID3 actively inhibits RUNX2. Thus, we identified a critical role for highly altered OPLL-specific microRNA-10a in regulating the development of OPLL by modulating the ID3/RUNX2 axis.
Collapse
Affiliation(s)
- Chen Xu
- Spine Center, Department of Orthopaedics, Changzheng Hospital, Second Military Medical University, 415th Feng Yang Road, Shanghai, 200003, P.R. China
| | - Hao Zhang
- Spine Center, Department of Orthopaedics, Changzheng Hospital, Second Military Medical University, 415th Feng Yang Road, Shanghai, 200003, P.R. China
| | - Wei Gu
- Spine Center, Department of Orthopaedics, Changzheng Hospital, Second Military Medical University, 415th Feng Yang Road, Shanghai, 200003, P.R. China
| | - Huiqiao Wu
- Spine Center, Department of Orthopaedics, Changzheng Hospital, Second Military Medical University, 415th Feng Yang Road, Shanghai, 200003, P.R. China
| | - Yuanyuan Chen
- Spine Center, Department of Orthopaedics, Changzheng Hospital, Second Military Medical University, 415th Feng Yang Road, Shanghai, 200003, P.R. China.,Department of Orthopedic Surgery, Sixth People's Hospital Affiliated to Shanghai Jiao Tong University, 800th Yi Shan Road, Shanghai, 200233, P.R. China
| | - Wenchao Zhou
- Spine Center, Department of Orthopaedics, Changzheng Hospital, Second Military Medical University, 415th Feng Yang Road, Shanghai, 200003, P.R. China
| | - Baifeng Sun
- Spine Center, Department of Orthopaedics, Changzheng Hospital, Second Military Medical University, 415th Feng Yang Road, Shanghai, 200003, P.R. China
| | - Xiaolong Shen
- Spine Center, Department of Orthopaedics, Changzheng Hospital, Second Military Medical University, 415th Feng Yang Road, Shanghai, 200003, P.R. China
| | - Zicheng Zhang
- Administration Office for Graduate Students, Changhai Hospital, Second Military Medical University, 168th Chang Hai Road, Shanghai, 200433, P.R. China
| | - Yue Wang
- Research Center of Developmental Biology, Second Military Medical University, 800th Xiang Yin Road, Shanghai, 200433, P.R. China.
| | - Yang Liu
- Spine Center, Department of Orthopaedics, Changzheng Hospital, Second Military Medical University, 415th Feng Yang Road, Shanghai, 200003, P.R. China.
| | - Wen Yuan
- Spine Center, Department of Orthopaedics, Changzheng Hospital, Second Military Medical University, 415th Feng Yang Road, Shanghai, 200003, P.R. China.
| |
Collapse
|
32
|
Wang P, Liu X, Zhu B, Ma Y, Yong L, Teng Z, Liang C, He G, Liu X. Association of IL17RC and COL6A1 genetic polymorphisms with susceptibility to ossification of the thoracic posterior longitudinal ligament in Chinese patients. J Orthop Surg Res 2018; 13:109. [PMID: 29764467 PMCID: PMC5952594 DOI: 10.1186/s13018-018-0817-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 02/19/2018] [Indexed: 11/23/2022] Open
Abstract
Background In our previous whole-genome sequencing study of 30 unrelated northern Chinese Han patients, we identified six single nucleotide polymorphisms (SNPs) in the interleukin 17 receptor C (IL17RC) and collagen type VI α1 chain (COL6A1) genes that were potentially associated with thoracic ossification of the posterior longitudinal ligament (T-OPLL). To determine whether these six SNPs are associated with susceptibility to T-OPLL in the northern Chinese Han population, we performed a case-control association study to confirm specific susceptible loci in the expanded samples. Methods The six SNPs in the IL17RC and COL6A1 genes were analyzed in 200 northern Chinese individuals (100 patients and 100 control subjects) using the Sequenom system. Results The genotype distributions and allele frequencies of each SNP in the control and patient groups were compared. rs201153092, rs13051496, rs199772854, rs76999397, and rs189013166 showed potential pathogenic loci for T-OPLL in the northern Chinese Han population, whereas rs151158105 did not. At the genotype level, the differences in the genotype frequencies of rs201153092, rs13051496, rs199772854, rs76999397, and rs189013166 between T-OPLL cases and controls reached statistical significance. Conclusions To the best of our knowledge, this is the first association study of susceptibility genes in Han Chinese patients with T-OPLL. The results revealed five SNPs in the IL17RC and COL6A1 genes that represented potentially pathogenic mutations in patients with T-OPLL.
Collapse
Affiliation(s)
- Peng Wang
- Department of Orthopedics, Peking University Third Hospital, 49 North Garden Street, Haidian District, Beijing, 100191, People's Republic of China
| | - Xiao Liu
- Department of Orthopedics, Peking University Third Hospital, 49 North Garden Street, Haidian District, Beijing, 100191, People's Republic of China
| | - Bin Zhu
- The Center for Pain Medicine, Peking University Third Hospital, Beijing, People's Republic of China
| | - Yunlong Ma
- Department of Orthopedics, Peking University Third Hospital, 49 North Garden Street, Haidian District, Beijing, 100191, People's Republic of China
| | - Lei Yong
- Department of Orthopedics, Peking University Third Hospital, 49 North Garden Street, Haidian District, Beijing, 100191, People's Republic of China
| | - Ze Teng
- Department of Radiology, Peking University Third Hospital, Beijing, 100191, People's Republic of China
| | - Chen Liang
- Department of Orthopedics, Peking University Third Hospital, 49 North Garden Street, Haidian District, Beijing, 100191, People's Republic of China
| | - Guanping He
- Department of Orthopedics, Peking University Third Hospital, 49 North Garden Street, Haidian District, Beijing, 100191, People's Republic of China
| | - Xiaoguang Liu
- Department of Orthopedics, Peking University Third Hospital, 49 North Garden Street, Haidian District, Beijing, 100191, People's Republic of China.
| |
Collapse
|
33
|
Song J, Zhang H, Wang Z, Xu W, Zhong L, Cao J, Yang J, Tian Y, Yu D, Ji J, Cao J, Zhang S. The Role of FABP5 in Radiation-Induced Human Skin Fibrosis. Radiat Res 2017; 189:177-186. [PMID: 29215326 DOI: 10.1667/rr14901.1] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Radiation-induced skin fibrosis is a detrimental and chronic disorder that occurs after radiation exposure. The molecular changes underlying the pathogenesis of radiation-induced fibrosis of human skin have not been extensively reported. Technical advances in proteomics have enabled exploration of the biomarkers and molecular pathogenesis of radiation-induced skin fibrosis, with the potential to broaden our understanding of this disease. In this study, we compared protein expression in radiation-induced fibrotic human skin and adjacent normal tissues using iTRAQ-based proteomics technology. We identified 186 preferentially expressed proteins (53 upregulated and 133 downregulated) between radiogenic fibrotic and normal skin tissues. The differentially expressed proteins included keratins (KRT5, KRT6A, KRT16 and KRT17), caspase-14, fatty acid-binding protein 5 (FABP5), SLC2A14 and resistin. Through bioinformatic analysis of the proximal promoters, common motifs and corresponding transcriptional factors were identified that associate with the dysregulated proteins, including PAX5, TBX1, CLOCK and AP2D. In particular, FABP5 (2.15-fold increase in fibrotic skin tissues), a transporter of hydrophobic fatty acids, was investigated in greater detail. Immunohistochemistry confirmed that the protein level of FABP5 was increased in fibrotic human skin tissues, especially in the epidermis. Overexpression of FABP5 resulted in nuclear translocation of SMAD2 and significant activation of the profibrotic TGF-β signaling pathway in human fibroblast WS1 cells. Moreover, exogenous FABP5 (FABP5-EGFP) could be incorporated by skin cells and intensify TGF-β signaling, indicating a communication between the microenvironment and skin fibrosis. Taken together, our findings illustrate the molecular changes during radiation-induced human skin fibrosis and the critical role of FABP5 in activating the TGF-β signaling pathway.
Collapse
Affiliation(s)
- Jianyuan Song
- a Fujian Medical University Union Hospital, Fuzhou 350001, China.,b School of Radiation Medicine and Protection and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Huojun Zhang
- c Department of Radiation Oncology, Shanghai Changhai Hospital, the Second Military Medical University, Shanghai 200433, China
| | - Zhenyu Wang
- b School of Radiation Medicine and Protection and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Wanglei Xu
- b School of Radiation Medicine and Protection and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Li Zhong
- b School of Radiation Medicine and Protection and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Jinming Cao
- b School of Radiation Medicine and Protection and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Jianfeng Yang
- d Cyrus Tang Hematology Center, Soochow University, Suzhou 215123, China; and
| | - Ye Tian
- e The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Daojiang Yu
- e The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Jiang Ji
- e The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Jianping Cao
- b School of Radiation Medicine and Protection and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Shuyu Zhang
- b School of Radiation Medicine and Protection and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| |
Collapse
|
34
|
Cao A, Jin J, Li S, Wang J. Integrated analysis of mRNA and miRNA expression profiling in rice backcrossed progenies (BC2F12) with different plant height. PLoS One 2017; 12:e0184106. [PMID: 28859136 PMCID: PMC5578646 DOI: 10.1371/journal.pone.0184106] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 08/17/2017] [Indexed: 11/18/2022] Open
Abstract
Inter-specific hybridization and backcrossing commonly occur in plants. The use of progeny generated from inter-specific hybridization and backcrossing has been developed as a novel model system to explore gene expression divergence. The present study investigated the analysis of gene expression and miRNA regulation in backcrossed introgression lines constructed from cultivated and wild rice. High-throughput sequencing was used to compare gene and miRNA expression profiles in three progeny lines (L1710, L1817 and L1730), with different plant heights resulting from the backcrossing of introgression lines (BC2F12) and their parents (O. sativa and O. longistaminata). A total of 25,387 to 26,139 mRNAs and 379 to 419 miRNAs were obtained in these rice lines. More differentially expressed genes and miRNAs were detected in progeny/O. longistaminata comparison groups than in progeny/O. sativa comparison groups. Approximately 80% of the genes and miRNAs showed expression level dominance to O. sativa, indicating that three progeny lines were closer to the recurrent parent, which might be influenced by their parental genome dosage. Approximately 16% to 64% of the differentially expressed miRNAs possessing coherent target genes were predicted, and many of these miRNAs regulated multiple target genes. Most genes were up-regulated in progeny lines compared with their parents, but down-regulated in the higher plant height line in the comparison groups among the three progeny lines. Moreover, certain genes related to cell walls and plant hormones might play crucial roles in the plant height variations of the three progeny lines. Taken together, these results provided valuable information on the molecular mechanisms of hybrid backcrossing and plant height variations based on the gene and miRNA expression levels in the three progeny lines.
Collapse
Affiliation(s)
- Aqin Cao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Jie Jin
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Shaoqing Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Jianbo Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
- * E-mail:
| |
Collapse
|
35
|
Cohen JL, Jackson NL, Ballestas ME, Webb WM, Lubin FD, Clinton SM. Amygdalar expression of the microRNA miR-101a and its target Ezh2 contribute to rodent anxiety-like behaviour. Eur J Neurosci 2017; 46:2241-2252. [PMID: 28612962 DOI: 10.1111/ejn.13624] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 05/16/2017] [Accepted: 06/05/2017] [Indexed: 12/30/2022]
Abstract
A greater understanding of neural mechanisms contributing to anxiety is needed in order to develop better therapeutic interventions. This study interrogates a novel molecular mechanism that shapes anxiety-like behaviour, demonstrating that the microRNA miR-101a-3p and its target, enhancer of zeste homolog 2 (Ezh2) in the amygdala, contribute to rodent anxiety-like behaviour. We utilized rats that were selectively bred for differences in emotionality and stress reactivity, showing that high-novelty-responding (HR) rats, which display low trait anxiety, have lower miR-101a-3p levels in the amygdala compared to low-novelty-responding (LR) rats that characteristically display high trait anxiety. To determine whether there is a causal relationship between amygdalar miR-101a-3p and anxiety behaviour, we used a viral approach to overexpress miR-101a-3p in the amygdala of HR rats and test whether it would increase their typically low levels of anxiety-like behaviour. We found that increasing miR-101a-3p in the amygdala increased HRs' anxiety-like behaviour in the open-field test and elevated plus maze. Viral-mediated miR-101a-3p overexpression also reduced expression of the histone methyltransferase Ezh2, which mediates gene silencing via trimethylation of histone 3 at lysine 27 (H3K27me3). Knockdown of Ezh2 with short-interfering RNA (siRNA) also increased HRs' anxiety-like behaviour, but to a lesser degree than miR-101a-3p overexpression. Overall, our data demonstrate that increasing miR-101a-3p expression in the amygdala increases anxiety-like behaviour and that this effect is at least partially mediated via repression of Ezh2. This work adds to the growing body of evidence implicating miRNAs and epigenetic regulation as molecular mediators of anxiety behaviour.
Collapse
Affiliation(s)
- Joshua L Cohen
- MD/PhD Medical Scientist Training Program, University of Alabama-Birmingham, Birmingham, AL, USA
| | - Nateka L Jackson
- Department of Cell and Molecular Biology, University of Alabama-Birmingham, Birmingham, AL, USA
| | - Mary E Ballestas
- Department of Pediatric-Infectious Disease, University of Alabama-Birmingham, Birmingham, AL, USA
| | - William M Webb
- MD/PhD Medical Scientist Training Program, University of Alabama-Birmingham, Birmingham, AL, USA.,Department of Neurobiology, University of Alabama-Birmingham, Birmingham, AL, USA
| | - Farah D Lubin
- Department of Neurobiology, University of Alabama-Birmingham, Birmingham, AL, USA
| | - Sarah M Clinton
- School of Neuroscience, Virginia Tech University, 1981 Kraft Drive, Integrated Life Sciences Building room 2012, Blacksburg, VA, 20460, USA
| |
Collapse
|
36
|
Abidin SZ, Leong JW, Mahmoudi M, Nordin N, Abdullah S, Cheah PS, Ling KH. In Silico Prediction and Validation of Gfap as an miR-3099 Target in Mouse Brain. Neurosci Bull 2017; 33:373-382. [PMID: 28597341 DOI: 10.1007/s12264-017-0143-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Accepted: 03/17/2017] [Indexed: 01/24/2023] Open
Abstract
MicroRNAs are small non-coding RNAs that play crucial roles in the regulation of gene expression and protein synthesis during brain development. MiR-3099 is highly expressed throughout embryogenesis, especially in the developing central nervous system. Moreover, miR-3099 is also expressed at a higher level in differentiating neurons in vitro, suggesting that it is a potential regulator during neuronal cell development. This study aimed to predict the target genes of miR-3099 via in-silico analysis using four independent prediction algorithms (miRDB, miRanda, TargetScan, and DIANA-micro-T-CDS) with emphasis on target genes related to brain development and function. Based on the analysis, a total of 3,174 miR-3099 target genes were predicted. Those predicted by at least three algorithms (324 genes) were subjected to DAVID bioinformatics analysis to understand their overall functional themes and representation. The analysis revealed that nearly 70% of the target genes were expressed in the nervous system and a significant proportion were associated with transcriptional regulation and protein ubiquitination mechanisms. Comparison of in situ hybridization (ISH) expression patterns of miR-3099 in both published and in-house-generated ISH sections with the ISH sections of target genes from the Allen Brain Atlas identified 7 target genes (Dnmt3a, Gabpa, Gfap, Itga4, Lxn, Smad7, and Tbx18) having expression patterns complementary to miR-3099 in the developing and adult mouse brain samples. Of these, we validated Gfap as a direct downstream target of miR-3099 using the luciferase reporter gene system. In conclusion, we report the successful prediction and validation of Gfap as an miR-3099 target gene using a combination of bioinformatics resources with enrichment of annotations based on functional ontologies and a spatio-temporal expression dataset.
Collapse
Affiliation(s)
- Shahidee Zainal Abidin
- NeuroBiology and Genetics Group, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
- Genetics and Regenerative Medicine Research Center, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
- Medical Genetics Unit, Department of Biomedical Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Jia-Wen Leong
- NeuroBiology and Genetics Group, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
- Genetics and Regenerative Medicine Research Center, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Marzieh Mahmoudi
- NeuroBiology and Genetics Group, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Norshariza Nordin
- Genetics and Regenerative Medicine Research Center, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
- Medical Genetics Unit, Department of Biomedical Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Syahril Abdullah
- Genetics and Regenerative Medicine Research Center, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
- Medical Genetics Unit, Department of Biomedical Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Pike-See Cheah
- NeuroBiology and Genetics Group, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
- Genetics and Regenerative Medicine Research Center, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - King-Hwa Ling
- NeuroBiology and Genetics Group, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
- Genetics and Regenerative Medicine Research Center, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
- Medical Genetics Unit, Department of Biomedical Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
| |
Collapse
|
37
|
Luo J, Wang W, Tang Y, Zhou D, Gao Y, Zhang Q, Zhou X, Zhu H, Xing L, Yu J. mRNA and methylation profiling of radioresistant esophageal cancer cells: the involvement of Sall2 in acquired aggressive phenotypes. J Cancer 2017; 8:646-656. [PMID: 28367244 PMCID: PMC5370508 DOI: 10.7150/jca.15652] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2016] [Accepted: 12/10/2016] [Indexed: 01/15/2023] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is one of the deadliest malignancies worldwide. Radiotherapy plays a critical role in the curative management of inoperable ESCC patients. However, radioresistance restricts the efficacy of radiotherapy for ESCC patients. The molecules involved in radioresistance remain largely unknown, and new approaches to sensitize cells to irradiation are in demand. Technical advances in analysis of mRNA and methylation have enabled the exploration of the etiology of diseases and have the potential to broaden our understanding of the molecular pathways of ESCC radioresistance. In this study, we constructed radioresistant TE-1 and Eca-109 cell lines (TE-1/R and Eca-109/R, respectively). The radioresistant cells showed an increased migration ability but reduced apoptosis and cisplatin sensitivity compared with their parent cells. mRNA and methylation profiling by microarray revealed 1192 preferentially expressed mRNAs and 8841 aberrantly methylated regions between TE-1/R and TE-1 cells. By integrating the mRNA and methylation profiles, we related the decreased expression of transcription factor Sall2 with a corresponding increase in its methylation in TE-1/R cells, indicating its involvement in radioresistance. Upregulation of Sall2 decreased the growth and migration advantage of radioresistant ESCC cells. Taken together, our present findings illustrate the mRNA and DNA methylation changes during the radioresistance of ESCC and the important role of Sall2 in esophageal cancer malignancy.
Collapse
Affiliation(s)
- Judong Luo
- Medical college of Shandong University, Jinan, Shandong, China
| | - Wenjie Wang
- School of Radiation Medicine and Protection and Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, Jiangsu,China
| | - Yiting Tang
- Department of Radiotherapy, Changzhou Tumor Hospital, Soochow University, Changzhou, Jiangsu, China
| | - Dandan Zhou
- School of Radiation Medicine and Protection and Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, Jiangsu,China
| | - Yi Gao
- School of Radiation Medicine and Protection and Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, Jiangsu,China
| | - Qi Zhang
- School of Radiation Medicine and Protection and Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, Jiangsu,China
| | - Xifa Zhou
- Department of Radiotherapy, Changzhou Tumor Hospital, Soochow University, Changzhou, Jiangsu, China
| | - Hui Zhu
- Department of Radiation Oncology, Shandong Cancer Hospital affiliated to Shandong University; Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Ligang Xing
- Department of Radiation Oncology, Shandong Cancer Hospital affiliated to Shandong University; Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Jinming Yu
- Department of Radiation Oncology, Shandong Cancer Hospital affiliated to Shandong University; Shandong Academy of Medical Sciences, Jinan, Shandong, China
| |
Collapse
|
38
|
Microcystin-Leucine Arginine Causes Cytotoxic Effects in Sertoli Cells Resulting in Reproductive Dysfunction in Male Mice. Sci Rep 2016; 6:39238. [PMID: 27976743 PMCID: PMC5157014 DOI: 10.1038/srep39238] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Accepted: 11/21/2016] [Indexed: 12/15/2022] Open
Abstract
Microcystin-leucine arginine (MC-LR) is a potent toxin for Sertoli cells. However, the specific molecular mechanisms of MC-induced cytotoxicity still remain unclear. In this study, we performed a comprehensive analyses of changes of miRNAs and mRNAs in Sertoli cells treated with MC-LR. Through computational approaches, we showed the pivotal roles of differentially expressed miRNAs that were associated with cell metabolism, cellular growth and proliferation, cell-to-cell signaling and interaction and cellular movement. Ingenuity Pathway Analyses (IPA) revealed some differentially expressed miRNAs and mRNAs that may cause reproductive system diseases. Target gene analyses suggested that destruction in tight junctions (TJ) and adherens junctions (AJ) in testes may be mediated by miRNAs. Consistent with a significant enrichment of chemokine signaling pathways, we observed numerous macrophages in the testes of mice following treatment with MC-LR, which may cause testicular inflammation. Moreover, miR-98-5p and miR-758 were predicted to bind the 3′-UTR region of the mitogen-activated protein kinase 11 (MAPK11, p38 β isoform) gene which stimulates tumor necrosis factor-α (TNF-α) expression in Sertoli cells. TNF-α could interact with the tumor necrosis factor receptor 1 (TNFR1) on germ cells leading to induction of germ cell apoptosis. Collectively, our integrated miRNA/mRNA analyses provided a molecular paradigm, which was experimentally validated, for understanding MC-LR-induced cytotoxicity.
Collapse
|
39
|
Qu X, Chen Z, Fan D, Sun C, Zeng Y, Guo Z, Qi Q, Li W. MiR-199b-5p inhibits osteogenic differentiation in ligamentum flavum cells by targeting JAG1 and modulating the Notch signalling pathway. J Cell Mol Med 2016; 21:1159-1170. [PMID: 27957826 PMCID: PMC5431140 DOI: 10.1111/jcmm.13047] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 10/30/2016] [Indexed: 12/20/2022] Open
Abstract
Ossification of the ligamentum flavum (OLF) is a pathology almost only reported in East Asian countries. The leading cause of OLF is thoracic spinal canal stenosis and myelopathy. In this study, the role of miR-199b-5p and jagged 1 (JAG1) in primary ligamentum flavum cell osteogenesis was examined. MiR-199b-5p was found to be down-regulated during osteogenic differentiation in ligamentum flavum cells, while miR-199b-5p overexpression inhibited osteogenic differentiation. In addition, JAG1 was found to be up-regulated during osteogenic differentiation in ligamentum flavum cells, while JAG1 knockdown via RNA interference caused an inhibition of Notch signalling and osteogenic differentiation. Moreover, target prediction analysis and dual luciferase reporter assays supported the notion that JAG1 was a direct target of miR-199b-5p, with miR-199b-5p found to down-regulate both JAG1 and Notch. Further, JAG1 knockdown was demonstrated to block the effect of miR-199b-5p inhibition. These findings imply that miR-199b-5p performs an inhibitory role in osteogenic differentiation in ligamentum flavum cells by potentially targeting JAG1 and influencing the Notch signalling pathway.
Collapse
Affiliation(s)
- Xiaochen Qu
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
| | - Zhongqiang Chen
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
| | - Dongwei Fan
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
| | - Chuiguo Sun
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
| | - Yan Zeng
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
| | - Zhaoqing Guo
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
| | - Qiang Qi
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
| | - Weishi Li
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
| |
Collapse
|
40
|
Qu X, Chen Z, Fan D, Sun C, Zeng Y. MiR-132-3p Regulates the Osteogenic Differentiation of Thoracic Ligamentum Flavum Cells by Inhibiting Multiple Osteogenesis-Related Genes. Int J Mol Sci 2016; 17:ijms17081370. [PMID: 27556448 PMCID: PMC5000765 DOI: 10.3390/ijms17081370] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 08/08/2016] [Accepted: 08/16/2016] [Indexed: 12/29/2022] Open
Abstract
Ossification of the ligamentum flavum (OLF) is a disorder of heterotopic ossification of spinal ligaments and is the main cause of thoracic spinal canal stenosis. Previous studies suggested that miR-132-3p negatively regulates osteoblast differentiation. However, whether miR-132-3p is involved in the process of OLF has not been investigated. In this study, we investigated the effect of miR-132-3p and its target genes forkhead box O1 (FOXO1), growth differentiation factor 5 (GDF5) and SRY-box 6 (SOX6) on the osteogenic differentiation of ligamentum flavum (LF) cells. We demonstrated that miR-132-3p was down-regulated during the osteogenic differentiation of LF cells and negatively regulated the osteoblast differentiation. Further, miR-132-3p targeted FOXO1, GDF5 and SOX6 and down-regulated the protein expression of these genes. Meanwhile, FOXO1, GDF5 and SOX6 were up-regulated after osteogenic differentiation and the down-regulation of endogenous FOXO1, GDF5 or SOX6 suppressed the osteogenic differentiation of LF cells. In addition, we also found FOXO1, GDF5 and SOX6 expression in the ossification front of OLF samples. Overall, these results suggest that miR-132-3p inhibits the osteogenic differentiation of LF cells by targeting FOXO1, GDF5 and SOX6.
Collapse
Affiliation(s)
- Xiaochen Qu
- Department of Orthopaedics, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing 100191, China.
| | - Zhongqiang Chen
- Department of Orthopaedics, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing 100191, China.
| | - Dongwei Fan
- Department of Orthopaedics, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing 100191, China.
| | - Chuiguo Sun
- Department of Orthopaedics, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing 100191, China.
| | - Yan Zeng
- Department of Orthopaedics, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing 100191, China.
| |
Collapse
|