1
|
Puchta-Jasińska M, Bolc P, Pietrusińska-Radzio A, Motor A, Boczkowska M. Small Interfering RNAs as Critical Regulators of Plant Life Process: New Perspectives on Regulating the Transcriptomic Machinery. Int J Mol Sci 2025; 26:1624. [PMID: 40004087 PMCID: PMC11855876 DOI: 10.3390/ijms26041624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 01/20/2025] [Accepted: 02/08/2025] [Indexed: 02/27/2025] Open
Abstract
Small interfering RNAs (siRNAs) are a distinct class of regulatory RNAs in plants and animals. Gene silencing by small interfering RNAs is one of the fundamental mechanisms for regulating gene expression. siRNAs are critical regulators during developmental processes. siRNAs have similar structures and functions to small RNAs but are derived from double-stranded RNA and may be involved in directing DNA methylation of target sequences. siRNAs are a less well-studied class than the miRNA group, and researchers continue to identify new classes of siRNAs that appear at specific developmental stages and in particular tissues, revealing a more complex mode of siRNA action than previously thought. This review characterizes the siRNA classes and their biogenesis process and focuses on presenting their known functions in the regulation of plant development and responses to biotic and abiotic stresses. The review also highlights the exciting potential for future research in this field, proposing methods for detecting plant siRNAs and a bioinformatic pathway for identifying siRNAs and their functions.
Collapse
Affiliation(s)
- Marta Puchta-Jasińska
- Plant Breeding and Acclimatization Institute—National Research Institute, 05-870 Radzików, Poland; (A.P.-R.); (A.M.); (M.B.)
| | - Paulina Bolc
- Plant Breeding and Acclimatization Institute—National Research Institute, 05-870 Radzików, Poland; (A.P.-R.); (A.M.); (M.B.)
| | | | | | | |
Collapse
|
2
|
Liang W, Xu Y, Cui X, Li C, Lu S. Genome-Wide Identification and Characterization of miRNAs and Natural Antisense Transcripts Show the Complexity of Gene Regulatory Networks for Secondary Metabolism in Aristolochia contorta. Int J Mol Sci 2024; 25:6043. [PMID: 38892231 PMCID: PMC11172604 DOI: 10.3390/ijms25116043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 05/26/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
Aristolochia contorta Bunge is an academically and medicinally important plant species. It belongs to the magnoliids, with an uncertain phylogenetic position, and is one of the few plant species lacking a whole-genome duplication (WGD) event after the angiosperm-wide WGD. A. contorta has been an important traditional Chinese medicine material. Since it contains aristolochic acids (AAs), chemical compounds with nephrotoxity and carcinogenicity, the utilization of this plant has attracted widespread attention. Great efforts are being made to increase its bioactive compounds and reduce or completely remove toxic compounds. MicroRNAs (miRNAs) and natural antisense transcripts (NATs) are two classes of regulators potentially involved in metabolism regulation. Here, we report the identification and characterization of 223 miRNAs and 363 miRNA targets. The identified miRNAs include 51 known miRNAs belonging to 20 families and 172 novel miRNAs belonging to 107 families. A negative correlation between the expression of miRNAs and their targets was observed. In addition, we identified 441 A. contorta NATs and 560 NAT-sense transcript (ST) pairs, of which 12 NATs were targets of 13 miRNAs, forming 18 miRNA-NAT-ST modules. Various miRNAs and NATs potentially regulated secondary metabolism through the modes of miRNA-target gene-enzyme genes, NAT-STs, and NAT-miRNA-target gene-enzyme genes, suggesting the complexity of gene regulatory networks in A. contorta. The results lay a solid foundation for further manipulating the production of its bioactive and toxic compounds.
Collapse
Affiliation(s)
- Wenjing Liang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Engineering Research Center of Chinese Medicine Resource of Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Yayun Xu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Engineering Research Center of Chinese Medicine Resource of Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Xinyun Cui
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Engineering Research Center of Chinese Medicine Resource of Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Caili Li
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Engineering Research Center of Chinese Medicine Resource of Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Shanfa Lu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Engineering Research Center of Chinese Medicine Resource of Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| |
Collapse
|
3
|
Zhang C, Jiang M, Liu J, Wu B, Liu C. Genome-wide view and characterization of natural antisense transcripts in Cannabis Sativa L. PLANT MOLECULAR BIOLOGY 2024; 114:47. [PMID: 38632206 DOI: 10.1007/s11103-024-01434-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 02/25/2024] [Indexed: 04/19/2024]
Abstract
Natural Antisense Transcripts (NATs) are a kind of complex regulatory RNAs that play crucial roles in gene expression and regulation. However, the NATs in Cannabis Sativa L., a widely economic and medicinal plant rich in cannabinoids remain unknown. In this study, we comprehensively predicted C. sativa NATs genome-wide using strand-specific RNA sequencing (ssRNA-Seq) data, and validated the expression profiles by strand-specific quantitative reverse transcription PCR (ssRT-qPCR). Consequently, a total of 307 NATs were predicted in C. sativa, including 104 cis- and 203 trans- NATs. Functional enrichment analysis demonstrated the potential involvement of the C. sativa NATs in DNA polymerase activity, RNA-DNA hybrid ribonuclease activity, and nucleic acid binding. Finally, 18 cis- and 376 trans- NAT-ST pairs were predicted to produce 621 cis- and 5,679 trans- small interfering RNA (nat-siRNAs), respectively. These nat-siRNAs were potentially involved in the biosynthesis of cannabinoids and cellulose. All these results will shed light on the regulation of NATs and nat-siRNAs in C. sativa.
Collapse
Affiliation(s)
- Chang Zhang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, 100193, Beijing, China
| | - Mei Jiang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, 100193, Beijing, China
- School of Pharmaceutical Sciences, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Jingting Liu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, 100193, Beijing, China
| | - Bin Wu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, 100193, Beijing, China.
| | - Chang Liu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, 100193, Beijing, China.
| |
Collapse
|
4
|
Suzuki M, Sakai S, Ota K, Bando Y, Uchida C, Niida H, Kitagawa M, Ohhata T. CCIVR2 facilitates comprehensive identification of both overlapping and non-overlapping antisense transcripts within specified regions. Sci Rep 2023; 13:14807. [PMID: 37684517 PMCID: PMC10491648 DOI: 10.1038/s41598-023-42044-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 09/04/2023] [Indexed: 09/10/2023] Open
Abstract
Pairs of sense and antisense transcriptions that are adjacent at their 5' and 3' regions are called divergent and convergent transcription, respectively. However, the structural properties of divergent/convergent transcription in different species or RNA biotypes are poorly characterized. Here, we developed CCIVR2, a program that facilitates identification of both overlapping and non-overlapping antisense transcripts produced from divergent/convergent transcription whose transcription start sites (TSS) or transcript end sites (TES) are located within a specified region. We used CCIVR2 to analyze antisense transcripts starting around the sense TSS (from divergent transcription) or ending around the sense TES (from convergent transcription) in 11 different species and found species- and RNA biotype-specific features of divergent/convergent transcription. Furthermore, we confirmed that CCIVR2 enables the identification of multiple sense/antisense transcript pairs from divergent transcription, including those with known functions in processes such as embryonic stem cell differentiation and TGFβ stimulation. CCIVR2 is therefore a valuable bioinformatics tool that facilitates the characterization of divergent/convergent transcription in different species and aids the identification of functional sense/antisense transcript pairs from divergent transcription in specified biological processes.
Collapse
Affiliation(s)
- Maya Suzuki
- Department of Molecular Biology, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Satoshi Sakai
- Department of Molecular Biology, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Kosuke Ota
- Department of Molecular Biology, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Yuki Bando
- Department of Organ and Tissue Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Chiharu Uchida
- Advanced Research Facilities and Services, Preeminent Medical Photonics Education and Research Center, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Hiroyuki Niida
- Department of Molecular Biology, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Masatoshi Kitagawa
- Department of Molecular Biology, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Tatsuya Ohhata
- Department of Molecular Biology, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, 431-3192, Japan.
| |
Collapse
|
5
|
Zhang X, Du M, Yang Z, Wang Z, Lim KJ. Biogenesis, Mode of Action and the Interactions of Plant Non-Coding RNAs. Int J Mol Sci 2023; 24:10664. [PMID: 37445841 DOI: 10.3390/ijms241310664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 06/23/2023] [Accepted: 06/24/2023] [Indexed: 07/15/2023] Open
Abstract
The central dogma of genetics, which outlines the flow of genetic information from DNA to RNA to protein, has long been the guiding principle in molecular biology. In fact, more than three-quarters of the RNAs produced by transcription of the plant genome are not translated into proteins, and these RNAs directly serve as non-coding RNAs in the regulation of plant life activities at the molecular level. The breakthroughs in high-throughput transcriptome sequencing technology and the establishment and improvement of non-coding RNA experiments have now led to the discovery and confirmation of the biogenesis, mechanisms, and synergistic effects of non-coding RNAs. These non-coding RNAs are now predicted to play important roles in the regulation of gene expression and responses to stress and evolution. In this review, we focus on the synthesis, and mechanisms of non-coding RNAs, and we discuss their impact on gene regulation in plants.
Collapse
Affiliation(s)
- Xin Zhang
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| | - Mingjun Du
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| | - Zhengfu Yang
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| | - Zhengjia Wang
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| | - Kean-Jin Lim
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| |
Collapse
|
6
|
Varotto S, Krugman T, Aiese Cigliano R, Kashkush K, Kondić-Špika A, Aravanopoulos FA, Pradillo M, Consiglio F, Aversano R, Pecinka A, Miladinović D. Exploitation of epigenetic variation of crop wild relatives for crop improvement and agrobiodiversity preservation. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:3987-4003. [PMID: 35678824 PMCID: PMC9729329 DOI: 10.1007/s00122-022-04122-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 05/04/2022] [Indexed: 05/05/2023]
Abstract
Crop wild relatives (CWRs) are recognized as the best potential source of traits for crop improvement. However, successful crop improvement using CWR relies on identifying variation in genes controlling desired traits in plant germplasms and subsequently incorporating them into cultivars. Epigenetic diversity may provide an additional layer of variation within CWR and can contribute novel epialleles for key traits for crop improvement. There is emerging evidence that epigenetic variants of functional and/or agronomic importance exist in CWR gene pools. This provides a rationale for the conservation of epigenotypes of interest, thus contributing to agrobiodiversity preservation through conservation and (epi)genetic monitoring. Concepts and techniques of classical and modern breeding should consider integrating recent progress in epigenetics, initially by identifying their association with phenotypic variations and then by assessing their heritability and stability in subsequent generations. New tools available for epigenomic analysis offer the opportunity to capture epigenetic variation and integrate it into advanced (epi)breeding programmes. Advances in -omics have provided new insights into the sources and inheritance of epigenetic variation and enabled the efficient introduction of epi-traits from CWR into crops using epigenetic molecular markers, such as epiQTLs.
Collapse
Affiliation(s)
- Serena Varotto
- Department of Agronomy Animal Food Natural Resources and Environment, University of Padova, Viale dell'Università, 16 35020, Legnaro, Italy.
| | - Tamar Krugman
- Institute of Evolution, University of Haifa, Abba Khoushy Ave 199, 3498838, Haifa, Israel
| | | | - Khalil Kashkush
- Department of Life Sciences, Ben-Gurion University, Beersheba, 84105, Israel
| | - Ankica Kondić-Špika
- Institute of Field and Vegetable Crops, Maksima Gorkog 30, 21000, Novi Sad, Serbia
| | - Fillipos A Aravanopoulos
- Faculty of Agriculture, Forest Science & Natural Environment, Aristotle University of Thessaloniki, Thessaloniki, GR54006, Greece
| | - Monica Pradillo
- Department of Genetics, Physiology and Microbiology, Faculty of Biology, Complutense University of Madrid, 28040, Madrid, Spain
| | - Federica Consiglio
- Institute of Biosciences and Bioresources, National Research Council (CNR), Via Università 133, 80055, Portici, Italy
| | - Riccardo Aversano
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055, Portici, Italy
| | - Ales Pecinka
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Czech Acad Sci, Šlechtitelů 31, 779 00, Olomouc, Czech Republic
| | - Dragana Miladinović
- Institute of Field and Vegetable Crops, Maksima Gorkog 30, 21000, Novi Sad, Serbia
| |
Collapse
|
7
|
CCIVR facilitates comprehensive identification of cis-natural antisense transcripts with their structural characteristics and expression profiles. Sci Rep 2022; 12:15525. [PMID: 36109624 PMCID: PMC9477841 DOI: 10.1038/s41598-022-19782-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 09/05/2022] [Indexed: 11/23/2022] Open
Abstract
Cis-natural antisense transcripts (cis-NATs) are transcribed from the same genomic locus as their partner gene but from the opposite DNA strand and overlap with the partner gene transcript. Here, we developed a simple and convenient program termed CCIVR (comprehensive cis-NATs identifier via RNA-seq data) that comprehensively identifies all kinds of cis-NATs based on genome annotation with expression data obtained from RNA-seq. Using CCIVR with genome databases, we demonstrated total cis-NAT pairs from 11 model organisms. CCIVR analysis with RNA-seq data from parthenogenetic and androgenetic embryonic stem cells identified well-known imprinted cis-NAT pair, KCNQ1/KCNQ1OT1, ensuring the availability of CCIVR. Finally, CCIVR identified cis-NAT pairs that demonstrate inversely correlated expression upon TGFβ stimulation including cis-NATs that functionally repress their partner genes by introducing epigenetic alteration in the promoters of partner genes. Thus, CCIVR facilitates the investigation of structural characteristics and functions of cis-NATs in numerous processes in various species.
Collapse
|
8
|
Lei P, Qi N, Yan J, Zhu X, Liu X, Xuan Y, Fan H, Chen L, Duan Y, Wang Y. Genome-wide identification of small interfering RNAs from sRNA libraries constructed from soybean cyst nematode resistant and susceptible cultivars. Gene 2022; 832:146557. [PMID: 35568338 DOI: 10.1016/j.gene.2022.146557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 04/22/2022] [Accepted: 05/06/2022] [Indexed: 11/26/2022]
Abstract
Plant small-RNAs regulate various biological processes by manipulating the expression of target genes at the transcriptional and post-transcriptional levels. However, little is known about the response and the functional roles of sRNAs, particularly small-interfering RNAs (siRNAs), in the soybean-soybean cyst nematode interaction. In this study, siRNA data from 24 sRNA libraries constructed from SCN-infected and non-SCN-infected resistant and susceptible soybean roots were analysed in silico. A total of 26 novel siRNAs including 17 phasiRNAs and 9 nat-siRNAs, as well as two phasiRNAs that were differentially expressed (DE) in three comparisons, were identified. Then, using qRT-PCR, the expression of majority of siRNAs was found to be downregulated after SCN infection, and the expression patterns of DE siRNAs were confirmed. Further functional annotation analyses revealed that the target genes of these siRNA were highly related to disease resistance, which included the genes coding for the NB-ARC domain, leucine-rich repeats, and Hs1pro-1 homologous proteins. Overall, the present research identified novel siRNAs and annotated their target genes, thereby laying the foundation for deciphering the roles of siRNAs in the soybean-SCN interaction.
Collapse
Affiliation(s)
- Piao Lei
- Nematology Institute of Northern China, Shenyang Agricultural University, Shenyang 110866, China; College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China.
| | - Nawei Qi
- Nematology Institute of Northern China, Shenyang Agricultural University, Shenyang 110866, China; College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China.
| | - Jichen Yan
- Nematology Institute of Northern China, Shenyang Agricultural University, Shenyang 110866, China; College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China.
| | - Xiaofeng Zhu
- Nematology Institute of Northern China, Shenyang Agricultural University, Shenyang 110866, China; College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China.
| | - Xiaoyu Liu
- College of Sciences, Shenyang Agricultural University, Shenyang 110866, China.
| | - Yuanhu Xuan
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China.
| | - Haiyan Fan
- Nematology Institute of Northern China, Shenyang Agricultural University, Shenyang 110866, China; College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China.
| | - Lijie Chen
- Nematology Institute of Northern China, Shenyang Agricultural University, Shenyang 110866, China; College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China.
| | - Yuxi Duan
- Nematology Institute of Northern China, Shenyang Agricultural University, Shenyang 110866, China; College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China.
| | - Yuanyuan Wang
- Nematology Institute of Northern China, Shenyang Agricultural University, Shenyang 110866, China; College of Biological Science and Technology, Shenyang Agricultural University, Shenyang 110866, China.
| |
Collapse
|
9
|
Chao H, Hu Y, Zhao L, Xin S, Ni Q, Zhang P, Chen M. Biogenesis, Functions, Interactions, and Resources of Non-Coding RNAs in Plants. Int J Mol Sci 2022; 23:ijms23073695. [PMID: 35409060 PMCID: PMC8998614 DOI: 10.3390/ijms23073695] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/19/2022] [Accepted: 03/23/2022] [Indexed: 12/14/2022] Open
Abstract
Plant transcriptomes encompass a large number of functional non-coding RNAs (ncRNAs), only some of which have protein-coding capacity. Since their initial discovery, ncRNAs have been classified into two broad categories based on their biogenesis and mechanisms of action, housekeeping ncRNAs and regulatory ncRNAs. With advances in RNA sequencing technology and computational methods, bioinformatics resources continue to emerge and update rapidly, including workflow for in silico ncRNA analysis, up-to-date platforms, databases, and tools dedicated to ncRNA identification and functional annotation. In this review, we aim to describe the biogenesis, biological functions, and interactions with DNA, RNA, protein, and microorganism of five major regulatory ncRNAs (miRNA, siRNA, tsRNA, circRNA, lncRNA) in plants. Then, we systematically summarize tools for analysis and prediction of plant ncRNAs, as well as databases. Furthermore, we discuss the silico analysis process of these ncRNAs and present a protocol for step-by-step computational analysis of ncRNAs. In general, this review will help researchers better understand the world of ncRNAs at multiple levels.
Collapse
Affiliation(s)
| | | | | | | | | | - Peijing Zhang
- Correspondence: (P.Z.); (M.C.); Tel./Fax: +86-(0)571-88206612 (M.C.)
| | - Ming Chen
- Correspondence: (P.Z.); (M.C.); Tel./Fax: +86-(0)571-88206612 (M.C.)
| |
Collapse
|
10
|
RNA-seq for revealing the function of the transcriptome. Bioinformatics 2022. [DOI: 10.1016/b978-0-323-89775-4.00002-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
11
|
Tang Y, Yan X, Gu C, Yuan X. Biogenesis, Trafficking, and Function of Small RNAs in Plants. FRONTIERS IN PLANT SCIENCE 2022; 13:825477. [PMID: 35251095 PMCID: PMC8891129 DOI: 10.3389/fpls.2022.825477] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/19/2022] [Indexed: 05/03/2023]
Abstract
Small RNAs (sRNAs) encoded by plant genomes have received widespread attention because they can affect multiple biological processes. Different sRNAs that are synthesized in plant cells can move throughout the plants, transport to plant pathogens via extracellular vesicles (EVs), and transfer to mammals via food. Small RNAs function at the target sites through DNA methylation, RNA interference, and translational repression. In this article, we reviewed the systematic processes of sRNA biogenesis, trafficking, and the underlying mechanisms of its functions.
Collapse
Affiliation(s)
- Yunjia Tang
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiaoning Yan
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Chenxian Gu
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiaofeng Yuan
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
- Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
- *Correspondence: Xiaofeng Yuan,
| |
Collapse
|
12
|
Gelaw TA, Sanan-Mishra N. Non-Coding RNAs in Response to Drought Stress. Int J Mol Sci 2021; 22:12519. [PMID: 34830399 PMCID: PMC8621352 DOI: 10.3390/ijms222212519] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/11/2021] [Accepted: 11/15/2021] [Indexed: 02/06/2023] Open
Abstract
Drought stress causes changes in the morphological, physiological, biochemical and molecular characteristics of plants. The response to drought in different plants may vary from avoidance, tolerance and escape to recovery from stress. This response is genetically programmed and regulated in a very complex yet synchronized manner. The crucial genetic regulations mediated by non-coding RNAs (ncRNAs) have emerged as game-changers in modulating the plant responses to drought and other abiotic stresses. The ncRNAs interact with their targets to form potentially subtle regulatory networks that control multiple genes to determine the overall response of plants. Many long and small drought-responsive ncRNAs have been identified and characterized in different plant varieties. The miRNA-based research is better documented, while lncRNA and transposon-derived RNAs are relatively new, and their cellular role is beginning to be understood. In this review, we have compiled the information on the categorization of non-coding RNAs based on their biogenesis and function. We also discuss the available literature on the role of long and small non-coding RNAs in mitigating drought stress in plants.
Collapse
Affiliation(s)
- Temesgen Assefa Gelaw
- Plant RNAi Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India;
- Department of Biotechnology, College of Natural and Computational Science, Debre Birhan University, Debre Birhan P.O. Box 445, Ethiopia
| | - Neeti Sanan-Mishra
- Plant RNAi Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India;
| |
Collapse
|
13
|
Jiang M, Chen H, Liu J, Du Q, Lu S, Liu C. Genome-wide identification and functional characterization of natural antisense transcripts in Salvia miltiorrhiza. Sci Rep 2021; 11:4769. [PMID: 33637790 PMCID: PMC7910453 DOI: 10.1038/s41598-021-83520-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 01/29/2021] [Indexed: 01/01/2023] Open
Abstract
Salvia miltiorrhiza is one of the most widely used traditional medicines. Natural antisense transcripts (NATs) are a class of long noncoding RNAs that can regulate gene expression. Here, we identified 812 NATs, including 168 cis-NATs and 644 trans-NATs from twelve root, flower, and leaf samples of S. miltiorrhiza using RNA-seq. The expression profiles for 41 of 50 NATs and their sense transcripts (STs) obtained from RNA-Seq were validated using qRT-PCR. The expression profiles of 17 NATs positively correlated with their STs. GO and KEGG pathway analyses mapped the STs for cis-NATs to pathways for biosynthesis of secondary metabolites. We characterized four NATs in detail, including NAT0001, NAT0002, NAT0004, and NAT00023. Their STs are kaurene synthase-like 1 and the homologs of UDP-glucose flavonoid 3-O-glucosyltransferase 6, UDP-glycosyltransferase 90A1, and beta-glucosidase 40, respectively. The first gene is involved in the biosynthesis of bioactive tanshinones, the next two are involved in anthocyanin biosynthesis, whereas the last is involved in phenylpropanoid biosynthesis. Besides, we found seven STs that are potential targets of miRNAs. And we found two miRNAs including miR156a and miR7208, might originate from NATs, NAT0112 and NAT0086. The results suggest that S. miltiorrhiza NATs might interact with STs, produce miRNAs, and be regulated by miRNAs. They potentially play significant regulatory roles in the biosynthesis of bioactive compounds.
Collapse
Affiliation(s)
- Mei Jiang
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine From Ministry of Education, Engineering Research Center of Chinese Medicine Resources From Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, People's Republic of China
| | - Haimei Chen
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine From Ministry of Education, Engineering Research Center of Chinese Medicine Resources From Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, People's Republic of China
| | - Jingting Liu
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine From Ministry of Education, Engineering Research Center of Chinese Medicine Resources From Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, People's Republic of China
| | - Qing Du
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine From Ministry of Education, Engineering Research Center of Chinese Medicine Resources From Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, People's Republic of China.,College of Pharmacy, Key Laboratory of Plant Resources of Qinghai-Tibet Plateau in Chemical Research, Qinghai Nationalities University, Xining, 810007, Qinghai, People's Republic of China
| | - Shanfa Lu
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine From Ministry of Education, Engineering Research Center of Chinese Medicine Resources From Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, People's Republic of China.
| | - Chang Liu
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine From Ministry of Education, Engineering Research Center of Chinese Medicine Resources From Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, People's Republic of China.
| |
Collapse
|
14
|
Thody J, Folkes L, Moulton V. NATpare: a pipeline for high-throughput prediction and functional analysis of nat-siRNAs. Nucleic Acids Res 2020; 48:6481-6490. [PMID: 32463462 PMCID: PMC7337908 DOI: 10.1093/nar/gkaa448] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 05/12/2020] [Accepted: 05/15/2020] [Indexed: 12/25/2022] Open
Abstract
Natural antisense transcript-derived small interfering RNAs (nat-siRNAs) are a class of functional small RNA (sRNA) that have been found in both plant and animals kingdoms. In plants, these sRNAs have been shown to suppress the translation of messenger RNAs (mRNAs) by directing the RNA-induced silencing complex (RISC) to their sequence-specific mRNA target(s). Current computational tools for classification of nat-siRNAs are limited in number and can be computationally infeasible to use. In addition, current methods do not provide any indication of the function of the predicted nat-siRNAs. Here, we present a new software pipeline, called NATpare, for prediction and functional analysis of nat-siRNAs using sRNA and degradome sequencing data. Based on our benchmarking in multiple plant species, NATpare substantially reduces the time required to perform prediction with minimal resource requirements allowing for comprehensive analysis of nat-siRNAs in larger and more complex organisms for the first time. We then exemplify the use of NATpare by identifying tissue and stress specific nat-siRNAs in multiple Arabidopsis thaliana datasets.
Collapse
Affiliation(s)
- Joshua Thody
- School of Computing Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| | - Leighton Folkes
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| | - Vincent Moulton
- School of Computing Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| |
Collapse
|
15
|
Ma X, Yin X, Tang Z, Ito H, Shao C, Meng Y, Xie T. The RNA degradome: a precious resource for deciphering RNA processing and regulation codes in plants. RNA Biol 2020; 17:1223-1227. [PMID: 32338184 DOI: 10.1080/15476286.2020.1757898] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
The plant RNA degradome was defined as an aggregate of the RNA fragments degraded from various biochemical pathways, such as RNA turnover, maturation and quality surveillance. In recent years, the degradome sequencing (degradome-seq) libraries became a rich storehouse for researchers to study on RNA processing and regulation. Here, we provided a brief overview of the uses of degradome-seq data in plant RNA biology, especially on non-coding RNA processing and small RNA-guided target cleavages. Some novel applications in RNA research area, such as in vivo mapping of the endoribonucleolytic cleavage sites, identification of conserved motifs at the 5' ends of the uncapped RNA fragments, and searching for the protein-binding regions on the transcripts, were also mentioned. More importantly, we proposed a model for the biologists to deduce the contributions of transcriptional and/or post-transcriptional regulation to gene differential expression based on degradome-seq data. Finally, we hope that the degradome-based analytical methods could be widely applied for the studies on RNA biology in eukaryotes.
Collapse
Affiliation(s)
- Xiaoxia Ma
- Hangzhou Normal University , Hangzhou, China
| | - Xiaopu Yin
- Hangzhou Normal University , Hangzhou, China
| | - Zhonghai Tang
- College of Food Science and Technology, Hunan Agricultural University , Changsha, Hunan, PR China
| | - Hidetaka Ito
- Faculty of Science, Hokkaido University , Sapporo, Japan
| | - Chaogang Shao
- College of Life Sciences, Huzhou University , Huzhou, PR China
| | - Yijun Meng
- Hangzhou Normal University , Hangzhou, China
| | - Tian Xie
- Hangzhou Normal University , Hangzhou, China
| |
Collapse
|
16
|
Morgado L, Johannes F. Computational tools for plant small RNA detection and categorization. Brief Bioinform 2020; 20:1181-1192. [PMID: 29059285 PMCID: PMC6781577 DOI: 10.1093/bib/bbx136] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 09/09/2017] [Indexed: 01/06/2023] Open
Abstract
Small RNAs (sRNAs) are important short-length molecules with regulatory functions essential for plant development and plasticity. High-throughput sequencing of total sRNA populations has revealed that the largest share of sRNA remains uncategorized. To better understand the role of sRNA-mediated cellular regulation, it is necessary to create accurate and comprehensive catalogues of sRNA and their sequence features, a task that currently relies on nontrivial bioinformatic approaches. Although a large number of computational tools have been developed to predict features of sRNA sequences, these tools are mostly dedicated to microRNAs and none integrates the functionalities necessary to describe units from all sRNA pathways thus far discovered in plants. Here, we review the different classes of sRNA found in plants and describe available bioinformatics tools that can help in their detection and categorization.
Collapse
Affiliation(s)
- Lionel Morgado
- Corresponding author: Lionel Morgado, Groningen Bioinformatics Centre, University of Groningen, Nijenborgh 25 7, 9747 AG Groningen, The Netherlands. Tel.: +31 685 585 827; E-mail:
| | | |
Collapse
|
17
|
Ma X, Meng Y, Wang P, Tang Z, Wang H, Xie T. Bioinformatics-assisted, integrated omics studies on medicinal plants. Brief Bioinform 2019; 21:1857-1874. [PMID: 32706024 DOI: 10.1093/bib/bbz132] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 09/03/2019] [Accepted: 09/19/2019] [Indexed: 12/14/2022] Open
Abstract
The immense therapeutic and economic values of medicinal plants have attracted increasing attention from the worldwide researchers. It has been recognized that production of the authentic and high-quality herbal drugs became the prerequisite for maintaining the healthy development of the traditional medicine industry. To this end, intensive research efforts have been devoted to the basic studies, in order to pave a way for standardized authentication of the plant materials, and bioengineering of the metabolic pathways in the medicinal plants. In this paper, the recent advances of omics studies on the medicinal plants were summarized from several aspects, including phenomics and taxonomics, genomics, transcriptomics, proteomics and metabolomics. We proposed a multi-omics data-based workflow for medicinal plant research. It was emphasized that integration of the omics data was important for plant authentication and mechanistic studies on plant metabolism. Additionally, the computational tools for proper storage, efficient processing and high-throughput analyses of the omics data have been introduced into the workflow. According to the workflow, authentication of the medicinal plant materials should not only be performed at the phenomics level but also be implemented by genomic and metabolomic marker-based examination. On the other hand, functional genomics studies, transcriptional regulatory networks and protein-protein interactions will contribute greatly for deciphering the secondary metabolic pathways. Finally, we hope that our work could inspire further efforts on the bioinformatics-assisted, integrated omics studies on the medicinal plants.
Collapse
Affiliation(s)
- Xiaoxia Ma
- Hangzhou Normal University, Hangzhou 311121, P.R. China.,Holistic Integrative Pharmacy Institutes, Hangzhou Normal University, Hangzhou 311121, P.R. China.,Key Laboratory of Elemene Class Anti-cancer Chinese Medicine of Zhejiang Province and Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, P.R. China.,College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| | - Yijun Meng
- Hangzhou Normal University, Hangzhou 311121, P.R. China.,College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, P.R. China
| | - Pu Wang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| | - Zhonghai Tang
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, P.R. China
| | - Huizhong Wang
- Hangzhou Normal University, Hangzhou 311121, P.R. China.,College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, P.R. China
| | - Tian Xie
- Hangzhou Normal University, Hangzhou 311121, P.R. China.,Holistic Integrative Pharmacy Institutes, Hangzhou Normal University, Hangzhou 311121, P.R. China.,Key Laboratory of Elemene Class Anti-cancer Chinese Medicine of Zhejiang Province and Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, P.R. China
| |
Collapse
|
18
|
Rosikiewicz W, Suzuki Y, Makalowska I. OverGeneDB: a database of 5' end protein coding overlapping genes in human and mouse genomes. Nucleic Acids Res 2019; 46:D186-D193. [PMID: 29069459 PMCID: PMC5753363 DOI: 10.1093/nar/gkx948] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 10/20/2017] [Indexed: 01/24/2023] Open
Abstract
Gene overlap plays various regulatory functions on transcriptional and post-transcriptional levels. Most current studies focus on protein-coding genes overlapping with non-protein-coding counterparts, the so called natural antisense transcripts. Considerably less is known about the role of gene overlap in the case of two protein-coding genes. Here, we provide OverGeneDB, a database of human and mouse 5′ end protein-coding overlapping genes. The database contains 582 human and 113 mouse gene pairs that are transcribed using overlapping promoters in at least one analyzed library. Gene pairs were identified based on the analysis of the transcription start site (TSS) coordinates in 73 human and 10 mouse organs, tissues and cell lines. Beside TSS data, resources for 26 human lung adenocarcinoma cell lines also contain RNA-Seq and ChIP-Seq data for seven histone modifications and RNA Polymerase II activity. The collected data revealed that the overlap region is rarely conserved between the studied species and tissues. In ∼50% of the overlapping genes, transcription started explicitly in the overlap regions. In the remaining half of overlapping genes, transcription was initiated both from overlapping and non-overlapping TSSs. OverGeneDB is accessible at http://overgenedb.amu.edu.pl.
Collapse
Affiliation(s)
- Wojciech Rosikiewicz
- Department of Integrative Genomics, Institute of Anthropology, Faculty of Biology, Adam Mickiewicz University in Poznan, 61-712 Poznan, Poland
| | - Yutaka Suzuki
- Department of Computational Biology, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, 272-8562, Japan
| | - Izabela Makalowska
- Department of Integrative Genomics, Institute of Anthropology, Faculty of Biology, Adam Mickiewicz University in Poznan, 61-712 Poznan, Poland
| |
Collapse
|
19
|
Yu L, Guo R, Jiang Y, Ye X, Yang Z, Meng Y, Shao C. Genome-wide identification and characterization of novel microRNAs in seed development of soybean. Biosci Biotechnol Biochem 2019; 83:233-242. [PMID: 30355067 DOI: 10.1080/09168451.2018.1536513] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 10/03/2018] [Indexed: 12/12/2022]
Abstract
MicroRNAs (miRNAs) are important and ubiquitous regulators of gene expression in eukaryotes. However, the information about miRNAs population and their regulatory functions involving in soybean seed development remains incomplete. Base on the Dicer-like1-mediated cleavage signals during miRNA processing could be employed for novel miRNA discovery, a genome-wide search for miRNA candidates involved in seed development was carried out. As a result, 17 novel miRNAs, 14 isoforms of miRNA (isomiRs) and 31 previously validated miRNAs were discovered. These novel miRNAs and isomiRs represented tissue-specific expression and the isomiRs showed significantly higher abundance than that of their miRNA counterparts in different tissues. After target prediction and degradome sequencing data-based validation, 13 novel miRNA-target pairs were further identified. Besides, five targets of 22-nt iso-gma-miR393h were found to be triggered to produce secondary trans-acting siRNA (ta-siRNAs). Summarily, our results could expand the repertoire of miRNAs with potentially important functions in soybean.
Collapse
Affiliation(s)
- Lan Yu
- a College of Life Sciences , Huzhou University , Huzhou P.R. China
| | - Rongkai Guo
- b Shanghai Institute of Plant Physiology and Ecology , Chinese Academy of Sciences , Shanghai China
| | - Yeqin Jiang
- a College of Life Sciences , Huzhou University , Huzhou P.R. China
| | - Xinghuo Ye
- a College of Life Sciences , Huzhou University , Huzhou P.R. China
| | - Zhihong Yang
- a College of Life Sciences , Huzhou University , Huzhou P.R. China
| | - Yijun Meng
- c College of Life and Environmental Sciences , Hangzhou Normal University , Hangzhou P.R. China
| | - Chaogang Shao
- a College of Life Sciences , Huzhou University , Huzhou P.R. China
| |
Collapse
|
20
|
Zheng SG, Hu YD, Zhao RX, Yan S, Zhang XQ, Zhao TM, Chun Z. Genome-wide researches and applications on Dendrobium. PLANTA 2018; 248:769-784. [PMID: 30066218 DOI: 10.1007/s00425-018-2960-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 07/21/2018] [Indexed: 05/10/2023]
Abstract
This review summarizes current knowledge of chromosome characterization, genetic mapping, genomic sequencing, quality formation, floral transition, propagation, and identification in Dendrobium. The widely distributed Dendrobium has been studied for a long history, due to its important economic values in both medicine and ornamental. In recent years, some species of Dendrobium and other orchids had been reported on genomic sequences, using the next-generation sequencing technology. And the chloroplast genomes of many Dendrobium species were also revealed. The chromosomes of most Dendrobium species belong to mini-chromosomes, and showed 2n = 38. Only a few of genetic studies were reported in Dendrobium. After revealing of genomic sequences, the techniques of transcriptomics, proteomics and metabolomics could be employed on Dendrobium easily. Some other molecular biological techniques, such as gene cloning, gene editing, genetic transformation and molecular marker developing, had also been applied on the basic research of Dendrobium, successively. As medicinal plants, insights into the biosynthesis of some medicinal components were the most important. As ornamental plants, regulation of flower related characteristics was the most important. More, knowledge of growth and development, environmental interaction, evolutionary analysis, breeding of new cultivars, propagation, and identification of species and herbs were also required for commercial usage. All of these studies were improved using genomic sequences and related technologies. To answer some key scientific issues in Dendrobium, quality formation, flowering, self-incompatibility and seed germination would be the focus of future research. And genome related technologies and studies would be helpful.
Collapse
Affiliation(s)
- Shi-Gang Zheng
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Ya-Dong Hu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Ruo-Xi Zhao
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Shou Yan
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
- University of Chinese Academy of Sciences, Beijing, 100041, China
| | - Xue-Qin Zhang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
- University of Chinese Academy of Sciences, Beijing, 100041, China
| | - Ting-Mei Zhao
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
- University of Chinese Academy of Sciences, Beijing, 100041, China
| | - Ze Chun
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China.
| |
Collapse
|
21
|
Latgé G, Poulet C, Bours V, Josse C, Jerusalem G. Natural Antisense Transcripts: Molecular Mechanisms and Implications in Breast Cancers. Int J Mol Sci 2018; 19:ijms19010123. [PMID: 29301303 PMCID: PMC5796072 DOI: 10.3390/ijms19010123] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 12/07/2017] [Accepted: 12/29/2017] [Indexed: 12/13/2022] Open
Abstract
Natural antisense transcripts are RNA sequences that can be transcribed from both DNA strands at the same locus but in the opposite direction from the gene transcript. Because strand-specific high-throughput sequencing of the antisense transcriptome has only been available for less than a decade, many natural antisense transcripts were first described as long non-coding RNAs. Although the precise biological roles of natural antisense transcripts are not known yet, an increasing number of studies report their implication in gene expression regulation. Their expression levels are altered in many physiological and pathological conditions, including breast cancers. Among the potential clinical utilities of the natural antisense transcripts, the non-coding|coding transcript pairs are of high interest for treatment. Indeed, these pairs can be targeted by antisense oligonucleotides to specifically tune the expression of the coding-gene. Here, we describe the current knowledge about natural antisense transcripts, their varying molecular mechanisms as gene expression regulators, and their potential as prognostic or predictive biomarkers in breast cancers.
Collapse
Affiliation(s)
- Guillaume Latgé
- Laboratory of Human Genetics, GIGA-Institute, University of Liège, 4500 Liège, Belgium.
| | - Christophe Poulet
- Laboratory of Human Genetics, GIGA-Institute, University of Liège, 4500 Liège, Belgium.
| | - Vincent Bours
- Laboratory of Human Genetics, GIGA-Institute, University of Liège, 4500 Liège, Belgium.
- Center of Genetics, University Hospital (CHU), 4500 Liège, Belgium.
| | - Claire Josse
- Laboratory of Human Genetics, GIGA-Institute, University of Liège, 4500 Liège, Belgium.
- Department of Medical Oncology, University Hospital (CHU), 4500 Liège, Belgium.
- Laboratory of Medical Oncology, GIGA-Institute, University of Liège, 4500 Liège, Belgium.
| | - Guy Jerusalem
- Department of Medical Oncology, University Hospital (CHU), 4500 Liège, Belgium.
- Laboratory of Medical Oncology, GIGA-Institute, University of Liège, 4500 Liège, Belgium.
| |
Collapse
|
22
|
Yu D, Ma X, Zuo Z, Shao W, Wang H, Meng Y. Bioinformatics resources for deciphering the biogenesis and action pathways of plant small RNAs. RICE (NEW YORK, N.Y.) 2017; 10:38. [PMID: 28786034 PMCID: PMC5545994 DOI: 10.1186/s12284-017-0177-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 08/03/2017] [Indexed: 05/31/2023]
Abstract
The next-generation sequencing (NGS) technology has revolutionized our previous understanding of the plant genomes, relying on its innate advantages, such as high throughput and deep sequencing depth. In addition to the protein-coding gene loci, massive transcription signals have been detected within intergenic or intragenic regions. Most of these signals belong to non-coding ones, considering their weak protein-coding potential. Generally, these transcripts could be divided into long non-coding RNAs and small non-coding RNAs (sRNAs) based on their sequence length. In addition to the well-known microRNAs (miRNAs), many plant endogenous sRNAs were collectively referred to as small interfering RNAs. However, an increasing number of unclassified sRNA species are being discovered by NGS. The high heterogeneity of these novel sRNAs greatly hampered the mechanistic studies, especially on the clear description of their biogenesis and action pathways. Fortunately, public databases, bioinformatics softwares and NGS datasets are increasingly available for plant sRNA research. Here, by summarizing these valuable resources, we proposed a general workflow to decipher the RDR (RNA-dependent RNA polymerase)- and DCL (Dicer-like)-dependent biogenesis pathways, and the Argonaute-mediated action modes (such as target cleavages and chromatin modifications) for specific sRNA species in plants. Taken together, we hope that by summarizing a list of the public resources, this work will facilitate the plant biologists to perform classification and functional characterization of the interesting sRNA species.
Collapse
Affiliation(s)
- Dongliang Yu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, People's Republic of China
| | - Xiaoxia Ma
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, People's Republic of China
| | - Ziwei Zuo
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, People's Republic of China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, 310036, People's Republic of China
| | - Weishan Shao
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, People's Republic of China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, 310036, People's Republic of China
| | - Huizhong Wang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, People's Republic of China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, 310036, People's Republic of China
| | - Yijun Meng
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, People's Republic of China.
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, 310036, People's Republic of China.
| |
Collapse
|
23
|
Bortolomeazzi M, Gaffo E, Bortoluzzi S. A survey of software tools for microRNA discovery and characterization using RNA-seq. Brief Bioinform 2017; 20:918-930. [DOI: 10.1093/bib/bbx148] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 10/12/2017] [Indexed: 01/08/2023] Open
Affiliation(s)
| | - Enrico Gaffo
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | | |
Collapse
|
24
|
Strategies to identify natural antisense transcripts. Biochimie 2017; 132:131-151. [DOI: 10.1016/j.biochi.2016.11.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 11/24/2016] [Indexed: 12/15/2022]
|