1
|
Ren C, Liu J, Hornicek FJ, Yue B, Duan Z. Advances of SS18-SSX fusion gene in synovial sarcoma: Emerging novel functions and therapeutic potentials. Biochim Biophys Acta Rev Cancer 2024; 1879:189215. [PMID: 39528099 DOI: 10.1016/j.bbcan.2024.189215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 10/31/2024] [Accepted: 11/02/2024] [Indexed: 11/16/2024]
Abstract
Synovial sarcoma is a rare type of soft tissue sarcoma that primarily affects adolescents and young adults, featured by aggressive behavior and a high potential for metastasis. Genetically, synovial sarcoma is defined by the fusion oncogene SS18-SSX arising from the translocation of t(X;18)(p11;q11). SS18-SSX fusion gene is the major driver of the oncogenic event in synovial sarcoma. SS18-SSX fusion protein, while not containing any DNA-binding motifs, binds to the SWI/SNF (BAF) complex, a major epigenetic regulator, leading to the disruption of gene expression which results in tumor initiation and progression. Emerging studies on the molecular mechanisms of SS18-SSX associated signaling pathway hold promise for developments in diagnosis and treatments. Advanced diagnostic methods facilitate early and precise detection of the tumor, enabling disease monitoring and prognostic improvements. Treatment of synovial sarcoma typically comprises local surgery, radiotherapy and chemotherapy, while novel managements such as immunotherapy, targeted therapies and epigenetic modifiers are explored. This review focuses on the recent studies of SS18-SSX fusion gene, epigenetic landscape, signaling pathways, diagnostic techniques, and relevant therapeutic advances, aiming to inhibit the oncogenic processes and improve outcomes for patients with synovial sarcoma.
Collapse
Affiliation(s)
- Chongmin Ren
- Department of Bone Tumor, The Affiliated Hospital of Qingdao University, No.59 Haier Road, Qingdao, Shandong 266101, China; Department of Orthopedic Surgery, Sarcoma Biology Laboratory, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Papanicolaou Cancer Research Building, 1550 NW. 10th Avenue, Miami, Florida 33136, USA.
| | - Jia Liu
- Department of Pediatric Nephrology, Rheumatology and Immunity, The Affiliated Hospital of Qingdao University, No.16 Jiangsu Road, Qingdao, Shandong 266003, China.
| | - Francis J Hornicek
- Department of Orthopedic Surgery, Sarcoma Biology Laboratory, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Papanicolaou Cancer Research Building, 1550 NW. 10th Avenue, Miami, Florida 33136, USA.
| | - Bin Yue
- Department of Bone Tumor, The Affiliated Hospital of Qingdao University, No.59 Haier Road, Qingdao, Shandong 266101, China.
| | - Zhenfeng Duan
- Department of Orthopedic Surgery, Sarcoma Biology Laboratory, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Papanicolaou Cancer Research Building, 1550 NW. 10th Avenue, Miami, Florida 33136, USA.
| |
Collapse
|
2
|
Parker K, Zhang Y, Anchondo G, Smith A, Guerrero Pacheco S, Kondo T, Su L. Combination of HDAC and FYN inhibitors in synovial sarcoma treatment. Front Cell Dev Biol 2024; 12:1422452. [PMID: 39045458 PMCID: PMC11264242 DOI: 10.3389/fcell.2024.1422452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 06/17/2024] [Indexed: 07/25/2024] Open
Abstract
The SS18-SSX fusion protein is an oncogenic driver in synovial sarcoma. At the molecular level, SS18-SSX functions as both an activator and a repressor to coordinate transcription of different genes responsible for tumorigenesis. Here, we identify the proto-oncogene FYN as a new SS18-SSX target gene and examine its relation to synovial sarcoma therapy. FYN is a tyrosine kinase that promotes cancer growth, metastasis and therapeutic resistance, but SS18-SSX appears to negatively regulate FYN expression in synovial sarcoma cells. Using both genetic and histone deacetylase inhibitor (HDACi)-based pharmacologic approaches, we show that suppression of SS18-SSX leads to FYN reactivation. In support of this notion, we find that blockade of FYN activity synergistically enhances HDACi action to reduce synovial sarcoma cell proliferation and migration. Our results support a role for FYN in attenuation of anti-cancer activity upon inhibition of SS18-SSX function and demonstrate the feasibility of targeting FYN to improve the effectiveness of HDACi treatment against synovial sarcoma.
Collapse
Affiliation(s)
- Kyra Parker
- Department of Biology, Jacksonville State University, Jacksonville, AL, United States
| | - Yanfeng Zhang
- Department of Genetics, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Gavin Anchondo
- Department of Biology, Jacksonville State University, Jacksonville, AL, United States
| | - Ashlyn Smith
- Department of Biology, Jacksonville State University, Jacksonville, AL, United States
| | | | | | - Le Su
- Department of Biology, Jacksonville State University, Jacksonville, AL, United States
| |
Collapse
|
3
|
Bakaric A, Cironi L, Praz V, Sanalkumar R, Broye LC, Favre-Bulle K, Letovanec I, Digklia A, Renella R, Stamenkovic I, Ott CJ, Nakamura T, Antonescu CR, Rivera MN, Riggi N. CIC-DUX4 Chromatin Profiling Reveals New Epigenetic Dependencies and Actionable Therapeutic Targets in CIC-Rearranged Sarcomas. Cancers (Basel) 2024; 16:457. [PMID: 38275898 PMCID: PMC10814785 DOI: 10.3390/cancers16020457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024] Open
Abstract
CIC-DUX4-rearranged sarcoma (CDS) is a rare and aggressive soft tissue tumor that occurs most frequently in young adults. The key oncogenic driver of this disease is the expression of the CIC-DUX4 fusion protein as a result of chromosomal rearrangements. CIC-DUX4 displays chromatin binding properties, and is therefore believed to function as an aberrant transcription factor. However, the chromatin remodeling events induced by CIC-DUX4 are not well understood, limiting our ability to identify new mechanism-based therapeutic strategies for these patients. Here, we generated a genome-wide profile of CIC-DUX4 DNA occupancy and associated chromatin states in human CDS cell models and primary tumors. Combining chromatin profiling, proximity ligation assays, as well as genetic and pharmacological perturbations, we show that CIC-DUX4 operates as a potent transcriptional activator at its binding sites. This property is in contrast with the repressive function of the wild-type CIC protein, and is mainly mediated through the direct interaction of CIC-DUX4 with the acetyltransferase p300. In keeping with this, we show p300 to be essential for CDS tumor cell proliferation; additionally, we find its pharmacological inhibition to significantly impact tumor growth in vitro and in vivo. Taken together, our study elucidates the mechanisms underpinning CIC-DUX4-mediated transcriptional regulation.
Collapse
Affiliation(s)
- Arnaud Bakaric
- Clinical Pathology Service, Department of Diagnostics, Geneva University Hospital, 1205 Geneva, Switzerland
| | - Luisa Cironi
- Pediatric Hematology-Oncology Research Laboratory, Woman-Mother-Child Department, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland
| | - Viviane Praz
- Platform Genomics Technologies, Center for Integrative Genomics, Faculty of Biology and Medicine, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland
| | - Rajendran Sanalkumar
- Experimental Pathology Service, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland (I.S.)
- Department of Cell and Tissue Genomics, Genentech. Inc., South San Francisco, CA 94103, USA
| | - Liliane C. Broye
- Experimental Pathology Service, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland (I.S.)
| | - Kerria Favre-Bulle
- Experimental Pathology Service, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland (I.S.)
| | - Igor Letovanec
- Department of Histopathology, Central Institute, Valais Hospital, 1951 Sion, Switzerland
| | - Antonia Digklia
- Department of Oncology, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland
| | - Raffaele Renella
- Pediatric Hematology-Oncology Research Laboratory, Woman-Mother-Child Department, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland
| | - Ivan Stamenkovic
- Experimental Pathology Service, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland (I.S.)
| | - Christopher J. Ott
- Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA; (C.J.O.)
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Takuro Nakamura
- Institute of Medical Science, Tokyo Medical University, Tokyo 160-0023, Japan
| | - Cristina R. Antonescu
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA;
| | - Miguel N. Rivera
- Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA; (C.J.O.)
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Nicolò Riggi
- Experimental Pathology Service, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland (I.S.)
- Department of Cell and Tissue Genomics, Genentech. Inc., South San Francisco, CA 94103, USA
| |
Collapse
|
4
|
Mardones MD, Gupta K. Transcriptome Profiling of the Hippocampal Seizure Network Implicates a Role for Wnt Signaling during Epileptogenesis in a Mouse Model of Temporal Lobe Epilepsy. Int J Mol Sci 2022; 23:12030. [PMID: 36233336 PMCID: PMC9569502 DOI: 10.3390/ijms231912030] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/03/2022] [Accepted: 10/06/2022] [Indexed: 11/17/2022] Open
Abstract
Mesial temporal lobe epilepsy (mTLE) is a life-threatening condition characterized by recurrent hippocampal seizures. mTLE can develop after exposure to risk factors such as febrile seizure, trauma, and infection. Within the latent period between exposure and onset of epilepsy, pathological remodeling events occur that contribute to epileptogenesis. The molecular mechanisms responsible are currently unclear. We used the mouse intrahippocampal kainite model of mTLE to investigate transcriptional dysregulation in the ipsilateral and contralateral dentate gyrus (DG), representing the epileptogenic zone (EZ) and peri-ictal zone (PIZ). DG were analyzed after 3, 7, and 14 days by RNA sequencing. In both the EZ and PIZ, transcriptional dysregulation was dynamic over the epileptogenic period with early expression of genes representing cell signaling, migration, and proliferation. Canonical Wnt signaling was upregulated in the EZ and PIZ at 3 days. Expression of inflammatory genes differed between the EZ and PIZ, with early expression after 3 days in the PIZ and delayed expression after 7-14 days in the EZ. This suggests that critical gene changes occur early in the hippocampal seizure network and that Wnt signaling may play a role within the latent epileptogenic period. These findings may help to identify novel therapeutic targets that could prevent epileptogenesis.
Collapse
Affiliation(s)
- Muriel D Mardones
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Kunal Gupta
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
5
|
Lanzi C, Cassinelli G. Combinatorial strategies to potentiate the efficacy of HDAC inhibitors in fusion-positive sarcomas. Biochem Pharmacol 2022; 198:114944. [DOI: 10.1016/j.bcp.2022.114944] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/02/2022] [Accepted: 02/02/2022] [Indexed: 12/12/2022]
|
6
|
Lanzi C, Favini E, Dal Bo L, Tortoreto M, Arrighetti N, Zaffaroni N, Cassinelli G. Upregulation of ERK-EGR1-heparanase axis by HDAC inhibitors provides targets for rational therapeutic intervention in synovial sarcoma. J Exp Clin Cancer Res 2021; 40:381. [PMID: 34857011 PMCID: PMC8638516 DOI: 10.1186/s13046-021-02150-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 10/21/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Synovial sarcoma (SS) is an aggressive soft tissue tumor with limited therapeutic options in advanced stage. SS18-SSX fusion oncogenes, which are the hallmarks of SS, cause epigenetic rewiring involving histone deacetylases (HDACs). Promising preclinical studies supporting HDAC targeting for SS treatment were not reflected in clinical trials with HDAC inhibitor (HDACi) monotherapies. We investigated pathways implicated in SS cell response to HDACi to identify vulnerabilities exploitable in combination treatments and improve the therapeutic efficacy of HDACi-based regimens. METHODS Antiproliferative and proapoptotic effects of the HDACi SAHA and FK228 were examined in SS cell lines in parallel with biochemical and molecular analyses to bring out cytoprotective pathways. Treatments combining HDACi with drugs targeting HDACi-activated prosurvival pathways were tested in functional assays in vitro and in a SS orthotopic xenograft model. Molecular mechanisms underlying synergisms were investigated in SS cells through pharmacological and gene silencing approaches and validated by qRT-PCR and Western blotting. RESULTS SS cell response to HDACi was consistently characterized by activation of a cytoprotective and auto-sustaining axis involving ERKs, EGR1, and the β-endoglycosidase heparanase, a well recognized pleiotropic player in tumorigenesis and disease progression. HDAC inhibition was shown to upregulate heparanase by inducing expression of the positive regulator EGR1 and by hampering negative regulation by p53 through its acetylation. Interception of HDACi-induced ERK-EGR1-heparanase pathway by cell co-treatment with a MEK inhibitor (trametinib) or a heparanase inhibitor (SST0001/roneparstat) enhanced antiproliferative and pro-apoptotic effects. HDAC and heparanase inhibitors had opposite effects on histone acetylation and nuclear heparanase levels. The combination of SAHA with SST0001 prevented the upregulation of ERK-EGR1-heparanase induced by the HDACi and promoted caspase-dependent cell death. In vivo, the combined treatment with SAHA and SST0001 potentiated the antitumor efficacy against the CME-1 orthotopic SS model as compared to single agent administration. CONCLUSIONS The present study provides preclinical rationale and mechanistic insights into drug combinatory strategies based on the use of ERK pathway and heparanase inhibitors to improve the efficacy of HDACi-based antitumor therapies in SS. The involvement of classes of agents already clinically available, or under clinical evaluation, indicates the transferability potential of the proposed approaches.
Collapse
Affiliation(s)
- Cinzia Lanzi
- Department of Applied Research and Technological Development, Molecular Pharmacology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133, Milan, Italy
| | - Enrica Favini
- Department of Applied Research and Technological Development, Molecular Pharmacology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133, Milan, Italy
| | - Laura Dal Bo
- Department of Applied Research and Technological Development, Molecular Pharmacology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133, Milan, Italy
| | - Monica Tortoreto
- Department of Applied Research and Technological Development, Molecular Pharmacology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133, Milan, Italy
| | - Noemi Arrighetti
- Department of Applied Research and Technological Development, Molecular Pharmacology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133, Milan, Italy
| | - Nadia Zaffaroni
- Department of Applied Research and Technological Development, Molecular Pharmacology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133, Milan, Italy
| | - Giuliana Cassinelli
- Department of Applied Research and Technological Development, Molecular Pharmacology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133, Milan, Italy.
| |
Collapse
|
7
|
Mukherjee S, Heng HH, Frenkel-Morgenstern M. Emerging Role of Chimeric RNAs in Cell Plasticity and Adaptive Evolution of Cancer Cells. Cancers (Basel) 2021; 13:4328. [PMID: 34503137 PMCID: PMC8431553 DOI: 10.3390/cancers13174328] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/22/2021] [Accepted: 08/23/2021] [Indexed: 12/12/2022] Open
Abstract
Gene fusions can give rise to somatic alterations in cancers. Fusion genes have the potential to create chimeric RNAs, which can generate the phenotypic diversity of cancer cells, and could be associated with novel molecular functions related to cancer cell survival and proliferation. The expression of chimeric RNAs in cancer cells might impact diverse cancer-related functions, including loss of apoptosis and cancer cell plasticity, and promote oncogenesis. Due to their recurrence in cancers and functional association with oncogenic processes, chimeric RNAs are considered biomarkers for cancer diagnosis. Several recent studies demonstrated that chimeric RNAs could lead to the generation of new functionality for the resistance of cancer cells against drug therapy. Therefore, targeting chimeric RNAs in drug resistance cancer could be useful for developing precision medicine. So, understanding the functional impact of chimeric RNAs in cancer cells from an evolutionary perspective will be helpful to elucidate cancer evolution, which could provide a new insight to design more effective therapies for cancer patients in a personalized manner.
Collapse
Affiliation(s)
- Sumit Mukherjee
- Cancer Genomics and BioComputing of Complex Diseases Lab, Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel;
| | - Henry H. Heng
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201, USA;
- Department of Pathology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Milana Frenkel-Morgenstern
- Cancer Genomics and BioComputing of Complex Diseases Lab, Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel;
| |
Collapse
|
8
|
Sun H, Cao S, Mashl RJ, Mo CK, Zaccaria S, Wendl MC, Davies SR, Bailey MH, Primeau TM, Hoog J, Mudd JL, Dean DA, Patidar R, Chen L, Wyczalkowski MA, Jayasinghe RG, Rodrigues FM, Terekhanova NV, Li Y, Lim KH, Wang-Gillam A, Van Tine BA, Ma CX, Aft R, Fuh KC, Schwarz JK, Zevallos JP, Puram SV, Dipersio JF, Davis-Dusenbery B, Ellis MJ, Lewis MT, Davies MA, Herlyn M, Fang B, Roth JA, Welm AL, Welm BE, Meric-Bernstam F, Chen F, Fields RC, Li S, Govindan R, Doroshow JH, Moscow JA, Evrard YA, Chuang JH, Raphael BJ, Ding L. Comprehensive characterization of 536 patient-derived xenograft models prioritizes candidatesfor targeted treatment. Nat Commun 2021; 12:5086. [PMID: 34429404 PMCID: PMC8384880 DOI: 10.1038/s41467-021-25177-3] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 07/14/2021] [Indexed: 02/07/2023] Open
Abstract
Development of candidate cancer treatments is a resource-intensive process, with the research community continuing to investigate options beyond static genomic characterization. Toward this goal, we have established the genomic landscapes of 536 patient-derived xenograft (PDX) models across 25 cancer types, together with mutation, copy number, fusion, transcriptomic profiles, and NCI-MATCH arms. Compared with human tumors, PDXs typically have higher purity and fit to investigate dynamic driver events and molecular properties via multiple time points from same case PDXs. Here, we report on dynamic genomic landscapes and pharmacogenomic associations, including associations between activating oncogenic events and drugs, correlations between whole-genome duplications and subclone events, and the potential PDX models for NCI-MATCH trials. Lastly, we provide a web portal having comprehensive pan-cancer PDX genomic profiles and source code to facilitate identification of more druggable events and further insights into PDXs' recapitulation of human tumors.
Collapse
Affiliation(s)
- Hua Sun
- grid.4367.60000 0001 2355 7002Department of Medicine, Washington University in St. Louis, St. Louis, MO USA ,grid.4367.60000 0001 2355 7002McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO USA
| | - Song Cao
- grid.4367.60000 0001 2355 7002Department of Medicine, Washington University in St. Louis, St. Louis, MO USA ,grid.4367.60000 0001 2355 7002McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO USA
| | - R. Jay Mashl
- grid.4367.60000 0001 2355 7002Department of Medicine, Washington University in St. Louis, St. Louis, MO USA ,grid.4367.60000 0001 2355 7002McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO USA
| | - Chia-Kuei Mo
- grid.4367.60000 0001 2355 7002Department of Medicine, Washington University in St. Louis, St. Louis, MO USA ,grid.4367.60000 0001 2355 7002McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO USA
| | - Simone Zaccaria
- grid.16750.350000 0001 2097 5006Department of Computer Science, Princeton University, Princeton, NJ USA ,grid.83440.3b0000000121901201Computational Cancer Genomics Research Group and Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - Michael C. Wendl
- grid.4367.60000 0001 2355 7002McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO USA ,grid.4367.60000 0001 2355 7002Department of Mathematics, Washington University in St. Louis, St. Louis, MO USA ,grid.4367.60000 0001 2355 7002Department of Genetics, Washington University in St. Louis, St. Louis, MO USA
| | - Sherri R. Davies
- grid.4367.60000 0001 2355 7002Department of Medicine, Washington University in St. Louis, St. Louis, MO USA
| | - Matthew H. Bailey
- grid.412722.00000 0004 0515 3663Huntsman Cancer Institute, University of Utah, Salt Lake City, UT USA
| | - Tina M. Primeau
- grid.4367.60000 0001 2355 7002Department of Medicine, Washington University in St. Louis, St. Louis, MO USA
| | - Jeremy Hoog
- grid.4367.60000 0001 2355 7002Department of Medicine, Washington University in St. Louis, St. Louis, MO USA
| | - Jacqueline L. Mudd
- grid.4367.60000 0001 2355 7002Department of Medicine, Washington University in St. Louis, St. Louis, MO USA
| | - Dennis A. Dean
- grid.492568.4Seven Bridges Genomics, Inc., Cambridge, Charlestown, MA USA
| | - Rajesh Patidar
- grid.418021.e0000 0004 0535 8394Frederick National Laboratory for Cancer Research, Frederick, MD USA
| | - Li Chen
- grid.418021.e0000 0004 0535 8394Frederick National Laboratory for Cancer Research, Frederick, MD USA
| | - Matthew A. Wyczalkowski
- grid.4367.60000 0001 2355 7002Department of Medicine, Washington University in St. Louis, St. Louis, MO USA ,grid.4367.60000 0001 2355 7002McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO USA
| | - Reyka G. Jayasinghe
- grid.4367.60000 0001 2355 7002Department of Medicine, Washington University in St. Louis, St. Louis, MO USA ,grid.4367.60000 0001 2355 7002McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO USA
| | - Fernanda Martins Rodrigues
- grid.4367.60000 0001 2355 7002Department of Medicine, Washington University in St. Louis, St. Louis, MO USA ,grid.4367.60000 0001 2355 7002McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO USA
| | - Nadezhda V. Terekhanova
- grid.4367.60000 0001 2355 7002Department of Medicine, Washington University in St. Louis, St. Louis, MO USA ,grid.4367.60000 0001 2355 7002McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO USA
| | - Yize Li
- grid.4367.60000 0001 2355 7002Department of Medicine, Washington University in St. Louis, St. Louis, MO USA ,grid.4367.60000 0001 2355 7002McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO USA
| | - Kian-Huat Lim
- grid.4367.60000 0001 2355 7002Department of Medicine, Washington University in St. Louis, St. Louis, MO USA ,grid.4367.60000 0001 2355 7002Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO USA
| | - Andrea Wang-Gillam
- grid.4367.60000 0001 2355 7002Department of Medicine, Washington University in St. Louis, St. Louis, MO USA ,grid.4367.60000 0001 2355 7002Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO USA
| | - Brian A. Van Tine
- grid.4367.60000 0001 2355 7002Department of Medicine, Washington University in St. Louis, St. Louis, MO USA ,grid.4367.60000 0001 2355 7002Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO USA
| | - Cynthia X. Ma
- grid.4367.60000 0001 2355 7002Department of Medicine, Washington University in St. Louis, St. Louis, MO USA ,grid.4367.60000 0001 2355 7002Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO USA
| | - Rebecca Aft
- grid.4367.60000 0001 2355 7002Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO USA
| | - Katherine C. Fuh
- grid.4367.60000 0001 2355 7002Department of Medicine, Washington University in St. Louis, St. Louis, MO USA ,grid.4367.60000 0001 2355 7002Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO USA
| | - Julie K. Schwarz
- grid.4367.60000 0001 2355 7002Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO USA ,grid.4367.60000 0001 2355 7002Department of Radiation Oncology, Washington University in St. Louis, St. Louis, MO USA
| | - Jose P. Zevallos
- grid.4367.60000 0001 2355 7002Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO USA ,grid.4367.60000 0001 2355 7002Department of Otolaryngology, Washington University St. Louis, St. Louis, MO USA
| | - Sidharth V. Puram
- grid.4367.60000 0001 2355 7002Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO USA ,grid.4367.60000 0001 2355 7002Department of Otolaryngology, Washington University St. Louis, St. Louis, MO USA
| | - John F. Dipersio
- grid.4367.60000 0001 2355 7002Department of Medicine, Washington University in St. Louis, St. Louis, MO USA ,grid.4367.60000 0001 2355 7002Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO USA
| | | | | | - Matthew J. Ellis
- grid.39382.330000 0001 2160 926XLester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX USA
| | - Michael T. Lewis
- grid.39382.330000 0001 2160 926XLester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX USA
| | - Michael A. Davies
- grid.240145.60000 0001 2291 4776The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Meenhard Herlyn
- grid.251075.40000 0001 1956 6678The Wistar Institute, Philadelphia, PA USA
| | - Bingliang Fang
- grid.240145.60000 0001 2291 4776The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Jack A. Roth
- grid.240145.60000 0001 2291 4776The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Alana L. Welm
- grid.412722.00000 0004 0515 3663Huntsman Cancer Institute, University of Utah, Salt Lake City, UT USA
| | - Bryan E. Welm
- grid.412722.00000 0004 0515 3663Huntsman Cancer Institute, University of Utah, Salt Lake City, UT USA
| | - Funda Meric-Bernstam
- grid.240145.60000 0001 2291 4776The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Feng Chen
- grid.4367.60000 0001 2355 7002Department of Medicine, Washington University in St. Louis, St. Louis, MO USA
| | - Ryan C. Fields
- grid.4367.60000 0001 2355 7002Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO USA
| | - Shunqiang Li
- grid.4367.60000 0001 2355 7002Department of Medicine, Washington University in St. Louis, St. Louis, MO USA ,grid.4367.60000 0001 2355 7002Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO USA
| | - Ramaswamy Govindan
- grid.4367.60000 0001 2355 7002Department of Medicine, Washington University in St. Louis, St. Louis, MO USA ,grid.4367.60000 0001 2355 7002Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO USA
| | - James H. Doroshow
- grid.48336.3a0000 0004 1936 8075Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD USA
| | - Jeffrey A. Moscow
- grid.48336.3a0000 0004 1936 8075Investigational Drug Branch, National Cancer Institute, Bethesda, MD USA
| | - Yvonne A. Evrard
- grid.418021.e0000 0004 0535 8394Frederick National Laboratory for Cancer Research, Frederick, MD USA
| | - Jeffrey H. Chuang
- grid.249880.f0000 0004 0374 0039The Jackson Laboratory for Genomic Medicine, Farmington, CT USA
| | - Benjamin J. Raphael
- grid.16750.350000 0001 2097 5006Department of Computer Science, Princeton University, Princeton, NJ USA
| | - Li Ding
- grid.4367.60000 0001 2355 7002Department of Medicine, Washington University in St. Louis, St. Louis, MO USA ,grid.4367.60000 0001 2355 7002McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO USA ,grid.4367.60000 0001 2355 7002Department of Genetics, Washington University in St. Louis, St. Louis, MO USA ,grid.4367.60000 0001 2355 7002Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO USA
| |
Collapse
|
9
|
Feng X, Huang YL, Zhang Z, Wang N, Yao Q, Pang LJ, Li F, Qi Y. The role of SYT-SSX fusion gene in tumorigenesis of synovial sarcoma. Pathol Res Pract 2021; 222:153416. [PMID: 33848939 DOI: 10.1016/j.prp.2021.153416] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 03/09/2021] [Accepted: 03/20/2021] [Indexed: 12/29/2022]
Abstract
Synovial sarcoma (SS) is an aggressive malignancy of an unknown tissue origin that is characterized by biphasic differentiation. A possible basis of the pathogenesis of SS is pathognomonic t(X;18) (p11.2; q11.2) translocation, leading to the formation and expression of the SYT-SSX fusion gene. More than a quarter of the patients die of SS metastasis within 5 years after the diagnosis, but the pathogenic factors are unknown. Therefore, there is an urgent need to explore the pathogenesis, invasion, metastasis, and clinical treatment options for SS, especially molecular-targeted drug therapy. Recent studies have shown that the SYT-SSX fusion gene associated with SS may be regulated by different signaling pathways, microRNAs, and other molecules, which may produce stem cell characteristics or promote epithelial-mesenchymal transition, resulting in SS invasion and metastasis. This review article aims to show the relationship between the SYT-SSX fusion gene and the related pathway molecules as well as other molecules involved from different perspectives, which may provide a deeper and clearer understanding of the SYT-SSX fusion gene function. Therefore, this review may provide a more innovative and broader perspective of the current research, treatment options, and prognosis assessment of SS.
Collapse
Affiliation(s)
- Xiao Feng
- Department of Pathology, Shihezi University School of Medicine & the First Affiliated Hospital to Shihezi University School of Medicine, Shihezi, 832002, Xinjiang, China
| | - Ya-Lan Huang
- Department of Pathology, Shihezi University School of Medicine & the First Affiliated Hospital to Shihezi University School of Medicine, Shihezi, 832002, Xinjiang, China; Department of Pathology Suining Central Hospital, Suining, Sichuan, China
| | - Zhen Zhang
- Department of Pathology, Shihezi University School of Medicine & the First Affiliated Hospital to Shihezi University School of Medicine, Shihezi, 832002, Xinjiang, China
| | - Ning Wang
- Department of Pathology, Shihezi University School of Medicine & the First Affiliated Hospital to Shihezi University School of Medicine, Shihezi, 832002, Xinjiang, China
| | - Qing Yao
- Department of Pathology, Shihezi University School of Medicine & the First Affiliated Hospital to Shihezi University School of Medicine, Shihezi, 832002, Xinjiang, China
| | - Li-Juan Pang
- Department of Pathology, Shihezi University School of Medicine & the First Affiliated Hospital to Shihezi University School of Medicine, Shihezi, 832002, Xinjiang, China
| | - Feng Li
- Department of Pathology, Shihezi University School of Medicine & the First Affiliated Hospital to Shihezi University School of Medicine, Shihezi, 832002, Xinjiang, China; Department of Pathology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China.
| | - Yan Qi
- Department of Pathology, Shihezi University School of Medicine & the First Affiliated Hospital to Shihezi University School of Medicine, Shihezi, 832002, Xinjiang, China; Department of Pathology, Central People's Hospital of Zhanjiang and Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, China.
| |
Collapse
|
10
|
Boulay G, Cironi L, Garcia SP, Rengarajan S, Xing YH, Lee L, Awad ME, Naigles B, Iyer S, Broye LC, Keskin T, Cauderay A, Fusco C, Letovanec I, Chebib I, Nielsen PG, Tercier S, Cherix S, Nguyen-Ngoc T, Cote G, Choy E, Provero P, Suvà ML, Rivera MN, Stamenkovic I, Riggi N. The chromatin landscape of primary synovial sarcoma organoids is linked to specific epigenetic mechanisms and dependencies. Life Sci Alliance 2020; 4:4/2/e202000808. [PMID: 33361335 PMCID: PMC7768195 DOI: 10.26508/lsa.202000808] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 12/01/2020] [Accepted: 12/10/2020] [Indexed: 12/17/2022] Open
Abstract
We have addressed the mechanisms by which the fusion protein SS18-SSX modifies the epigenome toward the development of synovial sarcoma and the establishment of its potentially targetable vulnerabilities. Synovial sarcoma (SyS) is an aggressive mesenchymal malignancy invariably associated with the chromosomal translocation t(X:18; p11:q11), which results in the in-frame fusion of the BAF complex gene SS18 to one of three SSX genes. Fusion of SS18 to SSX generates an aberrant transcriptional regulator, which, in permissive cells, drives tumor development by initiating major chromatin remodeling events that disrupt the balance between BAF-mediated gene activation and polycomb-dependent repression. Here, we developed SyS organoids and performed genome-wide epigenomic profiling of these models and mesenchymal precursors to define SyS-specific chromatin remodeling mechanisms and dependencies. We show that SS18-SSX induces broad BAF domains at its binding sites, which oppose polycomb repressor complex (PRC) 2 activity, while facilitating recruitment of a non-canonical (nc)PRC1 variant. Along with the uncoupling of polycomb complexes, we observed H3K27me3 eviction, H2AK119ub deposition and the establishment of de novo active regulatory elements that drive SyS identity. These alterations are completely reversible upon SS18-SSX depletion and are associated with vulnerability to USP7 loss, a core member of ncPRC1.1. Using the power of primary tumor organoids, our work helps define the mechanisms of epigenetic dysregulation on which SyS cells are dependent.
Collapse
Affiliation(s)
- Gaylor Boulay
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.,Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Luisa Cironi
- Institute of Pathology, Centre Hospitalier Universitaire Vaudois, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland.,Swiss Cancer Center Leman, Centre Hospitalier Universitaire Vaudois, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Sara P Garcia
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Shruthi Rengarajan
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Yu-Hang Xing
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Lukuo Lee
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Mary E Awad
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Beverly Naigles
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Sowmya Iyer
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Liliane C Broye
- Institute of Pathology, Centre Hospitalier Universitaire Vaudois, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland.,Swiss Cancer Center Leman, Centre Hospitalier Universitaire Vaudois, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Tugba Keskin
- Institute of Pathology, Centre Hospitalier Universitaire Vaudois, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland.,Swiss Cancer Center Leman, Centre Hospitalier Universitaire Vaudois, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Alexandra Cauderay
- Institute of Pathology, Centre Hospitalier Universitaire Vaudois, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland.,Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Carlo Fusco
- Institute of Pathology, Centre Hospitalier Universitaire Vaudois, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland.,Swiss Cancer Center Leman, Centre Hospitalier Universitaire Vaudois, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Igor Letovanec
- Institute of Pathology, Centre Hospitalier Universitaire Vaudois, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Ivan Chebib
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Petur Gunnalugur Nielsen
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Stéphane Tercier
- Department of Woman-Mother Child, Centre Hospitalier Universitaire Vaudois, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Stéphane Cherix
- Department of Orthopedics, Faculty of Biology and Medicine, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Tu Nguyen-Ngoc
- Department of Oncology, Centre Hospitalier Universitaire Vaudois, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Gregory Cote
- Division of Hematology and Oncology, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Edwin Choy
- Division of Hematology and Oncology, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Paolo Provero
- Center for Translational Genomics and Bioinformatics, San Raffaele Scientific Institute, Milan, Italy.,Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Mario L Suvà
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.,Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Miguel N Rivera
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.,Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Ivan Stamenkovic
- Institute of Pathology, Centre Hospitalier Universitaire Vaudois, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland .,Swiss Cancer Center Leman, Centre Hospitalier Universitaire Vaudois, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Nicolò Riggi
- Institute of Pathology, Centre Hospitalier Universitaire Vaudois, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland .,Swiss Cancer Center Leman, Centre Hospitalier Universitaire Vaudois, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
11
|
Ratti S, Lonetti A, Follo MY, Paganelli F, Martelli AM, Chiarini F, Evangelisti C. B-ALL Complexity: Is Targeted Therapy Still A Valuable Approach for Pediatric Patients? Cancers (Basel) 2020; 12:cancers12123498. [PMID: 33255367 PMCID: PMC7760974 DOI: 10.3390/cancers12123498] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/17/2020] [Accepted: 11/20/2020] [Indexed: 02/07/2023] Open
Abstract
Simple Summary B-ALL is the more frequent childhood malignancy. Even though significant improvements in patients’ survival, some pediatric B-ALL have still poor prognosis and novel strategies are needed. Recently, new genetic abnormalities and altered signaling pathways have been described, defining novel B-ALL subtypes.Innovative targeted therapeutic drugs may potentially show a great impact on the treatment of B-ALL subtypes, offering an important chance to block multiple signaling pathways and potentially improving the clinical management of B-ALL younger patients, especially for the new identified subtypes that lack efficient chemotherapeutic protocols. In this review, we shed light on the up-to-date knowledge of the novel childhood B-ALL subtypes and the altered signaling pathways that could become new druggable targets. Abstract B-cell acute lymphoblastic leukemia (B-ALL) is a hematologic malignancy that arises from the clonal expansion of transformed B-cell precursors and predominately affects childhood. Even though significant progresses have been made in the treatment of B-ALL, pediatric patients’ outcome has to be furtherly increased and alternative targeted treatment strategies are required for younger patients. Over the last decade, novel approaches have been used to understand the genomic landscape and the complexity of the molecular biology of pediatric B-ALL, mainly next generation sequencing, offering important insights into new B-ALL subtypes, altered pathways, and therapeutic targets that may lead to improved risk stratification and treatments. Here, we will highlight the up-to-date knowledge of the novel B-ALL subtypes in childhood, with particular emphasis on altered signaling pathways. In addition, we will discuss the targeted therapies that showed promising results for the treatment of the different B-ALL subtypes.
Collapse
Affiliation(s)
- Stefano Ratti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Via Irnerio 48, 40126 Bologna, Italy; (S.R.); (M.Y.F.); (F.P.); (A.M.M.)
| | - Annalisa Lonetti
- Giorgio Prodi Cancer Research Center, S. Orsola-Malpighi Hospital, University of Bologna, Via Massarenti, 11, 40138 Bologna, Italy;
| | - Matilde Y. Follo
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Via Irnerio 48, 40126 Bologna, Italy; (S.R.); (M.Y.F.); (F.P.); (A.M.M.)
| | - Francesca Paganelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Via Irnerio 48, 40126 Bologna, Italy; (S.R.); (M.Y.F.); (F.P.); (A.M.M.)
| | - Alberto M. Martelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Via Irnerio 48, 40126 Bologna, Italy; (S.R.); (M.Y.F.); (F.P.); (A.M.M.)
| | - Francesca Chiarini
- CNR Institute of Molecular Genetics Luigi Luca Cavalli-Sforza, Via di Barbiano 1/10, 40136 Bologna, Italy
- IRCCS Istituto Ortopedico Rizzoli, Via Di Barbiano 1/10, 40136 Bologna, Italy
- Correspondence: (F.C.); (C.E.); Tel.: +39-051-209-1581 (F.C.); +39-051-209-1581 (C.E.)
| | - Camilla Evangelisti
- CNR Institute of Molecular Genetics Luigi Luca Cavalli-Sforza, Via di Barbiano 1/10, 40136 Bologna, Italy
- IRCCS Istituto Ortopedico Rizzoli, Via Di Barbiano 1/10, 40136 Bologna, Italy
- Correspondence: (F.C.); (C.E.); Tel.: +39-051-209-1581 (F.C.); +39-051-209-1581 (C.E.)
| |
Collapse
|
12
|
Chua K, Virshup DM, Odono EG, Chang KTE, Tan NJH, Hue SSS, Sim AYL, Lee VKM. YJ5 as an immunohistochemical marker of osteogenic lineage. Pathology 2020; 53:229-238. [PMID: 33187685 DOI: 10.1016/j.pathol.2020.07.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 07/21/2020] [Accepted: 07/29/2020] [Indexed: 10/23/2022]
Abstract
Overexpression of WLS, an upstream protein in the Wnt pathway, has been implicated in several non-osteogenic tumours. This study represents the first attempt at evaluating WLS expression in various bone and soft tissue tumours using YJ5, a monoclonal antibody specific to WLS, with the aim of elucidating its utility in discerning tumours with aberrant Wnt signalling and as a marker of osteogenic lineage in challenging cases. Tumour tissue sections of 144 bone mass lesions and 63 soft tissue mass lesions were immunostained with the YJ5 antibody following standardised protocols. Subsequent assessment of immunoreactivity segregated cases into one of three groups: absent/weak, moderate, or strong YJ5 immunoreactivity. For the bone tumours, strong YJ5 immunoreactivity was seen in almost all osteosarcomas and chondroblastomas, all osteoblastomas and osteoid osteomas. In contrast, all other cartilaginous tumours, chordomas, aneurysmal bone cysts, chondromyxoid fibromas, most fibrous dysplasias and most giant cell tumours exhibited absent/weak YJ5 immunostaining. For the soft tissue tumours, a more heterogeneous pattern of YJ5 immunoreactivity was observed. Because diffuse and strong YJ5 expression is identified in almost all benign and malignant bone tumours with osteoblastic activity, it can be potentially utilised as an immunohistochemical marker to support osteogenic lineage. If interpreted in the appropriate context, this marker is useful in determining whether a malignant bone tumour is an osteosarcoma, particularly in those subtypes with no or minimal osteoid or unusual morphological features. This marker can also complement SATB2 to denote osteogenic lineage.
Collapse
Affiliation(s)
- Kenon Chua
- Department of Orthopaedic Surgery, Singapore General Hospital, Singapore; Programme in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore
| | - David M Virshup
- Programme in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore
| | - Eugene G Odono
- Department of Pathology, College of Medicine, University of the Philippines, Manila, Philippines
| | - Kenneth Tou En Chang
- Department of Pathology and Laboratory Medicine, KK Women's and Children's Hospital, Singapore
| | - Nicholas Jin Hong Tan
- Department of Pathology, National University Hospital, National University Health System, Singapore
| | - Susan Swee-Shan Hue
- Department of Pathology, NUH Advance Molecular Pathology Laboratory, Institute of Molecular and Cellular Biology, Singapore
| | - Arthur Yi Loong Sim
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | |
Collapse
|
13
|
Synovial Sarcoma: A Complex Disease with Multifaceted Signaling and Epigenetic Landscapes. Curr Oncol Rep 2020; 22:124. [PMID: 33025259 DOI: 10.1007/s11912-020-00985-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2020] [Indexed: 12/29/2022]
Abstract
PURPOSE OF REVIEW Aside from a characteristic SS18-SSX translocation identified in almost all cases, no genetic anomalies have been reliably isolated yet to drive the pathogenesis of synovial sarcoma. In the following review, we explore the structural units of wild-type SS18 and SSX, particularly as they relate to the transcriptional alterations and cellular pathway changes imposed by SS18-SSX. RECENT FINDINGS Native SS18 and SSX contribute recognizable domains to the SS18-SSX chimeric proteins, which inflict transcriptional and epigenetic changes through selective protein interactions involving the SWI/SNF and Polycomb chromatin remodeling complexes. Multiple oncogenic and developmental pathways become altered, collectively reprogramming the cellular origin of synovial sarcoma and promoting its malignant transformation. Synovial sarcoma is characterized by complex epigenetic and signaling landscapes. Identifying the operational pathways and concomitant genetic changes induced by SS18-SSX fusions could help develop tailored therapeutic strategies to ultimately improve disease control and patient survivorship.
Collapse
|
14
|
Martinez-Font E, Pérez-Capó M, Ramos R, Felipe I, Garcías C, Luna P, Terrasa J, Martín-Broto J, Vögler O, Alemany R, Obrador-Hevia A. Impact of Wnt/β-Catenin Inhibition on Cell Proliferation through CDC25A Downregulation in Soft Tissue Sarcomas. Cancers (Basel) 2020; 12:cancers12092556. [PMID: 32911761 PMCID: PMC7564873 DOI: 10.3390/cancers12092556] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 08/26/2020] [Accepted: 09/04/2020] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Growing evidence suggests that Wnt signaling may be crucial for tumorigenesis and progression of soft tissue sarcomas (STS). Inhibitors of this pathway are currently in clinical trials or pre-clinical studies in order to validate its utility in different neoplasia. One of this inhibitors, PRI-724, is showing promising results for advanced pancreatic adenocarcinoma or ovarian cancer. We found that PRI-724 is able to suppress cell viability/proliferation and to increase cell death rates of soft tissue sarcomas cells in vitro. CDC25A, a target gene of Wnt signaling pathway, is essential for STS proliferation because its downregulation via siRNA was able to mimic the effect of PRT-724 on cell cycle arrest and evaluation of NCBI/GenBank data confirmed its overexpression in STS patients’ samples. Moreover, in vitro administration of PRI-724 along with standard STS chemotherapeutic drugs improved the efficacy of chemotherapy, suggesting that Wnt inhibition could be a promising new therapeutic strategy in STS. Abstract The Wnt signaling pathway is an important cellular mechanism for regulating differentiation processes as well as cell cycle events, and different inhibitors of this pathway, for example, PRI-724, are showing promising results in clinical trials for treatment of advanced pancreatic adenocarcinoma or ovarian cancer. Growing evidence suggests that Wnt signaling may also be crucial for tumorigenesis and progression of soft tissue sarcomas (STS), a malignant neoplasm with few therapeutic options at an advanced state. Our study with several STS cell lines and primary cultures shows that inhibition of Wnt/β-catenin signaling with PRI-724 is able to suppress cell viability/proliferation and to increase cell death rates. TCF/β-catenin-mediated transcriptional activity is decreased in treated cells, leading to downregulation of its target genes CCND1 and CDC25A. The latter was critical because its downregulation via siRNA was able to mimic the effect of PRI-724 on cell cycle arrest and cell death induction. An evaluation of NCBI/GenBank data confirmed that CDC25A mRNA is elevated in STS patients. Importantly, PRI-724 in combination with standard STS chemotherapeutics doxorubicin or trabectedin enhanced their antitumoral effect in a synergistic manner according to isobolographic analysis, suggesting that Wnt inhibition through PRI-724 could be a beneficial combination regime in patients with advanced STS.
Collapse
Affiliation(s)
- Esther Martinez-Font
- Group of Advanced Therapies and Biomarkers in Clinical Oncology, Health Research Institute of the Balearic Islands (IdISBa-IUNICS), Son Espases University Hospital, 07120 Palma, Spain; (E.M.-F.); (M.P.-C.); (C.G.); (J.T.); (O.V.); (R.A.)
- Medical Oncology Department, Son Espases University Hospital, 07120 Palma, Spain;
| | - Marina Pérez-Capó
- Group of Advanced Therapies and Biomarkers in Clinical Oncology, Health Research Institute of the Balearic Islands (IdISBa-IUNICS), Son Espases University Hospital, 07120 Palma, Spain; (E.M.-F.); (M.P.-C.); (C.G.); (J.T.); (O.V.); (R.A.)
- Medical Oncology Department, Son Espases University Hospital, 07120 Palma, Spain;
| | - Rafael Ramos
- Pathology Department, Son Espases University Hospital, 07120 Palma, Spain;
| | - Irene Felipe
- Epithelial Carcinogenesis Group, Spanish National Cancer Research Centre-CNIO, 28029 Madrid, Spain;
| | - Carmen Garcías
- Group of Advanced Therapies and Biomarkers in Clinical Oncology, Health Research Institute of the Balearic Islands (IdISBa-IUNICS), Son Espases University Hospital, 07120 Palma, Spain; (E.M.-F.); (M.P.-C.); (C.G.); (J.T.); (O.V.); (R.A.)
- Medical Oncology Department, Son Espases University Hospital, 07120 Palma, Spain;
| | - Pablo Luna
- Medical Oncology Department, Son Espases University Hospital, 07120 Palma, Spain;
| | - Josefa Terrasa
- Group of Advanced Therapies and Biomarkers in Clinical Oncology, Health Research Institute of the Balearic Islands (IdISBa-IUNICS), Son Espases University Hospital, 07120 Palma, Spain; (E.M.-F.); (M.P.-C.); (C.G.); (J.T.); (O.V.); (R.A.)
- Medical Oncology Department, Son Espases University Hospital, 07120 Palma, Spain;
| | - Javier Martín-Broto
- Medical Oncology Department, University Hospital Virgen del Rocío, 41013 Sevilla, Spain;
- Institute of Biomedicine of Sevilla, IBIS, HUVR, CSIC, Universidad de Sevilla, 41013 Sevilla, Spain
| | - Oliver Vögler
- Group of Advanced Therapies and Biomarkers in Clinical Oncology, Health Research Institute of the Balearic Islands (IdISBa-IUNICS), Son Espases University Hospital, 07120 Palma, Spain; (E.M.-F.); (M.P.-C.); (C.G.); (J.T.); (O.V.); (R.A.)
- Group of Clinical and Translational Research, Department of Biology, University of the Balearic Islands, 07122 Palma, Spain
| | - Regina Alemany
- Group of Advanced Therapies and Biomarkers in Clinical Oncology, Health Research Institute of the Balearic Islands (IdISBa-IUNICS), Son Espases University Hospital, 07120 Palma, Spain; (E.M.-F.); (M.P.-C.); (C.G.); (J.T.); (O.V.); (R.A.)
- Group of Clinical and Translational Research, Department of Biology, University of the Balearic Islands, 07122 Palma, Spain
| | - Antònia Obrador-Hevia
- Group of Advanced Therapies and Biomarkers in Clinical Oncology, Health Research Institute of the Balearic Islands (IdISBa-IUNICS), Son Espases University Hospital, 07120 Palma, Spain; (E.M.-F.); (M.P.-C.); (C.G.); (J.T.); (O.V.); (R.A.)
- Molecular Diagnosis Unit, Son Espases University Hospital, 07120 Palma, Spain
- Correspondence: ; Tel.: +34-8-7120-5448
| |
Collapse
|
15
|
A Genetic Screen for Human Genes Suppressing FUS Induced Toxicity in Yeast. G3-GENES GENOMES GENETICS 2020; 10:1843-1852. [PMID: 32276960 PMCID: PMC7263679 DOI: 10.1534/g3.120.401164] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
FUS is a nucleic acid binding protein that, when mutated, cause a subset of familial amyotrophic lateral sclerosis (ALS). Expression of FUS in yeast recapitulates several pathological features of the disease-causing mutant proteins, including nuclear to cytoplasmic translocation, formation of cytoplasmic inclusions, and cytotoxicity. Genetic screens using the yeast model of FUS have identified yeast genes and their corresponding human homologs suppressing FUS induced toxicity in yeast, neurons and animal models. To expand the search for human suppressor genes of FUS induced toxicity, we carried out a genome-scale genetic screen using a newly constructed library containing 13570 human genes cloned in an inducible yeast-expression vector. Through multiple rounds of verification, we found 37 human genes that, when overexpressed, suppress FUS induced toxicity in yeast. Human genes with DNA or RNA binding functions are overrepresented among the identified suppressor genes, supporting that perturbations of RNA metabolism is a key underlying mechanism of FUS toxicity.
Collapse
|
16
|
Sekita T, Yamada T, Kobayashi E, Yoshida A, Hirozane T, Kawai A, Uno Y, Moriyama H, Sawa M, Nagakawa Y, Tsuchida A, Matsumoto M, Nakamura M, Nakayama R, Masuda M. Feasibility of Targeting Traf2-and-Nck-Interacting Kinase in Synovial Sarcoma. Cancers (Basel) 2020; 12:cancers12051258. [PMID: 32429395 PMCID: PMC7281028 DOI: 10.3390/cancers12051258] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/09/2020] [Accepted: 05/10/2020] [Indexed: 01/01/2023] Open
Abstract
Background: The treatment of patients with metastatic synovial sarcoma is still challenging, and the development of new molecular therapeutics is desirable. Dysregulation of Wnt signaling has been implicated in synovial sarcoma. Traf2-and-Nck-interacting kinase (TNIK) is an essential transcriptional co-regulator of Wnt target genes. We examined the efficacy of a small interfering RNA (siRNA) to TNIK and a small-molecule TNIK inhibitor, NCB-0846, for synovial sarcoma. Methods: The expression of TNIK was determined in 20 clinical samples of synovial sarcoma. The efficacy of NCB-0846 was evaluated in four synovial sarcoma cell lines and a mouse xenograft model. Results: We found that synovial sarcoma cell lines with Wnt activation were highly dependent upon the expression of TNIK for proliferation and survival. NCB-0846 induced apoptotic cell death in synovial sarcoma cells through blocking of Wnt target genes including MYC, and oral administration of NCB-846 induced regression of xenografts established by inoculation of synovial sarcoma cells. Discussion: It has become evident that activation of Wnt signaling is causatively involved in the pathogenesis of synovial sarcoma, but no molecular therapeutics targeting the pathway have been approved. This study revealed for the first time the therapeutic potential of TNIK inhibition in synovial sarcoma.
Collapse
Affiliation(s)
- Tetsuya Sekita
- Laboratory of Collaborative Research, Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo 104-0045, Japan; (T.S.); (M.M.)
- Department of Orthopedic Surgery, Keio University School of Medicine, Tokyo 160-8582, Japan; (T.H.); (M.M.); (M.N.); (R.N.)
| | - Tesshi Yamada
- Department of Gastrointestinal and Pediatric Surgery, Tokyo Medical University, Tokyo 160-0023, Japan; (Y.N.); (A.T.)
- Correspondence:
| | - Eisuke Kobayashi
- Division of Musculoskeletal Oncology, National Cancer Center Hospital, Tokyo 104-0045, Japan; (E.K.); (A.K.)
| | - Akihiko Yoshida
- Department of Diagnostic Pathology, National Cancer Center Hospital, Tokyo 104-0045, Japan;
| | - Toru Hirozane
- Department of Orthopedic Surgery, Keio University School of Medicine, Tokyo 160-8582, Japan; (T.H.); (M.M.); (M.N.); (R.N.)
| | - Akira Kawai
- Division of Musculoskeletal Oncology, National Cancer Center Hospital, Tokyo 104-0045, Japan; (E.K.); (A.K.)
| | - Yuko Uno
- Carna Biosciences, Inc., Kobe 650-0047, Japan; (Y.U.); (H.M.); (M.S.)
| | - Hideki Moriyama
- Carna Biosciences, Inc., Kobe 650-0047, Japan; (Y.U.); (H.M.); (M.S.)
| | - Masaaki Sawa
- Carna Biosciences, Inc., Kobe 650-0047, Japan; (Y.U.); (H.M.); (M.S.)
| | - Yuichi Nagakawa
- Department of Gastrointestinal and Pediatric Surgery, Tokyo Medical University, Tokyo 160-0023, Japan; (Y.N.); (A.T.)
| | - Akihiko Tsuchida
- Department of Gastrointestinal and Pediatric Surgery, Tokyo Medical University, Tokyo 160-0023, Japan; (Y.N.); (A.T.)
| | - Morio Matsumoto
- Department of Orthopedic Surgery, Keio University School of Medicine, Tokyo 160-8582, Japan; (T.H.); (M.M.); (M.N.); (R.N.)
| | - Masaya Nakamura
- Department of Orthopedic Surgery, Keio University School of Medicine, Tokyo 160-8582, Japan; (T.H.); (M.M.); (M.N.); (R.N.)
| | - Robert Nakayama
- Department of Orthopedic Surgery, Keio University School of Medicine, Tokyo 160-8582, Japan; (T.H.); (M.M.); (M.N.); (R.N.)
| | - Mari Masuda
- Laboratory of Collaborative Research, Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo 104-0045, Japan; (T.S.); (M.M.)
| |
Collapse
|
17
|
Hamza A, Gidley PW, Learned KO, Hanna EY, Bell D. Uncommon tumors of temporomandibular joint: An institutional experience and review. Head Neck 2020; 42:1859-1873. [PMID: 32040228 DOI: 10.1002/hed.26106] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 12/31/2019] [Accepted: 01/28/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The temporomandibular joint (TMJ) harbors a myriad of pathologic alterations including arthritides and benign and malignant neoplasms. METHODS Herein, we describe our institutional experience of some uncommon and unusual synovial pathologies of the TMJ along with a review of literature. We searched through the archives of department of pathology and institutional electronic medical record for specimens of TMJ between 1999 and 2019. Hematoxylin and eosin slides were reviewed and data (final diagnosis, age, gender, clinical presentation, tumor size, treatment modality, recurrence, and vital status) were collected. RESULTS A total of seven cases were identified including four cases of synovial chrondromatosis; and one case each of tenosynovial giant cell tumor, localized type, tenosynovial giant cell tumor, diffuse type, and synovial sarcoma. CONCLUSIONS The article emphasizes on the clinical, radiologic, pathologic, and molecular features of these uncommon entities. The differential diagnosis of each entity is also discussed. Current updates in the management are also reviewed.
Collapse
Affiliation(s)
- Ameer Hamza
- Department of Pathology, University of Texas M. D. Anderson Cancer Center, Houston, Texas
| | - Paul W Gidley
- Department of Head and Neck Surgery, University of Texas M. D. Anderson Cancer Center, Houston, Texas
| | - Kim O Learned
- Department of Neuroradiology, University of Texas M. D. Anderson Cancer Center, Houston, Texas
| | - Ehab Y Hanna
- Department of Head and Neck Surgery, University of Texas M. D. Anderson Cancer Center, Houston, Texas
| | - Diana Bell
- Department of Pathology, University of Texas M. D. Anderson Cancer Center, Houston, Texas.,Department of Head and Neck Surgery, University of Texas M. D. Anderson Cancer Center, Houston, Texas
| |
Collapse
|
18
|
Knott MML, Hölting TLB, Ohmura S, Kirchner T, Cidre-Aranaz F, Grünewald TGP. Targeting the undruggable: exploiting neomorphic features of fusion oncoproteins in childhood sarcomas for innovative therapies. Cancer Metastasis Rev 2019; 38:625-642. [PMID: 31970591 PMCID: PMC6994515 DOI: 10.1007/s10555-019-09839-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
While sarcomas account for approximately 1% of malignant tumors of adults, they are particularly more common in children and adolescents affected by cancer. In contrast to malignancies that occur in later stages of life, childhood tumors, including sarcoma, are characterized by a striking paucity of somatic mutations. However, entity-defining fusion oncogenes acting as the main oncogenic driver mutations are frequently found in pediatric bone and soft-tissue sarcomas such as Ewing sarcoma (EWSR1-FLI1), alveolar rhabdomyosarcoma (PAX3/7-FOXO1), and synovial sarcoma (SS18-SSX1/2/4). Since strong oncogene-dependency has been demonstrated in these entities, direct pharmacological targeting of these fusion oncogenes has been excessively attempted, thus far, with limited success. Despite apparent challenges, our increasing understanding of the neomorphic features of these fusion oncogenes in conjunction with rapid technological advances will likely enable the development of new strategies to therapeutically exploit these neomorphic features and to ultimately turn the "undruggable" into first-line target structures. In this review, we provide a broad overview of the current literature on targeting neomorphic features of fusion oncogenes found in Ewing sarcoma, alveolar rhabdomyosarcoma, and synovial sarcoma, and give a perspective for future developments. Graphical abstract Scheme depicting the different targeting strategies of fusion oncogenes in pediatric fusion-driven sarcomas. Fusion oncogenes can be targeted on their DNA level (1), RNA level (2), protein level (3), and by targeting downstream functions and interaction partners (4).
Collapse
Affiliation(s)
- Maximilian M L Knott
- Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, Faculty of Medicine, LMU Munich, Thalkirchner Str. 36, 80337, Munich, Germany
- Faculty of Medicine, Institute of Pathology, LMU Munich, Munich, Germany
| | - Tilman L B Hölting
- Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, Faculty of Medicine, LMU Munich, Thalkirchner Str. 36, 80337, Munich, Germany
| | - Shunya Ohmura
- Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, Faculty of Medicine, LMU Munich, Thalkirchner Str. 36, 80337, Munich, Germany
| | - Thomas Kirchner
- Faculty of Medicine, Institute of Pathology, LMU Munich, Munich, Germany
- German Cancer Consortium (DKTK), partner site Munich, Munich, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Florencia Cidre-Aranaz
- Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, Faculty of Medicine, LMU Munich, Thalkirchner Str. 36, 80337, Munich, Germany
| | - Thomas G P Grünewald
- Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, Faculty of Medicine, LMU Munich, Thalkirchner Str. 36, 80337, Munich, Germany.
- Faculty of Medicine, Institute of Pathology, LMU Munich, Munich, Germany.
- German Cancer Consortium (DKTK), partner site Munich, Munich, Germany.
- German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
19
|
Pan-Cancer Landscape of Aberrant DNA Methylation across Human Tumors. Cell Rep 2019; 25:1066-1080.e8. [PMID: 30355485 DOI: 10.1016/j.celrep.2018.09.082] [Citation(s) in RCA: 231] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 08/29/2018] [Accepted: 09/25/2018] [Indexed: 12/26/2022] Open
Abstract
The discovery of cancer-associated alterations has primarily focused on genetic variants. Nonetheless, altered epigenomes contribute to deregulate transcription and promote oncogenic pathways. Here, we designed an algorithmic approach (RESET) to identify aberrant DNA methylation and associated cis-transcriptional changes across >6,000 human tumors. Tumors exhibiting mutations of chromatin remodeling factors and Wnt signaling displayed DNA methylation instability, characterized by numerous hyper- and hypo-methylated loci. Most silenced and enhanced genes coalesced in specific pathways including apoptosis, DNA repair, and cell metabolism. Cancer-germline antigens (CG) were frequently epigenomically enhanced and their expression correlated with response to anti-PD-1, but not anti-CTLA4, in skin melanoma. Finally, we demonstrated the potential of our approach to explore DNA methylation changes in pediatric tumors, which frequently lack genetic drivers and exhibit epigenomic modifications. Our results provide a pan-cancer map of aberrant DNA methylation to inform functional and therapeutic studies.
Collapse
|
20
|
Lang JE, Tseng WW, Kang I. Editorial: A Novel Monoclonal Antibody-Targeting Angiogenesis by Inhibiting Secreted Frizzled-Related Protein 2. Ann Surg Oncol 2019; 26:4188-4190. [PMID: 31502016 DOI: 10.1245/s10434-019-07801-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Indexed: 11/18/2022]
Affiliation(s)
- Julie E Lang
- Division of Surgical Oncology, Department of Surgery, University of Southern California, Los Angeles, CA, USA. .,University of Southern California Norris Comprehensive Cancer Center, Los Angeles, CA, USA.
| | - William W Tseng
- Division of Surgical Oncology, Department of Surgery, University of Southern California, Los Angeles, CA, USA.,University of Southern California Norris Comprehensive Cancer Center, Los Angeles, CA, USA
| | - Irene Kang
- Division of Medical Oncology, Department of Medicine, University of Southern California, Los Angeles, CA, USA.,University of Southern California Norris Comprehensive Cancer Center, Los Angeles, CA, USA
| |
Collapse
|
21
|
Patel N, Wang J, Shiozawa K, Jones KB, Zhang Y, Prokop JW, Davenport GG, Nihira NT, Hao Z, Wong D, Brandsmeier L, Meadows SK, Sampaio AV, Werff RV, Endo M, Capecchi MR, McNagny KM, Mak TW, Nielsen TO, Underhill TM, Myers RM, Kondo T, Su L. HDAC2 Regulates Site-Specific Acetylation of MDM2 and Its Ubiquitination Signaling in Tumor Suppression. iScience 2019; 13:43-54. [PMID: 30818224 PMCID: PMC6393697 DOI: 10.1016/j.isci.2019.02.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 01/10/2019] [Accepted: 02/11/2019] [Indexed: 12/17/2022] Open
Abstract
Histone deacetylases (HDACs) are promising targets for cancer therapy, although their individual actions remain incompletely understood. Here, we identify a role for HDAC2 in the regulation of MDM2 acetylation at previously uncharacterized lysines. Upon inactivation of HDAC2, this acetylation creates a structural signal in the lysine-rich domain of MDM2 to prevent the recognition and degradation of its downstream substrate, MCL-1 ubiquitin ligase E3 (MULE). This mechanism further reveals a therapeutic connection between the MULE ubiquitin ligase function and tumor suppression. Specifically, we show that HDAC inhibitor treatment promotes the accumulation of MULE, which diminishes the t(X; 18) translocation-associated synovial sarcomagenesis by directly targeting the fusion product SS18-SSX for degradation. These results uncover a new HDAC2-dependent pathway that integrates reversible acetylation signaling to the anticancer ubiquitin response.
Collapse
Affiliation(s)
- Nikita Patel
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | - Juehong Wang
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | - Kumiko Shiozawa
- Division of Rare Cancer Research, National Cancer Center, Tokyo 104-0045, Japan
| | - Kevin B Jones
- Department of Orthopaedics and Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Yanfeng Zhang
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | - Jeremy W Prokop
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA; Department of Pediatrics and Human Development, Michigan State University, Grand Rapids, MI 49503, USA
| | | | - Naoe T Nihira
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Zhenyue Hao
- Princess Margaret Cancer Centre, University of Toronto, Toronto, ON M5G 2C1, Canada
| | - Derek Wong
- Biomdical Research Centre, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | | | - Sarah K Meadows
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | - Arthur V Sampaio
- Biomdical Research Centre, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Ryan Vander Werff
- Biomdical Research Centre, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Makoto Endo
- Genetic Pathology Evaluation Centre, Vancouver Coastal Health Research Institute, Vancouver, BC V5Z 1M9, Canada
| | - Mario R Capecchi
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Kelly M McNagny
- Biomdical Research Centre, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Tak W Mak
- Princess Margaret Cancer Centre, University of Toronto, Toronto, ON M5G 2C1, Canada
| | - Torsten O Nielsen
- Genetic Pathology Evaluation Centre, Vancouver Coastal Health Research Institute, Vancouver, BC V5Z 1M9, Canada
| | - T Michael Underhill
- Biomdical Research Centre, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Richard M Myers
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | - Tadashi Kondo
- Division of Rare Cancer Research, National Cancer Center, Tokyo 104-0045, Japan
| | - Le Su
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA.
| |
Collapse
|
22
|
Oyama Y, Nishida H, Kusaba T, Kadowaki H, Arakane M, Wada J, Urabe S, Hirano T, Kawano K, Suzuki M, Yokoyama S, Daa T. Difference in transducin-like enhancer of split 1 protein expression between basal cell adenomas and basal cell adenocarcinomas - an immunohistochemical study. Diagn Pathol 2018; 13:48. [PMID: 30053869 PMCID: PMC6064148 DOI: 10.1186/s13000-018-0726-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 07/18/2018] [Indexed: 11/30/2022] Open
Abstract
Background Basal cell adenoma (BCA) and basal cell adenocarcinoma (BCAC) are benign and malignant, basaloid salivary gland neoplasms, respectively. These tumors show a dual-cell proliferation of inner luminal/ductal cells and outer abluminal/myoepithelial or basal cells. The only difference between them is defined as a malignant morphology such as invasion. Recently, the nuclear expression of β-catenin and a catenin beta-1 (CTNNB1) mutation were found in BCA. Transducin-like enhancer of split 1 (TLE1) belongs to the Groucho/TLE family, and it functions in the “off” state in the Wnt/β-catenin signaling pathway. We hypothesized that if the dysregulation of the Wnt/β-catenin signaling pathway could be attributed to the tumorigenesis of BCA/BCAC, there might be differences in TLE1 expression between BCA and BCAC. Method The study included 35 BCA and 4 BCAC cases. We performed immunohistochemistry to detect TLE1 and β-catenin and investigated the catenin beta-1 (CTNNB1) mutational profile among BCA and BCAC cases. Results In BCA, the expression of TLE1 was confined to luminal cells of glandular structures, in contrast to the expression of β-catenin in abluminal cells. The BCA cases harbored CTNNB1 gene mutations (12/35). In BCAC, luminal cell staining of TLE1 was identical to BCA in non-invasive areas (4/4) but indistinct in invasive areas (3/4). The BCAC cases were β-catenin positive for abluminal cells in both areas. The BCAC cases had CTNNB1 mutation (2/4) and the laser-captured microdissection allowed the separate collection of infiltrative and non-infiltrative areas to detect the same mutation. Conclusions Immunohistochemical analysis for TLE1 can identify BCA and BCAC by luminal cell staining difference, especially indistinct luminal cell expression for TLE1 in invasive areas of BCAC. Moreover, TLE1 can be luminal/ductal cell markers.
Collapse
Affiliation(s)
- Yuzo Oyama
- Department of Diagnostic Pathology, Faculty of Medicine, Oita University, 1-1, Idaigaoka, Hasama-machi, Yufu, 879-5593, Japan
| | - Haruto Nishida
- Department of Diagnostic Pathology, Faculty of Medicine, Oita University, 1-1, Idaigaoka, Hasama-machi, Yufu, 879-5593, Japan.
| | - Takahiro Kusaba
- Department of Diagnostic Pathology, Faculty of Medicine, Oita University, 1-1, Idaigaoka, Hasama-machi, Yufu, 879-5593, Japan
| | - Hiroko Kadowaki
- Department of Diagnostic Pathology, Faculty of Medicine, Oita University, 1-1, Idaigaoka, Hasama-machi, Yufu, 879-5593, Japan
| | - Motoki Arakane
- Department of Diagnostic Pathology, Faculty of Medicine, Oita University, 1-1, Idaigaoka, Hasama-machi, Yufu, 879-5593, Japan
| | | | | | - Takashi Hirano
- Department of Otolaryngology, Faculty of Medicine, Oita University, Yufu, Japan
| | - Kenji Kawano
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine, Oita University, Yufu, Japan
| | - Masashi Suzuki
- Department of Otolaryngology, Faculty of Medicine, Oita University, Yufu, Japan
| | - Shigeo Yokoyama
- Department of Diagnostic Pathology, Faculty of Medicine, Oita University, 1-1, Idaigaoka, Hasama-machi, Yufu, 879-5593, Japan
| | - Tsutomu Daa
- Department of Diagnostic Pathology, Faculty of Medicine, Oita University, 1-1, Idaigaoka, Hasama-machi, Yufu, 879-5593, Japan
| |
Collapse
|
23
|
Laporte AN, Ji JX, Ma L, Nielsen TO, Brodin BA. Identification of cytotoxic agents disrupting synovial sarcoma oncoprotein interactions by proximity ligation assay. Oncotarget 2018; 7:34384-94. [PMID: 27120803 PMCID: PMC5085163 DOI: 10.18632/oncotarget.8882] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 04/02/2016] [Indexed: 02/06/2023] Open
Abstract
Conventional cytotoxic therapies for synovial sarcoma provide limited benefit. Drugs specifically targeting the product of its driver translocation are currently unavailable, in part because the SS18-SSX oncoprotein functions via aberrant interactions within multiprotein complexes. Proximity ligation assay is a recently-developed method that assesses protein-protein interactions in situ. Here we report use of the proximity ligation assay to confirm the oncogenic association of SS18-SSX with its co-factor TLE1 in multiple human synovial sarcoma cell lines and in surgically-excised human tumor tissue. SS18-SSX/TLE1 interactions are disrupted by class I HDAC inhibitors and novel small molecule inhibitors. This assay can be applied in a high-throughput format for drug discovery in fusion-oncoprotein associated cancers where key effector partners are known.
Collapse
Affiliation(s)
- Aimée N Laporte
- Department of Pathology and Laboratory Medicine, Vancouver Coastal Health Research Institute and Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada.,Centre for Translational and Applied Genomics, British Columbia Cancer Agency, Vancouver, BC, Canada
| | - Jennifer X Ji
- Centre for Translational and Applied Genomics, British Columbia Cancer Agency, Vancouver, BC, Canada
| | - Limin Ma
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Torsten O Nielsen
- Department of Pathology and Laboratory Medicine, Vancouver Coastal Health Research Institute and Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada.,Centre for Translational and Applied Genomics, British Columbia Cancer Agency, Vancouver, BC, Canada
| | - Bertha A Brodin
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
24
|
Pridgeon MG, Grohar PJ, Steensma MR, Williams BO. Wnt Signaling in Ewing Sarcoma, Osteosarcoma, and Malignant Peripheral Nerve Sheath Tumors. Curr Osteoporos Rep 2017. [PMID: 28647886 DOI: 10.1007/s11914-017-0377-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PURPOSE OF REVIEW Wnt signaling plays a central role in development and homeostasis, and its dysregulation is a common event in many types of human cancer. Here we explore in detail the contributions of Wnt signaling to the initiation and maintenance of three types of saroma: Ewing sarcoma, osteosarcoma, and malignant peripheral nerve sheath tumors. This review provides an overview of the Wnt signaling pathway and explores in detail the current knowledge about its role in the initiation or maintenance of three tumor types: Ewing sarcoma, osteosarcoma, and malignant peripheral nerve sheath tumors. RECENT FINDINGS Recent work has assessed the role(s) of Wnt signaling within these cell types. This review provides an overview of the mechanistic insights that have been gained from a number of recent studies to set the foundation for potential therapeutic applications. Wnt signaling has emerged as a potentially critical pathway in maintaining the growth of these types of tumors. Given the fact that many new inhibitors of the pathway have recently or will soon enter Phase 1 clinical trials, it is likely that assessment of their activity in these tumor types will occur in human patients.
Collapse
Affiliation(s)
- Matthew G Pridgeon
- Grand Rapids Medical Education Partners, Grand Rapids, MI, USA
- Spectrum Health Cancer Center, Spectrum Health System, Grand Rapids, MI, USA
- Helen De Vos Children's Hospital, Grand Rapids, MI, USA
| | - Patrick J Grohar
- Spectrum Health Cancer Center, Spectrum Health System, Grand Rapids, MI, USA
- Helen De Vos Children's Hospital, Grand Rapids, MI, USA
- Department of Pediatrics, Michigan State University, Grand Rapids, MI, USA
- Center for Cancer and Cell Biology, Van Andel Research Institute, Grand Rapids, MI, USA
| | - Matthew R Steensma
- Spectrum Health Cancer Center, Spectrum Health System, Grand Rapids, MI, USA
- Helen De Vos Children's Hospital, Grand Rapids, MI, USA
- Center for Cancer and Cell Biology, Van Andel Research Institute, Grand Rapids, MI, USA
- Department of Surgery, Michigan State University College of Human Medicine, Grand Rapids, MI, USA
| | - Bart O Williams
- Center for Cancer and Cell Biology, Van Andel Research Institute, Grand Rapids, MI, USA.
| |
Collapse
|
25
|
Tang F, Choy E, Tu C, Hornicek F, Duan Z. Therapeutic applications of histone deacetylase inhibitors in sarcoma. Cancer Treat Rev 2017; 59:33-45. [PMID: 28732326 DOI: 10.1016/j.ctrv.2017.06.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 06/21/2017] [Accepted: 06/23/2017] [Indexed: 02/05/2023]
Abstract
Sarcomas are a rare group of malignant tumors originating from mesenchymal stem cells. Surgery, radiation and chemotherapy are currently the only standard treatments for sarcoma. However, their response rates to chemotherapy are quite low. Toxic side effects and multi-drug chemoresistance make treatment even more challenging. Therefore, better drugs to treat sarcomas are needed. Histone deacetylase inhibitors (HDAC inhibitors, HDACi, HDIs) are epigenetic modifying agents that can inhibit sarcoma growth in vitro and in vivo through a variety of pathways, including inducing tumor cell apoptosis, causing cell cycle arrest, impairing tumor invasion and preventing metastasis. Importantly, preclinical studies have revealed that HDIs can not only sensitize sarcomas to chemotherapy and radiotherapy, but also increase treatment responses when combined with other chemotherapeutic drugs. Several phase I and II clinical trials have been conducted to assess the efficacy of HDIs either as monotherapy or in combination with standard chemotherapeutic agents or targeted therapeutic drugs for sarcomas. Combination regimen for sarcomas appear to be more promising than monotherapy when using HDIs. This review summarizes our current understanding and therapeutic applications of HDIs in sarcomas.
Collapse
Affiliation(s)
- Fan Tang
- Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Jackson 1115, Boston, MA 02114, USA; Department of Orthopedics, West China Hospital, Sichuan University, 37 Guoxue Road, Chengdu, Sichuan 610041, China
| | - Edwin Choy
- Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Jackson 1115, Boston, MA 02114, USA
| | - Chongqi Tu
- Department of Orthopedics, West China Hospital, Sichuan University, 37 Guoxue Road, Chengdu, Sichuan 610041, China
| | - Francis Hornicek
- Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Jackson 1115, Boston, MA 02114, USA
| | - Zhenfeng Duan
- Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Jackson 1115, Boston, MA 02114, USA.
| |
Collapse
|
26
|
Martinez-Font E, Felipe-Abrio I, Calabuig-Fariñas S, Ramos R, Terrasa J, Vögler O, Alemany R, Martín-Broto J, Obrador-Hevia A. Disruption of TCF/β-Catenin Binding Impairs Wnt Signaling and Induces Apoptosis in Soft Tissue Sarcoma Cells. Mol Cancer Ther 2017; 16:1166-1176. [DOI: 10.1158/1535-7163.mct-16-0585] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 10/13/2016] [Accepted: 03/02/2017] [Indexed: 12/29/2022]
Abstract
Abstract
Soft tissue sarcomas (STS) are malignant tumors of mesenchymal origin and represent around 1% of adult cancers, being a very heterogeneous group of tumors with more than 50 different subtypes. The Wnt signaling pathway is involved in the development and in the regulation, self-renewal, and differentiation of mesenchymal stem cells, and plays a role in sarcomagenesis. In this study, we have tested pharmacologic inhibition of Wnt signaling mediated by disruption of TCF/β-catenin binding and AXIN stabilization, being the first strategy more efficient in reducing cell viability and downstream effects. We have shown that disruption of TCF/β-catenin binding with PKF118-310 produces in vitro antitumor activity in a panel of prevalent representative STS cell lines and primary cultures. At the molecular level, PKF118-310 treatment reduced β-catenin nuclear localization, reporter activity, and target genes, resulting in an increase in apoptosis. Importantly, combination of PKF118-310 with doxorubicin resulted in enhanced reduction of cell viability, suggesting that Wnt inhibition could be a new combination regime in these patients. Our findings support the usefulness of Wnt inhibitors as new therapeutic strategies for the prevalent STS. Mol Cancer Ther; 16(6); 1166–76. ©2017 AACR.
Collapse
Affiliation(s)
- Esther Martinez-Font
- 1Group of Advanced Therapies and Biomarkers in Clinical Oncology, Institut d'Investigació Sanitària de Palma (IdISPa), Palma de Mallorca, Spain
| | - Irene Felipe-Abrio
- 2Group of Molecular Oncology and New Therapies, Oncohematology and Genetics Department, Instituto de Biomedicina de Sevilla (IBiS), Sevilla, Spain
| | - Silvia Calabuig-Fariñas
- 3Molecular Oncology Laboratory, Fundación de Investigación, Hospital General Universitario de Valencia, Valencia, Spain
- 4Department of Pathology, Universitat de Valencia, Valencia, Spain
| | - Rafael Ramos
- 5Department of Pathology, Hospital Universitari Son Espases, Palma de Mallorca, Spain
| | - Josefa Terrasa
- 1Group of Advanced Therapies and Biomarkers in Clinical Oncology, Institut d'Investigació Sanitària de Palma (IdISPa), Palma de Mallorca, Spain
- 6Department of Oncology, Hospital Universitari Son Espases, Palma de Mallorca, Spain
| | - Oliver Vögler
- 1Group of Advanced Therapies and Biomarkers in Clinical Oncology, Institut d'Investigació Sanitària de Palma (IdISPa), Palma de Mallorca, Spain
- 7Group of Clinical and Translational Research, Department of Biology, Institut Universitari d'Investigacions en Ciències de la Salut (IUNICS), University of the Balearic Islands, Spain
| | - Regina Alemany
- 1Group of Advanced Therapies and Biomarkers in Clinical Oncology, Institut d'Investigació Sanitària de Palma (IdISPa), Palma de Mallorca, Spain
- 7Group of Clinical and Translational Research, Department of Biology, Institut Universitari d'Investigacions en Ciències de la Salut (IUNICS), University of the Balearic Islands, Spain
| | - Javier Martín-Broto
- 2Group of Molecular Oncology and New Therapies, Oncohematology and Genetics Department, Instituto de Biomedicina de Sevilla (IBiS), Sevilla, Spain
- 8Department of Oncology, Hospital Universitario Virgen del Rocío, Sevilla, Spain
| | - Antònia Obrador-Hevia
- 1Group of Advanced Therapies and Biomarkers in Clinical Oncology, Institut d'Investigació Sanitària de Palma (IdISPa), Palma de Mallorca, Spain
- 6Department of Oncology, Hospital Universitari Son Espases, Palma de Mallorca, Spain
| |
Collapse
|
27
|
Vlenterie M, Hillebrandt-Roeffen MHS, Schaars EWM, Flucke UE, Fleuren EDG, Navis AC, Leenders WPJ, Versleijen-Jonkers YMH, van der Graaf WTA. Targeting Cyclin-Dependent Kinases in Synovial Sarcoma: Palbociclib as a Potential Treatment for Synovial Sarcoma Patients. Ann Surg Oncol 2016; 23:2745-52. [PMID: 27334220 PMCID: PMC4972869 DOI: 10.1245/s10434-016-5341-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Indexed: 11/18/2022]
Abstract
Background In synovial sarcomas alterations in the cyclin D1-CDK4/6-Rb axis have been described. Also, β-catenin, a cyclin D1 regulator, is often overexpressed. Additionally, studies have shown that the t(X;18) translocation influences tumor behavior partly through cyclin D1 activation. We investigated how alterations in the cyclin D1-CDK4/6-Rb axis impact prognosis and studied effects of targeting this axis with the CDK4/6 inhibitor palbociclib. Methods Synovial sarcoma samples (n = 43) were immunohistochemically stained for β-catenin, cyclin D1, p16, p21, p27, Rb, and phospho-Rb. Fluorescent in situ hybridization (FISH) was performed to detect CCND1 amplification or translocation. In 4 synovial sarcoma cell lines sensitivity to palbociclib was investigated using cell viability assays, and effects on the sensitive cell lines were evaluated on protein level and by cell cycle arrest. Results Expression of nuclear phospho-Rb and nuclear β-catenin in the patient samples was associated with poor survival. FISH showed a sporadic translocation of CCND1 in a subset of tumors. An 8-fold CCND1 amplification was found in 1 cell line, but not in the patient samples investigated. Palbociclib effectively inhibited Rb-phosphorylation in 3 cell lines, resulting in an induction of a G1 arrest and proliferation block. Conclusions In this series nuclear phospho-Rb and nuclear β-catenin expression were negative prognostic factors. In vitro data suggest that palbociclib may be a potential treatment for a subset of synovial sarcoma patients. Whether this effect can be enhanced by combination treatment deserves further preclinical investigations. Electronic supplementary material The online version of this article (doi:10.1245/s10434-016-5341-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Myrella Vlenterie
- Department of Medical Oncology, Radboud University Medical Center, Nijmegen, The Netherlands.
| | | | - Esther W M Schaars
- Department of Medical Oncology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Uta E Flucke
- Department of Pathology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Emmy D G Fleuren
- The Institute of Cancer Research London and the Royal Marsden NHS Foundation Trust, London, UK
| | - Anna C Navis
- Department of Pathology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - William P J Leenders
- Department of Pathology, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Winette T A van der Graaf
- Department of Medical Oncology, Radboud University Medical Center, Nijmegen, The Netherlands.,The Institute of Cancer Research London and the Royal Marsden NHS Foundation Trust, London, UK
| |
Collapse
|
28
|
Nuclear β-Catenin Expression is Frequent in Sinonasal Hemangiopericytoma and Its Mimics. Head Neck Pathol 2016; 11:119-123. [PMID: 27325236 PMCID: PMC5429262 DOI: 10.1007/s12105-016-0737-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 06/08/2016] [Indexed: 01/28/2023]
Abstract
Sinonasal hemangiopericytoma (HPC) is a tumor showing pericytic myoid differentiation and which arises in the nasal cavity and paranasal sinuses. CTNNB1 mutations appear to be a consistent aberration in sinonasal HPC, and nuclear expression of β-catenin has been reported. Our aim was to evaluate the frequency of β-catenin expression in sinonasal HPC and its histologic mimics in the upper aerodigestive tract. Cases were retrieved from the surgical pathology and consultation files. Immunohistochemical staining for β-catenin was performed on 50 soft tissue tumors arising in the sinonasal tract or oral cavity, and nuclear staining was recorded semiquantitatively by extent and intensity. Nuclear reactivity for β-catenin was present in 19/20 cases of sinonasal HPC; 17 showed moderate-to-strong multifocal or diffuse staining, and 2 had moderate focal nuclear reactivity. All solitary fibrous tumors (SFT) (10/10) showed focal-to-multifocal nuclear staining, varying from weak to strong in intensity. Most cases of synovial sarcoma (9/10) showed nuclear β-catenin expression in the spindle cell component, ranging from focal-weak to strong-multifocal. No cases of myopericytoma (0/10) showed any nuclear β-catenin expression. β-catenin expression is prevalent in sinonasal HPC, but is also frequent in SFT and synovial sarcoma. Our findings indicate that β-catenin is not a useful diagnostic tool in the evaluation of spindle cell tumors with a prominent hemangiopericytoma-like vasculature in the sinonasal tract and oral cavity, and that definitive diagnosis relies on the use of a broader immunohistochemical panel.
Collapse
|