1
|
Solomon O, Sapir H, Mervinetsky E, Chen Y, Friedler A, Yitzchaik S. Kinase Sensing Based on Protein Interactions at the Catalytic Site. Chemistry 2022; 28:e202104227. [DOI: 10.1002/chem.202104227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Indexed: 12/12/2022]
Affiliation(s)
- Ohad Solomon
- Institute of Chemistry and the Center for Nanoscience and Nanotechnology The Hebrew University of Jerusalem Safra Campus, Givat Ram Jerusalem 91904 Israel
| | - Hannah Sapir
- Institute of Chemistry and the Center for Nanoscience and Nanotechnology The Hebrew University of Jerusalem Safra Campus, Givat Ram Jerusalem 91904 Israel
| | - Evgeniy Mervinetsky
- Institute of Chemistry and the Center for Nanoscience and Nanotechnology The Hebrew University of Jerusalem Safra Campus, Givat Ram Jerusalem 91904 Israel
| | - Yu‐Ju Chen
- Institute of Chemistry Academia Sinica No. 128, Section2, Academia Road Taipei 115 Taiwan
| | - Assaf Friedler
- Institute of Chemistry and the Center for Nanoscience and Nanotechnology The Hebrew University of Jerusalem Safra Campus, Givat Ram Jerusalem 91904 Israel
| | - Shlomo Yitzchaik
- Institute of Chemistry and the Center for Nanoscience and Nanotechnology The Hebrew University of Jerusalem Safra Campus, Givat Ram Jerusalem 91904 Israel
| |
Collapse
|
2
|
Lemos Duarte M, Trimbake NA, Gupta A, Tumanut C, Fan X, Woods C, Ram A, Gomes I, Bobeck EN, Schechtman D, Devi LA. High-throughput screening and validation of antibodies against synaptic proteins to explore opioid signaling dynamics. Commun Biol 2021; 4:238. [PMID: 33619305 PMCID: PMC7900253 DOI: 10.1038/s42003-021-01744-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Accepted: 11/13/2020] [Indexed: 12/12/2022] Open
Abstract
Antibodies represent powerful tools to examine signal transduction pathways. Here, we present a strategy integrating multiple state-of-the-art methods to produce, validate, and utilize antibodies. Focusing on understudied synaptic proteins, we generated 137 recombinant antibodies. We used yeast display antibody libraries from the B cells of immunized rabbits, followed by FACS sorting under stringent conditions to identify high affinity antibodies. The antibodies were validated by high-throughput functional screening, and genome editing. Next, we explored the temporal dynamics of signaling in single cells. A subset of antibodies targeting opioid receptors were used to examine the effect of treatment with opiates that have played central roles in the worsening of the 'opioid epidemic.' We show that morphine and fentanyl exhibit differential temporal dynamics of receptor phosphorylation. In summary, high-throughput approaches can lead to the identification of antibody-based tools required for an in-depth understanding of the temporal dynamics of opioid signaling.
Collapse
Affiliation(s)
- Mariana Lemos Duarte
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1603, New York City, NY, 10029, USA
| | - Nikita A Trimbake
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1603, New York City, NY, 10029, USA
- Regeneron Pharmaceutical, 777 Old Saw Mill River Rd, Tarrytown, NY, 10591, USA
| | - Achla Gupta
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1603, New York City, NY, 10029, USA
| | | | - Xiaomin Fan
- AvantGen Inc., 6162 Nancy Ridge Dr #150, San Diego, CA, 92121, USA
| | - Catherine Woods
- AvantGen Inc., 6162 Nancy Ridge Dr #150, San Diego, CA, 92121, USA
| | - Akila Ram
- Department of Biology, Utah State University, Logan, UT, 84322, USA
| | - Ivone Gomes
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1603, New York City, NY, 10029, USA
| | - Erin N Bobeck
- Department of Biology, Utah State University, Logan, UT, 84322, USA
| | - Deborah Schechtman
- Department of Biochemistry, University of São Paulo, 748 Av Prof Lineu Prestes, room 1208 Cidade Universitaria, São Paulo, SP, 05508000, Brazil
| | - Lakshmi A Devi
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1603, New York City, NY, 10029, USA.
| |
Collapse
|
3
|
Coban MA, Fraga S, Caulfield TR. Structural And Computational Perspectives of Selectively Targeting Mutant Proteins. Curr Drug Discov Technol 2020; 18:365-378. [PMID: 32160847 DOI: 10.2174/1570163817666200311114819] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 01/24/2020] [Accepted: 01/28/2020] [Indexed: 11/22/2022]
Abstract
Diseases are often caused by mutant proteins. Many drugs have limited effectiveness and/or toxic side effects because of a failure to selectively target the disease-causing mutant variant, rather than the functional wild type protein. Otherwise, the drugs may even target different proteins with similar structural features. Designing drugs that successfully target mutant proteins selectively represents a major challenge. Decades of cancer research have led to an abundance of potential therapeutic targets, often touted to be "master regulators". For many of these proteins, there are no FDA-approved drugs available; for others, off-target effects result in dose-limiting toxicity. Cancer-related proteins are an excellent medium to carry the story of mutant-specific targeting, as the disease is both initiated and sustained by mutant proteins; furthermore, current chemotherapies generally fail at adequate selective distinction. This review discusses some of the challenges associated with selective targeting from a structural biology perspective, as well as some of the developments in algorithm approach and computational workflow that can be applied to address those issues. One of the most widely researched proteins in cancer biology is p53, a tumor suppressor. Here, p53 is discussed as a specific example of a challenging target, with contemporary drugs and methodologies used as examples of burgeoning successes. The oncogene KRAS, which has been described as "undruggable", is another extensively investigated protein in cancer biology. This review also examines KRAS to exemplify progress made towards selective targeting of diseasecausing mutant proteins. Finally, possible future directions relevant to the topic are discussed.
Collapse
Affiliation(s)
- Mathew A Coban
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, 32224, United States
| | - Sarah Fraga
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, United States
| | - Thomas R Caulfield
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, 32224, United States
| |
Collapse
|
4
|
Pena DA, Duarte ML, Pramio DT, Devi LA, Schechtman D. Exploring Morphine-Triggered PKC-Targets and Their Interaction with Signaling Pathways Leading to Pain via TrkA. Proteomes 2018; 6:proteomes6040039. [PMID: 30301203 PMCID: PMC6313901 DOI: 10.3390/proteomes6040039] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 09/29/2018] [Accepted: 10/02/2018] [Indexed: 12/11/2022] Open
Abstract
It is well accepted that treatment of chronic pain with morphine leads to μ opioid receptor (MOR) desensitization and the development of morphine tolerance. MOR activation by the selective peptide agonist, D-Ala2, N-MePhe4, Gly-ol]-enkephalin(DAMGO), leads to robust G protein receptor kinase activation, β-arrestin recruitment, and subsequent receptor endocytosis, which does not occur in an activation by morphine. However, MOR activation by morphine induces receptor desensitization, in a Protein kinase C (PKC) dependent manner. PKC inhibitors have been reported to decrease receptor desensitization, reduce opiate tolerance, and increase analgesia. However, the exact role of PKC in these processes is not clearly delineated. The difficulties in establishing a particular role for PKC have been, in part, due to the lack of reagents that allow the selective identification of PKC targets. Recently, we generated a conformation state-specific anti-PKC antibody that preferentially recognizes the active state of this kinase. Using this antibody to selectively isolate PKC substrates and a proteomics strategy to establish the identity of the proteins, we examined the effect of morphine treatment on the PKC targets. We found an enhanced interaction of a number of proteins with active PKC, in the presence of morphine. In this article, we discuss the role of these proteins in PKC-mediated MOR desensitization and analgesia. In addition, we posit a role for some of these proteins in mediating pain by TrKA activation, via the activation of transient receptor potential cation channel subfamily V member 1 (TRPV1). Finally, we discuss how these new PKC interacting proteins and pathways could be targeted for the treatment of pain.
Collapse
Affiliation(s)
- Darlene A Pena
- Department of Biochemistry, Chemistry Institute, University of São Paulo, Sao Paulo 05508-220, Brazil.
| | - Mariana Lemos Duarte
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Dimitrius T Pramio
- Department of Biochemistry, Chemistry Institute, University of São Paulo, Sao Paulo 05508-220, Brazil.
| | - Lakshmi A Devi
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Deborah Schechtman
- Department of Biochemistry, Chemistry Institute, University of São Paulo, Sao Paulo 05508-220, Brazil.
| |
Collapse
|
5
|
Pena DA, Pacheco DMV, Oliveira PSL, Alves MJM, Schechtman D. Generating Conformation-Specific Polyclonal and Monoclonal Anti-Protein Kinase C Antibodies and Anti-Active State Specific PKC Antibodies. ACTA ACUST UNITED AC 2018; 10:e42. [PMID: 29927112 DOI: 10.1002/cpch.42] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The protein kinase C (PKC) family of serine/ threonine kinases has been shown to play active roles as either suppressors or promoters of carcinogenesis in different types of tumors. Using antibodies that preferentially recognize the active conformation of classical PKCs (cPKCs), we have previously shown that in breast cancer samples the expression levels of cPKCs were similar in estrogen receptor-positive (ER+ ) as compared to triple-negative tumors; however, the levels of active cPKCs were different. Determining the activation status of PKCs and other kinases in tumors may thus aid therapeutic decisions. Further, in basic science these tools may be used to understand the spatial and temporal dynamics of PKC signaling under different stimuli and for co-immunoprecipitation studies to detect binding partners and substrates of active cPKCs. In this article, we describe how monoclonal and polyclonal anti-active state PKC antibodies can be obtained using rational approaches to select bona fide epitopes through inspection of the crystal structure of classical PKCs coupled to molecular modeling studies. We believe that this methodology can be used for other kinases and multi-domain enzymes that undergo changes in their conformation upon activation. © 2018 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Darlene A Pena
- University of São Paulo, Departamento de Bioquímica, São Paulo, SP, Brazil
| | - Denise M V Pacheco
- University of São Paulo, Departamento de Bioquímica, São Paulo, SP, Brazil
| | - Paulo S L Oliveira
- Brazilian Center for Research in Energy and Materials (CNPEM), Brazilian Nacional Biosciences Laboratory (LNBio) Campinas, SP, Brazil
| | - Maria J M Alves
- University of São Paulo, Departamento de Bioquímica, São Paulo, SP, Brazil
| | - Deborah Schechtman
- University of São Paulo, Departamento de Bioquímica, São Paulo, SP, Brazil
| |
Collapse
|