1
|
Eslami Abriz A, Araghi A, Nemati M, Taghavi Narmi M, Ahmadi M, Abedini F, Keyhanmanesh R, Ghiasi F, Rahbarghazi R. Docosahexaenoic Acid Reduced Vascular Endothelial Cell Injury in Diabetic Rats Via the Modulation of Autophagy. Adv Pharm Bull 2024; 14:412-418. [PMID: 39206399 PMCID: PMC11347735 DOI: 10.34172/apb.2024.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 03/08/2024] [Accepted: 03/17/2024] [Indexed: 09/04/2024] Open
Abstract
Purpose Among varied ω-3 polyunsaturated fatty acid types, the therapeutic properties of docosahexaenoic acid (DHA) have been indicated under diabetic conditions in different cell lineages. Here, we investigated the anti-diabetic properties of DHA in rats with type 2 diabetes mellitus (D2M) focusing on autophagy-controlling factors. Methods D2M was induced in male Wistar rats using a single dose of streptozocin (STZ) and a high-fat diet for 8 weeks. On week 2, diabetic rats received DHA 950 mg/kg/d until the end of the study. After that, rats were euthanized, and aortic and cardiac tissue samples were stained with H&E staining for histological assessment. The expression of adhesion molecules, ICAM-1 and VCAM-1, was measured in heart samples using real-time PCR analysis. Using western blotting, protein levels of BCLN1, LC3, and P62 were measured in D2M rats pre- and post-DHA treatment. Results Data showed intracellular lipid vacuoles inside the vascular cells, and cardiomyocytes, after induction of D2M and DHA reduced intracellular lipid droplets and in situ inflammatory response. DHA can diminish increased levels of ICAM-1 in diabetic conditions (P Control vs. D2M rats=0.005) and reach near-to-control values (P Control vs. D2M rats=0.28; P D2M rats vs. D2M rats+DHA=0.033). Based on western blotting, D2M slightly increased the BCLN1 and LC3-II/I ratio without affecting P62. DHA promoted the LC3II/I ratio (P=0.303) and reduced P62 (P Control vs. D2M rats+DHA =0.0433; P D2M vs. D2M rats+DHA=0.096), leading to the completion of autophagy flux under diabetic conditions. Conclusion DHA can reduce lipotoxicity of cardiovascular cells possibly via the activation of adaptive autophagy response in D2D rats.
Collapse
Affiliation(s)
- Aysan Eslami Abriz
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Atefeh Araghi
- Faculty of Veterinary Medicine, Amol University of Special Modern Technologies, Amol, Iran
| | - Mahdieh Nemati
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Mahdi Ahmadi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Abedini
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Rana Keyhanmanesh
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fariba Ghiasi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Rahbarghazi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
2
|
Tyrtyshnaia A, Konovalova S, Bondar A, Ermolenko E, Sultanov R, Manzhulo I. Anti-Inflammatory Activity of N-Docosahexaenoylethanolamine and N-Eicosapentaenoylethanolamine in a Mouse Model of Lipopolysaccharide-Induced Neuroinflammation. Int J Mol Sci 2021; 22:ijms221910728. [PMID: 34639071 PMCID: PMC8509568 DOI: 10.3390/ijms221910728] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 09/30/2021] [Accepted: 09/30/2021] [Indexed: 12/16/2022] Open
Abstract
The search for methods of cognitive impairment treatment and prevention in neurological and neurodegenerative diseases is an urgent task of modern neurobiology. It is now known that various diseases, accompanied by dementia, exhibit a pronounced neuroinflammation. Considering the significant docosahexaenoic and eicosapentaenoic polyunsaturated fatty acids' therapeutic potential, we decided to investigate and compare anti-inflammatory activity of their N-acylethanolamine derivatives. As a result, we found that both N-docosahexaenoylethanolamine (synaptamide) and N-eicosapentaenoylethanolamine (EPEA) prevents an LPS-mediated increase in the proinflammatory cytokines TNF-α and IL-6 production in the SIM-A9 microglia culture. In an in vivo experiment, synaptamide reversed an increase in LPS-mediated hippocampal TNF-α and IL-1β, but EPEA did not. However, both compounds contributed to the microglia polarization towards the M2-phenotype. Synaptamide, rather than EPEA, inhibited the Iba-1-positive microglia staining area increase. However, both synaptamide and EPEA prevented the LPS-mediated astrogliosis. A study of BDNF immunoreactivity showed that synaptamide, but not EPEA, reversed an LPS-mediated decrease in BDNF production. Despite the more pronounced anti-inflammatory activity of synaptamide, both compounds were effective in maintaining a normal level of hippocampal long-term potentiation in neuroinflammation. The results indicate a high therapeutic potential for both compounds. However, some tests have shown higher activity of synaptamide compared to EPEA.
Collapse
|
3
|
Fletcher P, Hamilton RF, Rhoderick JF, Postma B, Buford M, Pestka JJ, Holian A. Therapeutic treatment of dietary docosahexaenoic acid for particle-induced pulmonary inflammation in Balb/c mice. Inflamm Res 2021; 70:359-373. [PMID: 33566171 PMCID: PMC8127607 DOI: 10.1007/s00011-021-01443-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/19/2021] [Accepted: 01/28/2021] [Indexed: 10/22/2022] Open
Abstract
OBJECTIVE AND DESIGN The omega-3 polyunsaturated fatty acid docosahexaenoic acid (DHA) has been reported to suppress inflammation. Pulmonary inflammation can be directly linked to exposure of various occupational and man-made particles leading to pulmonary diseases. Therapeutic treatments are lacking for particle-induced pulmonary inflammation. These studies evaluated DHA as a therapeutic treatment for semi-acute and chronic particle-induced pulmonary inflammation. METHODS Balb/c mice were oropharyngeal instilled with hydrophobic multi-walled carbon nanotube (MWCNT) or hydrophilic crystalline silica (SiO2) either as one instillation (semi-acute) or once a week for 4 weeks (chronic). One week later, the mice were placed on either a control or 1% DHA-containing diet for 3 weeks (semi-acute) or 12 weeks (chronic). Mice were assessed for inflammatory signaling within the lung lavage fluid, impact on phagolysosomal membrane permeability, shifts of macrophage phenotype gene expression (M1, M2a, M2b, and M2c), and pulmonary histopathology. RESULTS DHA increased pulmonary inflammatory markers and lung pathology when mice were exposed to SiO2. There were trending decreases of inflammatory markers for MWCNT-exposed mice with DHA treatment, however, mostly not statistically significant. CONCLUSION The anti-inflammatory benefits of DHA treatment depend upon the type of inflammatory particle, magnitude of inflammation, and duration of treatment.
Collapse
Affiliation(s)
- Paige Fletcher
- Department of Biomedical and Pharmaceutical Sciences, Center for Environmental Health Sciences, University of Montana, 32 Campus Drive, Missoula, MT, 59812, USA.
| | - Raymond F Hamilton
- Department of Biomedical and Pharmaceutical Sciences, Center for Environmental Health Sciences, University of Montana, 32 Campus Drive, Missoula, MT, 59812, USA
| | - Joseph F Rhoderick
- Department of Biomedical and Pharmaceutical Sciences, Center for Environmental Health Sciences, University of Montana, 32 Campus Drive, Missoula, MT, 59812, USA
| | - Britten Postma
- Department of Biomedical and Pharmaceutical Sciences, Center for Environmental Health Sciences, University of Montana, 32 Campus Drive, Missoula, MT, 59812, USA
| | - Mary Buford
- Department of Biomedical and Pharmaceutical Sciences, Center for Environmental Health Sciences, University of Montana, 32 Campus Drive, Missoula, MT, 59812, USA
| | - James J Pestka
- Department of Food Science and Human Nutrition, Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, USA
| | - Andrij Holian
- Department of Biomedical and Pharmaceutical Sciences, Center for Environmental Health Sciences, University of Montana, 32 Campus Drive, Missoula, MT, 59812, USA
| |
Collapse
|
4
|
Meng C, Wang S, Wang X, Lv J, Zeng W, Chang R, Li Q, Wang X. Amphiregulin inhibits TNF-α-induced alveolar epithelial cell death through EGFR signaling pathway. Biomed Pharmacother 2020; 125:109995. [PMID: 32187954 DOI: 10.1016/j.biopha.2020.109995] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 01/26/2020] [Accepted: 01/31/2020] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND We previously observed that amphiregulin (Areg), a ligand of epithelial growth factor receptor (EGFR), was highly expressed in lipopolysaccharide (LPS)-induced acute lung injury (ALI) lung tissues mainly by the classically activated (M1) alveolar macrophages (AMs). Areg also plays a protective role in LPS-induced injury in lung tissues and alveolar epithelial cells (AECs). However, whether Areg is co-expressed with tumor necrosis factor (TNF)-α in ALI lung tissues, and can directly inhibit TNF-α-induced AEC injury remains unclear. METHODS We first detected the kinetic expressions of Areg and TNF-α in LPS-stimulated lung tissues and M1 AMs and then identified the role of exogenous recombinant Areg (rmAreg) in the injured lung tissues. The effect of Areg on TNF-α-induced apoptosis in MLE-12 cells, a kind of AECs, was examined by terminal deoxynucleotidyl transferase dUTP nick end labeling staining. The activation of the EGFR-AKT pathway and caspase-3, -8, and -9 were detected by Western blotting. The EGFR knockdown by small interfering RNA was used to assess the role of EGFR in Areg functions. RESULTS Areg production occurred in close parallel with TNF-α expression in M1 AMs and ALI lung tissues, and rmAreg attenuated LPS-induced ALI in mice. TNF-α stimulation induced significant apoptosis in MLE-12 cells, but this apoptosis was inhibited under rmAreg treatment. Moreover, rmAreg enhanced the activation of EGFR and AKT, and reduced the expressions of cleaved caspase-3, -8, and -9 in ALI lung tissues and TNF-α-challenged MLE-12 cells. However, the EGFR knockdown significantly inhibited the Areg-induced improvement in apoptosis, enhancement of EGFR and AKT activation, and reduction of cleaved caspase-3, -8, and -9 expressions. CONCLUSIONS Areg and TNF-α were synchronously produced by ALI lung tissues and M1 AMs, and Areg directly inhibited the TNF-induced apoptosis and transduction of caspase death signals in AECs via the EGFR pathway.
Collapse
Affiliation(s)
- Chen Meng
- Department of Anesthesiology, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China; Institute of Anesthesiology, Hubei University of Medicine, Shiyan, 442000, Hubei, China.
| | - Silu Wang
- Department of Anesthesiology, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China; Institute of Anesthesiology, Hubei University of Medicine, Shiyan, 442000, Hubei, China.
| | - Xue Wang
- Department of Anesthesiology, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China; Institute of Anesthesiology, Hubei University of Medicine, Shiyan, 442000, Hubei, China.
| | - Jing Lv
- Department of Anesthesiology, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China; Institute of Anesthesiology, Hubei University of Medicine, Shiyan, 442000, Hubei, China.
| | - Wenjing Zeng
- Department of Anesthesiology, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China; Institute of Anesthesiology, Hubei University of Medicine, Shiyan, 442000, Hubei, China.
| | - Ruijie Chang
- Department of Anesthesiology, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China.
| | - Qing Li
- Department of Anesthesiology, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China; Institute of Anesthesiology, Hubei University of Medicine, Shiyan, 442000, Hubei, China.
| | - Xianyu Wang
- Department of Anesthesiology, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China; Institute of Anesthesiology, Hubei University of Medicine, Shiyan, 442000, Hubei, China.
| |
Collapse
|
5
|
Hill EM, Esper RM, Sen A, Simon BR, Aslam MN, Jiang Y, Dame MK, McClintock SD, Colacino JA, Djuric Z, Wicha MS, Smith WL, Brenner DE. Dietary polyunsaturated fatty acids modulate adipose secretome and is associated with changes in mammary epithelial stem cell self-renewal. J Nutr Biochem 2019; 71:45-53. [PMID: 31272031 PMCID: PMC6917480 DOI: 10.1016/j.jnutbio.2019.05.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 05/09/2019] [Accepted: 05/10/2019] [Indexed: 02/07/2023]
Abstract
Chronic low-grade adipose inflammation, characterized by aberrant adipokine production and pro-inflammatory macrophage activation/polarization is associated with increased risk of breast cancer. Adipocyte fatty acid composition is influenced by dietary availability and may regulate adipokine secretion and adipose inflammation. After feeding F344 rats for 20 weeks with a Western diet or a fish oil-supplemented diet, we cultured primary rat adipose tissue in a three-dimensional explant culture and collected the conditioned medium. The rat adipose tissue secretome was assayed using the Proteome Profiler Cytokine XL Array, and adipose tissue macrophage polarization (M1/M2 ratio) was assessed using the iNOS/ARG1 ratio. We then assessed the adipokine's effects upon stem cell self-renewal using primary human mammospheres from normal breast mammoplasty tissue. Adipose from rats fed the fish oil diet had an ω-3:ω-6 fatty acid ratio of 0.28 compared to 0.04 in Western diet rats. The adipokine profile from the fish oil-fed rats was shifted toward adipokines associated with reduced inflammation compared to the rats fed the Western diet. The M1/M2 macrophage ratio decreased by 50% in adipose of fish oil-fed rats compared to that from rats fed the Western diet. Conditioned media from rats fed the high ω-6 Western diet increased stem cell self-renewal by 62%±9% (X¯%±SD) above baseline compared to only an 11%±11% increase with the fish oil rat adipose. Modulating the adipokine secretome with dietary interventions therefore may alter stromal-epithelial signaling that plays a role in controlling mammary stem cell self-renewal.
Collapse
Affiliation(s)
- Evan M Hill
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA; Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Raymond M Esper
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Ananda Sen
- Department of Family Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Becky R Simon
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Muhammad N Aslam
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Yan Jiang
- MD Anderson Cancer Center, Houston, TX, USA
| | - Michael K Dame
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Shannon D McClintock
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Justin A Colacino
- Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Zora Djuric
- Department of Family Medicine, University of Michigan Medical School, Ann Arbor, MI, USA; Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Max S Wicha
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - William L Smith
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Dean E Brenner
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA; Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
6
|
Weng J, Chen M, Lin Q, Chen J, Wang S, Fang D. Penehyclidine hydrochloride defends against LPS-induced ALI in rats by mitigating endoplasmic reticulum stress and promoting the Hes1/Notch1 pathway. Gene 2019; 721:144095. [PMID: 31476403 DOI: 10.1016/j.gene.2019.144095] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 08/29/2019] [Accepted: 08/29/2019] [Indexed: 12/12/2022]
Abstract
Penehyclidine hydrochloride (PHC) is a novel anticholinergic drug applied broadly in surgeries as a preanesthetic medication. A substantial amount of research indicates that PHC has lung defensive properties. Considering that endoplasmic reticulum (ER) stress exerts a crucial function in cell apoptosis associated with the lipopolysaccharides (LPS)-induced acute lung injury (ALI) model, we aimed to determine whether regulation of ER stress in the LPS-induced ALI model was associated with the lung defensive role of PHC. Adult male SD rats were administered LPS (5 mg/kg, intratracheally) followed by PHC (1.0 mg/kg, intravenously) for 24 h. The NR8383 alveolar macrophages were randomly separated into Sham, LPS (100 ng/mL), and PHC (1, 2.5, or 5 μg/mL) + LPS groups. PHC (1, 2.5, or 5 μg/mL) + LPS groups were treated with PHC alone for 1 h after LPS exposure. Posttreatment with PHC relieved LPS-induced pulmonary impairment and blocked LPS-mediated lung apoptosis, indicated by the downregulation of the lung apoptotic indicators malondialdehyde and superoxide dismutase in serum at 24 h after LPS-induced ALI. PHC (1-5 μg/mL) did not influence the activity of cultivated NR8383 alveolar macrophages in vitro. However, postconditioning with PHC dosage-dependently reduced LPS-mediated cell apoptosis. Additionally, many studies have indicated that PHC administration inhibits ER stress and initiates hairy and enhancer of split 1 (Hes1)/(Notch1) signaling by decreasing phosphorylated α subunit of eukaryotic initiation factor 2α (p-eIF2α)/eukaryotic translation initiation factor 2α (eIF2α) and Phospho-protein kinase R-like ER kinase (p-PERK)/ protein kinase R-like ER kinase (PERK) proportions; inhibiting C/EBP-homologous protein (CHOP), activating transcription factor 4 (ATF4), caspase-3, and Bcl2-associated x (Bax) activity; and enhancing notch1 intracellular domain (NICD), Notch1, B-cell lymphoma-2 (Bcl-2), and Hes1 activity in vivo and in vitro. In addition, the defensive functions of PHC on LPS-activated NR8383 alveolar macrophages were abrogated through the Notch1 pathway antagonist [(3,5-difluorophenacetyl)-1-alanyl] -phenylglycine-butyl ester (DAPT). In conclusion, PHC alleviates LPS-induced ALI by ameliorating ER stress-mediated apoptosis and promoting Hes1/Notch1 signaling in vivo and in vitro.
Collapse
Affiliation(s)
- Junting Weng
- Department of Critical Care Medicine, The Affiliated Hospital of Putian University, Putian 351100, China
| | - Min Chen
- Department of Critical Care Medicine, The Affiliated Hospital of Putian University, Putian 351100, China
| | - Qunying Lin
- Department of Respiratory and Critical Care, The Affiliated Hospital of Putian University, Putian 351100, China
| | - Jianfei Chen
- Department of Critical Care Medicine, The Affiliated Hospital of Putian University, Putian 351100, China
| | - ShanZuan Wang
- Department of Respiratory and Critical Care, The Affiliated Hospital of Putian University, Putian 351100, China
| | - Dexiang Fang
- Department of Critical Care Medicine, The Affiliated Hospital of Putian University, Putian 351100, China.
| |
Collapse
|
7
|
Kain V, Halade GV. Immune responsive resolvin D1 programs peritoneal macrophages and cardiac fibroblast phenotypes in diversified metabolic microenvironment. J Cell Physiol 2018; 234:3910-3920. [PMID: 30191990 DOI: 10.1002/jcp.27165] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 07/11/2018] [Indexed: 12/20/2022]
Abstract
Bioactive lipid mediators derived from n-3 and n-6 fatty acids are known to modulate leukocytes. Metabolic transformation of essential fatty acids to endogenous bioactive molecules plays a major role in human health. Here we tested the potential of substrates; linoleic acid (LA) and docosahexaenoic acid (DHA) and their bioactive products; resolvin D1 (RvD1) and 12- S-hydroxyeicosatetraenoic acids (HETE) to modulate macrophage plasticity and cardiac fibroblast phenotype in presence or absence of lipid metabolizing enzyme 12/15-lipoxygenase (LOX). Peritoneal macrophages and cardiac fibroblasts were isolated from wild-type (C57BL/6J) and 12/15LOX -/- mice and treated with DHA, LA, 12(S)-HETE, and RvD1 for 4, 8, 12, and 24 hr. LA, DHA, 12(S)-HETE, and RvD1 elicited mRNA expression of proinflammatory markers; tumor necrosis factor-α ( Tnf-α), interleukin 6 ( IL-6), chemokine (C-C motif) ligand 2 (Ccl2), and IL-1β in wild type (WT) and in 12/15LOX -/- macrophages at early time point (4 hr). Bioactive immunoresolvent RvD1 lowered the levels of Tnf-α, IL-6, and IL-1β at 24 hr time point. Both DHA and RvD1 stimulated the proresolving markers such as arginase 1 ( Arg-1), chitinase-like protein 3 ( Ym-1), and mannose receptor C-type 1 in WT macrophage. RvD1 induced proresolving phenotype Arg-1 expression in both WT 12/15LOX -/- macrophages even in presence of 12(S)-HETE. RvD1 peaked 5LOX expression in both WT and 12/15LOX -/- at 24 hr time point compared with DHA. RvD1 diminished cyclooxygenase-2 but upregulated 5LOX expression in fibroblast compared with DHA. In summary, the feed-forward enzymatic interaction with fatty acids substrates and direct mediators (RvD1 and 12(S)-HETE) are responsive in determining macrophages phenotype and cardiac fibroblast plasticity. Particularly, macrophages and fibroblast phenotypes are responsive to milieu and RvD1 governs the milieu-dependent chemokine signaling in presence or absence of 12/15LOX enzyme to resolve inflammation.
Collapse
Affiliation(s)
- Vasundhara Kain
- Division of Cardiovascular Disease, Department of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Ganesh V Halade
- Division of Cardiovascular Disease, Department of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
8
|
Oja AE, Piet B, Helbig C, Stark R, van der Zwan D, Blaauwgeers H, Remmerswaal EBM, Amsen D, Jonkers RE, Moerland PD, Nolte MA, van Lier RAW, Hombrink P. Trigger-happy resident memory CD4 + T cells inhabit the human lungs. Mucosal Immunol 2018; 11:654-667. [PMID: 29139478 DOI: 10.1038/mi.2017.94] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 09/18/2017] [Indexed: 02/04/2023]
Abstract
Resident memory T cells (TRM) reside in the lung epithelium and mediate protective immunity against respiratory pathogens. Although lung CD8+ TRM have been extensively characterized, the properties of CD4+ TRM remain unclear. Here we determined the transcriptional signature of CD4+ TRM, identified by the expression of CD103, retrieved from human lung resection material. Various tissue homing molecules were specifically upregulated on CD4+ TRM, whereas expression of tissue egress and lymph node homing molecules were low. CD103+ TRM expressed low levels of T-bet, only a small portion expressed Eomesodermin (Eomes), and although the mRNA levels for Hobit were increased, protein expression was absent. On the other hand, the CD103+ TRM showed a Notch signature. CD4+CD103+ TRM constitutively expressed high transcript levels of numerous cytotoxic mediators that was functionally reflected by a fast recall response, magnitude of cytokine production, and a high degree of polyfunctionality. Interestingly, the superior cytokine production appears to be because of an accessible interferon-γ (IFNγ) locus and was partially because of rapid translation of preformed mRNA. Our studies provide a molecular understanding of the maintenance and potential function of CD4+ TRM in the human lung. Understanding the specific properties of CD4+ TRM is required to rationally improve vaccine design.
Collapse
Affiliation(s)
- A E Oja
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam, The Netherlands
| | - B Piet
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam, The Netherlands.,Department of Respiratory Medicine, OLVG, Amsterdam, The Netherlands
| | - C Helbig
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam, The Netherlands
| | - R Stark
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam, The Netherlands
| | - D van der Zwan
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam, The Netherlands
| | - H Blaauwgeers
- Department of Pathology, OLVG, Amsterdam, The Netherlands
| | - E B M Remmerswaal
- Department of Experimental Immunology, Academic Medical Center, Amsterdam, The Netherlands.,Renal Transplant Unit, Division of Internal Medicine, Academic Medical Center, Amsterdam The Netherlands
| | - D Amsen
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam, The Netherlands
| | - R E Jonkers
- Department of Respiratory Medicine, Academic Medical Center, Amsterdam, The Netherlands
| | - P D Moerland
- Department of Clinical Epidemiology, Biostatistics and Bioinformatics and Department of Immunology, Academic Medical Center, Amsterdam, The Netherlands
| | - M A Nolte
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam, The Netherlands
| | - R A W van Lier
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam, The Netherlands
| | - P Hombrink
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam, The Netherlands
| |
Collapse
|
9
|
Cai M, Zhang W, Weng Z, Stetler RA, Jiang X, Shi Y, Gao Y, Chen J. Promoting Neurovascular Recovery in Aged Mice after Ischemic Stroke - Prophylactic Effect of Omega-3 Polyunsaturated Fatty Acids. Aging Dis 2017; 8:531-545. [PMID: 28966799 PMCID: PMC5614319 DOI: 10.14336/ad.2017.0520] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 05/20/2017] [Indexed: 12/17/2022] Open
Abstract
The aged population is among the highest at risk for ischemic stroke, yet most stroke patients of advanced ages (>80 years) are excluded from access to thrombolytic treatment by tissue plasminogen activator, the only FDA approved pharmacological therapy for stroke victims. Omega-3 polyunsaturated fatty acids (n-3 PUFAs) robustly alleviate ischemic brain injury in young adult rodents, but have not yet been studied in aged animals. This study investigated whether chronic dietary supplementation of n-3 PUFAs protects aging brain against cerebral ischemia and improves long-term neurological outcomes. Aged (18-month-old) mice were administered n-3 PUFA-enriched fish oil in daily chow for 3 months before and up to 8 weeks after 45 minutes of transient middle cerebral artery occlusion (tMCAO). Sensorimotor outcomes were assessed by cylinder test and corner test up to 35 days and brain repair dynamics evaluated immunohistologically up to 56 days after tMCAO. Mice receiving dietary supplementation of n-3 PUFAs for 3 months showed significant increases in brain ratio of n-3/n-6 PUFA contents, and markedly reduced long-term sensorimotor deficits and chronic ischemic brain tissue loss after tMCAO. Mechanistically, n-3 PUFAs robustly promoted post-ischemic angiogenesis and neurogenesis, and enhanced white matter integrity after tMCAO. The Pearson linear regression analysis revealed that the enhancement of neurogenesis and white matter integrity both correlated positively with improved sensorimotor activities after tMCAO. This study demonstrates that prophylactic dietary supplementation of n-3 PUFAs effectively improves long-term stroke outcomes in aged mice, perhaps by promoting post-stroke brain repair processes such as angiogenesis, neurogenesis, and white matter restoration.
Collapse
Affiliation(s)
- Mengfei Cai
- 1State Key Laboratory of Medical Neurobiology and Institute of Brain Sciences, and Collaborative Innovation Center, Fudan University, Shanghai 200032, China
| | - Wenting Zhang
- 1State Key Laboratory of Medical Neurobiology and Institute of Brain Sciences, and Collaborative Innovation Center, Fudan University, Shanghai 200032, China
| | - Zhongfang Weng
- 2Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - R Anne Stetler
- 1State Key Laboratory of Medical Neurobiology and Institute of Brain Sciences, and Collaborative Innovation Center, Fudan University, Shanghai 200032, China.,2Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA.,3Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA 15261, USA
| | - Xiaoyan Jiang
- 2Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Yejie Shi
- 2Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA.,3Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA 15261, USA
| | - Yanqin Gao
- 1State Key Laboratory of Medical Neurobiology and Institute of Brain Sciences, and Collaborative Innovation Center, Fudan University, Shanghai 200032, China.,2Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Jun Chen
- 1State Key Laboratory of Medical Neurobiology and Institute of Brain Sciences, and Collaborative Innovation Center, Fudan University, Shanghai 200032, China.,2Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA.,3Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA 15261, USA
| |
Collapse
|
10
|
Surate Solaligue DE, Rodríguez-Castillo JA, Ahlbrecht K, Morty RE. Recent advances in our understanding of the mechanisms of late lung development and bronchopulmonary dysplasia. Am J Physiol Lung Cell Mol Physiol 2017; 313:L1101-L1153. [PMID: 28971976 DOI: 10.1152/ajplung.00343.2017] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 09/21/2017] [Accepted: 09/23/2017] [Indexed: 02/08/2023] Open
Abstract
The objective of lung development is to generate an organ of gas exchange that provides both a thin gas diffusion barrier and a large gas diffusion surface area, which concomitantly generates a steep gas diffusion concentration gradient. As such, the lung is perfectly structured to undertake the function of gas exchange: a large number of small alveoli provide extensive surface area within the limited volume of the lung, and a delicate alveolo-capillary barrier brings circulating blood into close proximity to the inspired air. Efficient movement of inspired air and circulating blood through the conducting airways and conducting vessels, respectively, generates steep oxygen and carbon dioxide concentration gradients across the alveolo-capillary barrier, providing ideal conditions for effective diffusion of both gases during breathing. The development of the gas exchange apparatus of the lung occurs during the second phase of lung development-namely, late lung development-which includes the canalicular, saccular, and alveolar stages of lung development. It is during these stages of lung development that preterm-born infants are delivered, when the lung is not yet competent for effective gas exchange. These infants may develop bronchopulmonary dysplasia (BPD), a syndrome complicated by disturbances to the development of the alveoli and the pulmonary vasculature. It is the objective of this review to update the reader about recent developments that further our understanding of the mechanisms of lung alveolarization and vascularization and the pathogenesis of BPD and other neonatal lung diseases that feature lung hypoplasia.
Collapse
Affiliation(s)
- David E Surate Solaligue
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; and.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, German Center for Lung Research, Giessen, Germany
| | - José Alberto Rodríguez-Castillo
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; and.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, German Center for Lung Research, Giessen, Germany
| | - Katrin Ahlbrecht
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; and.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, German Center for Lung Research, Giessen, Germany
| | - Rory E Morty
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; and .,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, German Center for Lung Research, Giessen, Germany
| |
Collapse
|
11
|
Griffiths HR, Gao D, Pararasa C. Redox regulation in metabolic programming and inflammation. Redox Biol 2017; 12:50-57. [PMID: 28212523 PMCID: PMC5312548 DOI: 10.1016/j.redox.2017.01.023] [Citation(s) in RCA: 192] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 01/25/2017] [Accepted: 01/31/2017] [Indexed: 12/27/2022] Open
Abstract
Energy metabolism and redox state are intrinsically linked. In order to mount an adequate immune response, cells must have an adequate and rapidly available energy resource to migrate to the inflammatory site, to generate reactive oxygen species using NADPH as a cofactor and to engulf bacteria or damaged tissue. The first responder cells of the innate immune response, neutrophils, are largely dependent on glycolysis. Neutrophils are relatively short-lived, dying via apoptosis in the process of bacterial killing through production of hypochlorous acid and release of extracellular NETs. Later on, the most prevalent recruited innate immune cells are monocytes. Their role is to complete a damage limitation exercise initiated by neutrophils and then, as re-programmed M2 macrophages, to resolve the inflammatory event. Almost twenty five years ago, it was noted that macrophages lose their glycolytic capacity and become anti-inflammatory after treatment with corticosteroids. In support of this we now understand that, in contrast to early responders, M2 macrophages are predominantly dependent on oxidative phosphorylation for energy. During early inflammation, polarisation towards M1 macrophages is dependent on NOX2 activation which, via protein tyrosine phosphatase oxidation and AKT activation, increases trafficking of glucose transporters to the membrane and consequently increases glucose uptake for glycolysis. In parallel, mitochondrial efficiency is likely to be compromised via nitrosylation of the electron transport chain. Resolution of inflammation is triggered by encounter with apoptotic membranes exposing oxidised phosphatidylserine that interact with the scavenger receptor, CD36. Downstream of CD36, activation of AMPK and PPARγ elicits mitochondrial biogenesis, arginase expression and a switch towards oxidative phosphorylation in the M2 macrophage. Proinflammatory cytokine production by M2 cells decreases, but anti-inflammatory and wound healing growth factor production is maintained to support restoration of normal function.
Collapse
Affiliation(s)
- Helen R Griffiths
- Departments of Biochemical and Nutritional Sciences, Faculty of Health & Medical Sciences, University of Surrey, Guildford GU2 7XH, United Kingdom.
| | - Dan Gao
- Life Sciences, Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Chathyan Pararasa
- Life & Health Sciences, Aston University, Birmingham B4 7ET, United Kingdom
| |
Collapse
|
12
|
Impairment of systemic DHA synthesis affects macrophage plasticity and polarization: implications for DHA supplementation during inflammation. Cell Mol Life Sci 2017; 74:2815-2826. [PMID: 28299384 PMCID: PMC5491590 DOI: 10.1007/s00018-017-2498-9] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 02/15/2017] [Accepted: 02/28/2017] [Indexed: 02/06/2023]
Abstract
Docosahexaenoic acid (DHA) is an omega-3 fatty acid obtained from the diet or synthesized from alpha-linolenic acid through the action of fatty acid elongases (ELOVL) and desaturases. DHA plays important roles in the central nervous system as well as in peripheral organs and is the precursor of several molecules that regulate resolution of inflammation. In the present study, we questioned whether impaired synthesis of DHA affected macrophage plasticity and polarization both in vitro and in vivo models. For this we investigated the activation status and inflammatory response of bone marrow-derived M1 and M2 macrophages obtained from mice deficient of Elovl2 (Elovl2−/−), a key enzyme for DHA synthesis in mammals. Although both wild type and Elovl2−/− mice were able to generate efficient M1 and M2 macrophages, M1 cells derived from Elovl2−/− mice showed an increased expression of key markers (iNOS, CD86 and MARCO) and cytokines (IL-6, IL-12 and IL-23). However, M2 macrophages exhibited upregulated M1-like markers like CD80, CD86 and IL-6, concomitantly with a downregulation of their signature marker CD206. These effects were counteracted in cells obtained from DHA-supplemented animals. Finally, white adipose tissue of Elovl2−/− mice presented an M1-like pro-inflammatory phenotype. Hence, impairment of systemic DHA synthesis delineates an alteration of M1/M2 macrophages both in vitro and in vivo, with M1 being hyperactive and more pro-inflammatory while M2 less protective, supporting the view that DHA has a key role in controlling the balance between pro- and anti-inflammatory processes.
Collapse
|
13
|
Vijayan V, Srinu T, Karnati S, Garikapati V, Linke M, Kamalyan L, Mali SR, Sudan K, Kollas A, Schmid T, Schulz S, Spengler B, Weichhart T, Immenschuh S, Baumgart-Vogt E. A New Immunomodulatory Role for Peroxisomes in Macrophages Activated by the TLR4 Ligand Lipopolysaccharide. THE JOURNAL OF IMMUNOLOGY 2017; 198:2414-2425. [PMID: 28179495 DOI: 10.4049/jimmunol.1601596] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 01/16/2017] [Indexed: 01/11/2023]
Abstract
Peroxisomes are proposed to play an important role in the regulation of systemic inflammation; however, the functional role of these organelles in inflammatory responses of myeloid immune cells is largely unknown. In this article, we demonstrate that the nonclassical peroxisome proliferator 4-phenyl butyric acid is an efficient inducer of peroxisomes in various models of murine macrophages, such as primary alveolar and peritoneal macrophages and the macrophage cell line RAW264.7, but not in primary bone marrow-derived macrophages. Further, proliferation of peroxisomes blocked the TLR4 ligand LPS-induced proinflammatory response, as detected by the reduced induction of the proinflammatory protein cyclooxygenase (COX)-2 and the proinflammatory cytokines TNF-α, IL-6, and IL-12. In contrast, disturbing peroxisome function by knockdown of peroxisomal gene Pex14 or Mfp2 markedly increased the LPS-dependent upregulation of the proinflammatory proteins COX-2 and TNF-α. Specifically, induction of peroxisomes did not affect the upregulation of COX-2 at the mRNA level, but it reduced the half-life of COX-2 protein, which was restored by COX-2 enzyme inhibitors but not by proteasomal and lysosomal inhibitors. Liquid chromatography-tandem mass spectrometry analysis revealed that various anti-inflammatory lipid mediators (e.g., docosahexaenoic acid) were increased in the conditioned medium from peroxisome-induced macrophages, which blocked LPS-induced COX-2 upregulation in naive RAW264.7 cells and human primary peripheral blood-derived macrophages. Importantly, LPS itself induced peroxisomes that correlated with the regulation of COX-2 during the late phase of LPS activation in macrophages. In conclusion, our findings identify a previously unidentified role for peroxisomes in macrophage inflammatory responses and suggest that peroxisomes are involved in the physiological cessation of macrophage activation.
Collapse
Affiliation(s)
- Vijith Vijayan
- Institute for Anatomy and Cell Biology II, Medical Cell Biology, Justus Liebig University Giessen, 35392 Giessen, Germany.,Institute for Transfusion Medicine, Hannover Medical School, 30625 Hannover, Germany
| | - Tumpara Srinu
- Institute for Anatomy and Cell Biology II, Medical Cell Biology, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Srikanth Karnati
- Institute for Anatomy and Cell Biology II, Medical Cell Biology, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Vannuruswamy Garikapati
- Institute for Anatomy and Cell Biology II, Medical Cell Biology, Justus Liebig University Giessen, 35392 Giessen, Germany.,Institute of Inorganic and Analytical Chemistry, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Monika Linke
- Institute of Medical Genetics, Medical University of Vienna, 1090 Vienna, Austria; and
| | - Lilit Kamalyan
- Institute for Anatomy and Cell Biology II, Medical Cell Biology, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Srihari Reddy Mali
- Institute for Anatomy and Cell Biology II, Medical Cell Biology, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Kritika Sudan
- Institute for Transfusion Medicine, Hannover Medical School, 30625 Hannover, Germany
| | - Andreas Kollas
- Institute for Anatomy and Cell Biology II, Medical Cell Biology, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Tobias Schmid
- Institute of Biochemistry I, Faculty of Medicine, Goethe University Frankfurt, 60596 Frankfurt, Germany
| | - Sabine Schulz
- Institute of Inorganic and Analytical Chemistry, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Bernhard Spengler
- Institute of Inorganic and Analytical Chemistry, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Thomas Weichhart
- Institute of Medical Genetics, Medical University of Vienna, 1090 Vienna, Austria; and
| | - Stephan Immenschuh
- Institute for Transfusion Medicine, Hannover Medical School, 30625 Hannover, Germany
| | - Eveline Baumgart-Vogt
- Institute for Anatomy and Cell Biology II, Medical Cell Biology, Justus Liebig University Giessen, 35392 Giessen, Germany;
| |
Collapse
|
14
|
Cai Z, Zhao B, Deng Y, Shangguan S, Zhou F, Zhou W, Li X, Li Y, Chen G. Notch signaling in cerebrovascular diseases (Review). Mol Med Rep 2016; 14:2883-98. [PMID: 27574001 PMCID: PMC5042775 DOI: 10.3892/mmr.2016.5641] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Accepted: 07/22/2016] [Indexed: 12/30/2022] Open
Abstract
The Notch signaling pathway is a crucial regulator of numerous fundamental cellular processes. Increasing evidence suggests that Notch signaling is involved in inflammation and oxidative stress, and thus in the progress of cerebrovascular diseases. In addition, Notch signaling in cerebrovascular diseases is associated with apoptosis, angiogenesis and the function of blood-brain barrier. Despite the contradictory results obtained to date as to whether Notch signaling is harmful or beneficial, the regulation of Notch signaling may provide a novel strategy for the treatment of cerebrovascular diseases.
Collapse
Affiliation(s)
- Zhiyou Cai
- Department of Neurology, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Bin Zhao
- Department of Neurology, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Yanqing Deng
- Department of Neurology, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Shouqin Shangguan
- Department of Neurology, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Faming Zhou
- Department of Neurology, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Wenqing Zhou
- Department of Neurology, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Xiaoli Li
- Department of Neurology, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Yanfeng Li
- Department of Neurology, Peking Union Medical College Hospital, Beijing 100730, P.R. China
| | - Guanghui Chen
- Department of Neurology, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| |
Collapse
|