1
|
Guo P, Hao E, Li H, Yang X, Lu P, Qiao H. Expression Pattern and Ligand Binding Characteristics Analysis of Chemosensory Protein SnitCSP2 from Sirex nitobei. INSECTS 2023; 14:583. [PMID: 37504589 PMCID: PMC10380366 DOI: 10.3390/insects14070583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/16/2023] [Accepted: 06/19/2023] [Indexed: 07/29/2023]
Abstract
Sirex nitobei is an important wood-boring wasp to conifers native to Asia, causing considerable economic and ecological damage. However, the current control means cannot achieve better efficiency, and it is expected to clarify the molecular mechanism of protein-ligand binding for effective pest control. This study analyzed the expression pattern of CSP2 in S. nitobei (SnitCSP2) and its features of binding to the screened ligands using molecular docking and dynamic simulations. The results showed that SnitCSP2 was significantly expressed in female antennae. Molecular docking and dynamic simulations revealed that SnitCSP2 bound better to the host plant volatile (+)-α-pinene and symbiotic fungal volatiles terpene and (-)-globulol than other target ligands. By the molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) method, the free binding energies of the three complexes were calculated as -44.813 ± 0.189 kJ/mol, -50.446 ± 0.396 kJ/mol, and -56.418 ± 0.368 kJ/mol, and the van der Waals energy was found to contribute significantly to the stability of the complexes. Some key amino acid residues were also identified: VAL13, GLY14, LYS61, MET65, and LYS68 were important for the stable binding of (+)-α-pinene by SnitCSP2, while for terpenes, ILE16, ALA25, TYR26, CYS29, GLU39, THR37, and GLY40 were vital for a stable binding system. We identified three potential ligands and analyzed the interaction patterns of the proteins with them to provide a favorable molecular basis for regulating insect behavioral interactions and developing new pest control strategies.
Collapse
Affiliation(s)
- Pingping Guo
- The Key Laboratory for Silviculture and Conservation of the Ministry of Education, School of Forestry, Beijing Forestry University, Beijing 100083, China
| | - Enhua Hao
- The Key Laboratory for Silviculture and Conservation of the Ministry of Education, School of Forestry, Beijing Forestry University, Beijing 100083, China
| | - Han Li
- The Key Laboratory for Silviculture and Conservation of the Ministry of Education, School of Forestry, Beijing Forestry University, Beijing 100083, China
| | - Xi Yang
- The Key Laboratory for Silviculture and Conservation of the Ministry of Education, School of Forestry, Beijing Forestry University, Beijing 100083, China
| | - Pengfei Lu
- The Key Laboratory for Silviculture and Conservation of the Ministry of Education, School of Forestry, Beijing Forestry University, Beijing 100083, China
| | - Haili Qiao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| |
Collapse
|
2
|
Tian Z, Li R, Cheng S, Zhou T, Liu J. The Mythimna separata general odorant binding protein 2 (MsepGOBP2) is involved in the larval detection of the sex pheromone (Z)-11-hexadecenal. PEST MANAGEMENT SCIENCE 2023; 79:2005-2016. [PMID: 36680502 DOI: 10.1002/ps.7373] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 01/15/2023] [Accepted: 01/21/2023] [Indexed: 05/03/2023]
Abstract
BACKGROUND Mythimna separata is a notorious pest causing crop damages at the larval stage. Gaining insight into larval olfaction mechanisms would provide knowledge for olfaction-based management of M. separata larvae. RESULTS In the present research, (Z)-11-hexadecenal (Z11-16: Ald), a major component of M. separata sex pheromone, was found to attract early-instar larvae of M. separata in a food context. Using a fluorescent binding assay, we found that M. separata general odorant binding protein 2 (MsepGOBP2) exhibited high binding affinity to Z11-16: Ald. Further, silencing of MsepGOBP2 resulted in a sharp reduction of the response to Z11-16: Ald, which could not be mitigated by increasing the concentration of Z11-16: Ald. Additionally, we employed molecular dynamics-based approaches to unravel the interaction details between MsepGOBP2 and Z11-16: Ald, specifically the binding of Z11-16: Ald to MsepGOBP2. CONCLUSION Z11-16: Ald is attractive to early-instar larvae of M. separata, and MsepGOBP2 is identified to be indispensable in the larval detection of Z11-16: Ald. These results could aid in the development of olfaction-based methods for controlling M. separata in the larval stage. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhen Tian
- Key Laboratory of Plant Protection Resources and Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Ruichi Li
- Key Laboratory of Plant Protection Resources and Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Shichang Cheng
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Tong Zhou
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Jiyuan Liu
- Key Laboratory of Plant Protection Resources and Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, China
| |
Collapse
|
3
|
Cui Z, Liu Y, Wang G, Zhou Q. Identification and functional analysis of a chemosensory protein from Bactrocera minax (Diptera: Tephritidae). PEST MANAGEMENT SCIENCE 2022; 78:3479-3488. [PMID: 35567397 DOI: 10.1002/ps.6988] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 05/07/2022] [Accepted: 05/14/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Olfaction has an indispensable role in insect behavior, enabling location of suitable host plants and oviposition sites, finding mates and evasion of natural enemies. Chemosensory proteins (CSPs) function to screen external odorants and transport them to olfactory receptor neurons, thereby increasing the sensitivity of the olfactory system. At present, CSP genes have been identified in many insect species, but there are relatively few studies on the function of CSP, especially in Tephritidae. RESULTS In this study, we sequenced and analyzed 12 transcriptomes of Bactrocera minax and identified five CSP genes. The results of polymerase chain reactions with reverse transcription showed that BminCSP3 was highly expressed only in antennae. Results from competitive binding experiments showed that BminCSP3 has good binding ability to citral compared with 23 other volatile organic compounds. The docking model with citral showed hydrogen bond formation with residues (ARG97); however, no hydrogen bonds were formed in the docking of five other ligands (furfuryl alcohol, linalool, cis-3-hexenyl acetate, (R)-(+)-limonene and (+)-carvone). Electroantennogram (EAG) analyses revealed that citral was active in B. minax at the antennal level, and the EAG response value of female adults was significantly higher than that of male adults. Furthermore, the results of behavioral bioassays showed that females were significantly attracted to citral. CONCLUSION Our results suggest that BminCSP3 plays an important role in the recognition of citral by B. minax adults. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhongyi Cui
- College of Life Sciences, Hunan Normal University, Changsha, China
| | - Yipeng Liu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Guirong Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Qiong Zhou
- College of Life Sciences, Hunan Normal University, Changsha, China
| |
Collapse
|
4
|
Liu J, Zhou T, Li R, Tian Z. Structural insights into the discrepant synergistic activity of Codlemone and (Z)-8-dodecenol towards Grapholita molesta pheromones. PEST MANAGEMENT SCIENCE 2022; 78:1953-1962. [PMID: 35085422 DOI: 10.1002/ps.6813] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/20/2021] [Accepted: 01/22/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Insect pheromone synergists have been widely used to produce potent pheromone products for environment-friendly pest control. Codlemone (Cod) and (Z)-8-dodecenol (Dod) are two major Grapholita molesta pheromone synergists, with Cod having greater synergism and affinity for G. molesta pheromone binding protein 2 (GmolPBP2). Uncovering structural information key to the different binding affinity of Cod and Dod to GmolPBP2 would gain insights into what causes their synergy activity discrepancy. RESULTS Binding modes of the two synergists in the binding pocket of GmolPBP2 were analyzed and compared by molecular dynamics-based approaches. Although Cod and Dod were stabilized in a similar hydrophobic pocket, their interaction details with GmolPBP2 were divergent due to the extra double bond (C10═C11) in Cod. The C10═C11 improved the hydrophobic interactions of Cod with around residues. Such hydrophobic interaction improvement was also reflected in the raised importance of Phe11 in the GmolPBP2-Cod interaction. Not only that, the increased hydrophobic forces introduced by the C10═C11 changed the CH2-OH orientation in the GmolPBP2-Cod complex, which improved the H-bond interaction. Electrostatic complementarity analysis further indicated the positive role of C10═C11 in optimizing GmolPBP2-Cod interaction. CONCLUSION The C10═C11 is thought to contribute greatly to Cod's stronger synergy as a group key to the higher GmolPBP2-affinity, based on which the improvement directions for Cod and Dod were addressed as well. Our findings will aid in the development and optimization of more effective pheromone synergists, resulting in more effective pheromone-based pest management.
Collapse
Affiliation(s)
- Jiyuan Liu
- Key Laboratory of Plant Protection Resources & Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Tong Zhou
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Ruichi Li
- Key Laboratory of Plant Protection Resources & Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Zhen Tian
- Key Laboratory of Plant Protection Resources & Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, China
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| |
Collapse
|
5
|
Liu J, Zhou T, Li C, Li R, Ye X, Tian Z. Reverse chemical ecology guides the screening for Grapholita molesta pheromone synergists. PEST MANAGEMENT SCIENCE 2022; 78:643-652. [PMID: 34658157 DOI: 10.1002/ps.6674] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/28/2021] [Accepted: 10/17/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Pheromone-based management is a leading nonpesticidal strategy among integrated pest management options. Improving the potency of pheromone products by adding synergists would be a practical way to popularize pheromone-based management as well as to reduce pesticide use. RESULTS Using reverse chemical ecology, synergists for Grapholita molesta sex pheromone were screened. Combined molecular docking and in vitro binding assay led to the determination of four potentially active odorants showing high affinity to G. molesta pheromone binding protein 2 (GmolPBP2). Thereafter, the high affinity between Codlemone and GmolPBP2 was further verified by exploration of GmolPBP2-Codlemone interactions. As the only sex pheromone synergist validated by both laboratory behavioral tests and field trapping, Codlemone was used to optimize commercial sex attractants currently used in G. molesta control. The recommended formulation [(Z)-8-dodecenyl acetate:(E)-8-dodecenyl acetate:Codlemone = 95:4:10] was found to trap about five to six times more G. molesta adults than the commercial sex attractant [(Z)-8-dodecenyl acetate:(E)-8-dodecenyl acetate: (Z)-8-dodecenol = 95:4:1]. CONCLUSION Codlemone is an excellent pheromone synergist that can be potentially sensed by GmolPBP2, which can remarkably improve the potency of G. molesta sex attractants. It is believed that the introduction of reverse chemical ecology would increase the chance of discovering pheromone synergists, promoting the development of more efficacious pheromone products that can be used in controlling G. molesta and beyond. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jiyuan Liu
- Key Laboratory of Plant Protection Resources & Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Tong Zhou
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Chaoxia Li
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Ruichi Li
- Key Laboratory of Plant Protection Resources & Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Xuan Ye
- Key Laboratory of Plant Protection Resources & Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Zhen Tian
- Key Laboratory of Plant Protection Resources & Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, China
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| |
Collapse
|
6
|
Younas A, Waris MI, Shaaban M, Tahir Ul Qamar M, Wang MQ. Appraisal of MsepCSP14 for chemosensory functions in Mythimna separata. INSECT SCIENCE 2022; 29:162-176. [PMID: 33822484 DOI: 10.1111/1744-7917.12909] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 01/31/2021] [Accepted: 02/04/2021] [Indexed: 06/12/2023]
Abstract
Chemosensory proteins (CSPs) have great contributions in performing diverse functions in insects. However, physiological appraisal of chemosensory protein genes still remains elusive in insects. We studied expression patterns and binding affinities of MsepCSP14, a chemosensory protein, in Mythimna separata. The distinct functions of MsepCSP14 were validated by employing different molecular techniques. The MsepCSP14 had high resemblance of sequence with chemosensory proteins of other insect family members. The MsepCSP14 expression was higher in antennal tissues of females than other tissues. Fluorescence binding assay validated that binding of nine out of 21 ligands to MsepCSP14 was higher at pH 7.4 than at pH 5.0. Three dimensional modeling (3D) and docking analysis predicted that amino acid residues of MsepCSP14 were involved in binding of compounds, and behavior assay displayed that adults of M. separata considerably responded to four volatiles from compounds demonstrating strong binding ability to MsepCSP14. Results of the present study suggest that MsepCSP14 is likely to mediate chemosensory functions in M. separata.
Collapse
Affiliation(s)
- Aneela Younas
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Muhammad Irfan Waris
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Muhammad Shaaban
- Department of Soil Science, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan, Pakistan
| | - Muhammad Tahir Ul Qamar
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, 530005, China
| | - Man-Qun Wang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
7
|
Exploring disordered loops in DprE1 provides a functional site to combat drug-resistance in Mycobacterium strains. Eur J Med Chem 2021; 227:113932. [PMID: 34700267 DOI: 10.1016/j.ejmech.2021.113932] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/30/2021] [Accepted: 10/15/2021] [Indexed: 11/21/2022]
Abstract
As an anti-tuberculosis target, DprE1 contains two flexible loops (Loop I and Loop II) which have never been exploited for developing DprE1 inhibitors. Here Leu317 in Loop II was discovered as a new functional site to combat drug-resistance in Mycobacterium strains. Based on TCA1, LZDT1 was designed to optimize the hydrophobic interaction with Leu317. A subsequent biochemical and cellular assay displayed increased potency of LZDT1 in inhibiting DprE1 and killing drug-sensitive/-resistant Mycobacterium strains. The improved activity of LZDT1 and its analogue LZDT2 against multidrug resistant tuberculosis was particularly highlighted. For LZDT1, its enhanced interaction with Leu317 also impaired the drug-insensitivity of DprE1 caused by Cys387 mutation. A new nonbenzothiazole lead (LZDT10) with reduced Cys387-dependence was further produced by optimizing interactions with Leu317, improvement directions for LZDT10 were discussed as well. Our research underscores the value of potential functional sites in disordered loops, and affords a feasible way to develop these functional sites into opportunities for drug-resistance management.
Collapse
|
8
|
Zhang C, Tang B, Zhou T, Yu X, Hu M, Dai W. Involvement of Chemosensory Protein BodoCSP1 in Perception of Host Plant Volatiles in Bradysia odoriphaga. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:10797-10806. [PMID: 34503327 DOI: 10.1021/acs.jafc.1c02807] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Chemosensory proteins (CSPs) can bind and transport odorant molecules and play important roles in insect chemoreception. In this study, we focused on the roles of a chemosensory protein (BodoCSP1) in perception of host plant volatiles in Bradysia odoriphaga. The expression of BodoCSP1 was significantly higher in adults than in larvae and pupae, without a significant difference between male and female adults. Recombinant protein BodoCSP1 exhibited relatively high binding affinities to 9 out of 10 tested ligands (Ki < 10 μM). Behavioral assays revealed that adults of B. odoriphaga showed a significant preference for five compounds. The predicted three-dimensional (3D) structure of BodoCSP1 has the typical six α-helices that form the hydrophobic ligand-binding pocket. Molecular docking and site-directed mutagenesis combined with ligand-binding assays indicated that Val48 and Thr66 may be the key binding site in BodoCSP1 for host plant volatiles. RNAi results indicated that dsBodoCSP1-treated adults showed significant reductions in response to diallyl disulfide, dipropyl disulfide, and allyl methyl disulfide. These results indicated that BodoCSP1 plays essential functions in the perception of host plant volatiles in B. odoriphaga.
Collapse
Affiliation(s)
- Chunni Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, and Key Laboratory of Plant Protection Resources and Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Bowen Tang
- State Key Laboratory of Crop Stress Biology for Arid Areas, and Key Laboratory of Plant Protection Resources and Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Taoling Zhou
- State Key Laboratory of Crop Stress Biology for Arid Areas, and Key Laboratory of Plant Protection Resources and Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xiaoting Yu
- State Key Laboratory of Crop Stress Biology for Arid Areas, and Key Laboratory of Plant Protection Resources and Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Manfei Hu
- State Key Laboratory of Crop Stress Biology for Arid Areas, and Key Laboratory of Plant Protection Resources and Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Wu Dai
- State Key Laboratory of Crop Stress Biology for Arid Areas, and Key Laboratory of Plant Protection Resources and Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| |
Collapse
|
9
|
Huang C, Zhang X, He D, Wu Q, Tang R, Xing L, Liu W, Wang W, Liu B, Xi Y, Yang N, Wan F, Qian W. Comparative Genomics Provide Insights Into Function and Evolution of Odorant Binding Proteins in Cydia pomonella. Front Physiol 2021; 12:690185. [PMID: 34305643 PMCID: PMC8294088 DOI: 10.3389/fphys.2021.690185] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 06/15/2021] [Indexed: 11/13/2022] Open
Abstract
Insect olfaction is vital for foraging, mating, host-seeking, and avoidance of predators/pathogens. In insects, odorant binding proteins (OBPs) are involved in transporting hydrophobic odor molecules from the external environment to receptor neurons. The codling moth, Cydia pomonella, one of the most destructive insect fruit pests, causes enormous economic losses. However, little is known about the number, variety, gains and losses, and evolution of OBP genes in C. pomonella. Here we report the identification of 40 OBPs in C. pomonella, most (75%) of which are classic OBPs, using genomic and transcriptomic analyses. Two OBP genes were lost in C. pomonella relative to possible distant ancestor in Lepidoptera lineage based on an analysis of gene gains and losses. The phylogenetic tree and chromosome location showed that the expansion of OBP genes mainly resulted from tandem duplications, as the CpomGOBP2 gene was duplicated twice along with loss of CpomPBPB. Two positive selection sites of the CpomGOBP1 gene were identified while other OBP genes evolved under purifying selection. Our results provide fundamental knowledge of OBP genes allowing further study of their function in C. pomonella.
Collapse
Affiliation(s)
- Cong Huang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Xue Zhang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Dongfeng He
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- Hubei Engineering Research Center for Pest Forewarning and Management, Yangtze University, Jingzhou, China
| | - Qiang Wu
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Rui Tang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| | - Longsheng Xing
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Wanxue Liu
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wenkai Wang
- Hubei Engineering Research Center for Pest Forewarning and Management, Yangtze University, Jingzhou, China
| | - Bo Liu
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Yu Xi
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Nianwan Yang
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fanghao Wan
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wanqiang Qian
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| |
Collapse
|
10
|
Li Y, Sun H, Tian Z, Li Y, Ye X, Li R, Li X, Zheng S, Liu J, Zhang Y. Identification of key residues of carboxylesterase PxEst-6 involved in pyrethroid metabolism in Plutella xylostella (L.). JOURNAL OF HAZARDOUS MATERIALS 2021; 407:124612. [PMID: 33338816 DOI: 10.1016/j.jhazmat.2020.124612] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/31/2020] [Accepted: 11/16/2020] [Indexed: 06/12/2023]
Abstract
The long-term and excessive use of insecticides has led to severe environmental problems and the evolution of insecticide resistance in insects. Carboxylesterases (CarEs) are important detoxification enzymes conferring insecticide resistance on insects. Herein, the detoxification process of Plutella xylostella (L.) carboxylesterase 6 (PxEst-6), one representative P. xylostella carboxylesterase, is investigated with cypermethrin, bifenthrin, cyfluthrin and λ-cyhalothrin. RT-qPCR shows that PxEst-6 is highly expressed in the midgut and cuticles of the third instar larvae. Exposure to pyrethroid insecticides resulted in PxEst-6 up-regulation in a short time. Metabolic assays indicate that PxEst-6 has the capacity to metabolize these pyrethroid insecticides. The combination of molecular docking, binding mode analyses and alanine mutations demonstrated that His451, Lys458 and Gln431 were key residues of PxEst-6 for metabolizing pyrethroids and the acetate groups derived from pyrethroids were key sites for being metabolized by PxEst-6. H451- and K458-derived hydrogen bond (H-bond) interactions with the pyrethroid acetate groups and the polar interactions with the pyrethroid acetate group provided by the Q431 sidechain were crucial to the pyrethroids' metabolism by PxEst-6. Our study contributes to revealing the reasons for pyrethroid resistance in P. xylostella, and provides a fundamental basis for the development of novel pyrethroid insecticides.
Collapse
Affiliation(s)
- Yifan Li
- Key Laboratory of Plant Protection Resources & Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hong Sun
- Key Laboratory of Plant Protection Resources & Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhen Tian
- College of Horticulture and Plant Protection, Yangzhou University, Wenhui East Road, No. 48, Yangzhou, Jiangsu 225009, China
| | - Yue Li
- Key Laboratory of Plant Protection Resources & Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xuan Ye
- Key Laboratory of Plant Protection Resources & Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ruichi Li
- Key Laboratory of Plant Protection Resources & Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xinyu Li
- Key Laboratory of Plant Protection Resources & Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shengli Zheng
- College of Chemistry & Pharmacy, Northwest A&F University, No. 3 Taicheng Road, Yangling, Shaanxi 712100, China
| | - Jiyuan Liu
- Key Laboratory of Plant Protection Resources & Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Yalin Zhang
- Key Laboratory of Plant Protection Resources & Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
11
|
Liu J, Li R, Zhou T, Cheng S, Li C, Ye X, Li Y, Tian Z. Structural evidence for pheromone discrimination by the pheromone binding protein 3 from Plutella xylostella. Int J Biol Macromol 2020; 169:396-406. [PMID: 33352161 DOI: 10.1016/j.ijbiomac.2020.12.119] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 11/20/2020] [Accepted: 12/15/2020] [Indexed: 11/26/2022]
Abstract
Insect pheromone binding proteins (PBPs) are believed to have a high degree of pheromone selectivity, acting as the first filter to discriminate specific pheromones from other volatile compounds. Herein, we provide evidence using homology-based model for the pheromone discrimination of Plutella xylostella pheromone binding protein 3 (PxPBP3). Combining molecular dynamics simulations and in vitro binding assays, two dominant sites are determined to be essential for the PxPBP3 to discriminate (Z)-11-hexadecenyl acetate (Hexadecenyl) from (Z)-11-hexadecenal (Hexadecenal). As the first key site for pheromone discrimination, Arg111 is indispensable to the PxPBP3-Hexadecenyl interaction. However, its importance in the binding of Hexadecenal to PxPBP3 is greatly reduced. A second site where pheromone discrimination occurs is a small loop (residues 34-38) in PxPBP3. It is shown that the hydrophobic strength provided by three hydrophobic residues (Phe34, Tyr37, and Trp38) in the small loop is significantly biased in the two complexes formed by PxPBP3 and the two pheromones. The discrimination capacity of PxPBP3 indicates that the P. xylostella pheromones may not share the same peri-receptor pathway, although they both show high affinity to PxPBP3.
Collapse
Affiliation(s)
- Jiyuan Liu
- Key Laboratory of Plant Protection Resources & Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Ruichi Li
- Key Laboratory of Plant Protection Resources & Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Tong Zhou
- College of Horticulture and Plant Protection, Yangzhou University, Wenhui East Road, NO. 48, Yangzhou, Jiangsu Province 225009, China
| | - Shichang Cheng
- College of Horticulture and Plant Protection, Yangzhou University, Wenhui East Road, NO. 48, Yangzhou, Jiangsu Province 225009, China
| | - Chaoxia Li
- College of Horticulture and Plant Protection, Yangzhou University, Wenhui East Road, NO. 48, Yangzhou, Jiangsu Province 225009, China
| | - Xuan Ye
- Key Laboratory of Plant Protection Resources & Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yue Li
- Key Laboratory of Plant Protection Resources & Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Zhen Tian
- Key Laboratory of Plant Protection Resources & Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China; College of Horticulture and Plant Protection, Yangzhou University, Wenhui East Road, NO. 48, Yangzhou, Jiangsu Province 225009, China.
| |
Collapse
|
12
|
Tian Z, Li Y, Zhou T, Ye X, Li R, Liu J. Structure dynamics reveal key residues essential for the sense of 1-dodecanol by Cydia pomonella pheromone binding protein 2 (CpomPBP2). PEST MANAGEMENT SCIENCE 2020; 76:3667-3675. [PMID: 32418321 DOI: 10.1002/ps.5915] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 04/29/2020] [Accepted: 05/17/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Cydia pomonella, a worldwide quarantine fruit pest, causes great damage to fruit production every year. Sex pheromone-mediated control of C. pomonella has been widely used. As an indispensable ingredient of commercial sex attractants, 1-dodecanol (Dod) works to synergize the effect of codlemone in attracting male moths of C. pomonella. The interactions between Dod and its transporter protein, C. pomonella pheromone-binding protein 2 (CpomPBP2), provide inspiration for chemical optimizations to improve the synergistic effects of Dod. RESULTS In this research, molecular simulations and biological verifications were used in combination to uncover key residues in CpomPBP2 essential for sensing Dod. After performing 150 ns molecular dynamics (MD) simulations, the C1-C12 chain of Dod was found to be locked by the van der Waals energy contributed by the hydrophobic residues Phe12, Leu68, and Ile113, whereas the -OH part of Dod was anchored by the H-bond derived from Glu98 and the salt-bridge derived from Arg109. Because of the importance of these two electrostatic interactions, Glu98 and Arg109 were further verified as key residues in determining the binding affinity between Dod and CpomPBP2. In addition, interactions unfavorable to the binding of Dod were described. CONCLUSION The research detailed the discovery of key residues involved in CpomPBP2-Dod interactions. Our results provide guidance and caution for the prospective discovery, optimization, and design of novel chemicals with a similar or stronger synergistic effect to codlemone in controlling C. pomonella.
Collapse
Affiliation(s)
- Zhen Tian
- Key Laboratory of Plant Protection Resources & Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, China
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Yue Li
- Key Laboratory of Plant Protection Resources & Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Tong Zhou
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Xuan Ye
- Key Laboratory of Plant Protection Resources & Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Ruichi Li
- Key Laboratory of Plant Protection Resources & Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Jiyuan Liu
- Key Laboratory of Plant Protection Resources & Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, China
| |
Collapse
|
13
|
Crystal structure of Epiphyas postvittana pheromone binding protein 3. Sci Rep 2020; 10:16366. [PMID: 33004932 PMCID: PMC7530677 DOI: 10.1038/s41598-020-73294-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 09/09/2020] [Indexed: 11/30/2022] Open
Abstract
The insect olfactory system operates as a well-choreographed ensemble of molecules which functions to selectively translate volatile chemical messages present in the environment into neuronal impulses that guide insect behaviour. Of these molecules, binding proteins are believed to transport hydrophobic odorant molecules across the aqueous lymph present in antennal sensilla to receptors present in olfactory sensory neurons. Though the exact mechanism through which these proteins operate is still under investigation, these carriers clearly play a critical role in determining what an insect can smell. Binding proteins that transport important sex pheromones are colloquially named pheromone binding proteins (PBPs). Here, we have produced a functional recombinant PBP from the horticultural pest, Epiphyas postvittana (EposPBP3), and experimentally solved its apo-structure through X-ray crystallography to a resolution of 2.60 Å. Structural comparisons with related lepidopteran PBPs further allowed us to propose models for the binding of pheromone components to EposPBP3. The data presented here represent the first structure of an olfactory-related protein from the tortricid family of moths, whose members cause billions of dollars in losses to agricultural producers each year. Knowledge of the structure of these important proteins will allow for subsequent studies in which novel, olfactory molecule-specific insecticides can be developed.
Collapse
|
14
|
Brito NF, Oliveira DS, Santos TC, Moreira MF, Melo ACA. Current and potential biotechnological applications of odorant-binding proteins. Appl Microbiol Biotechnol 2020; 104:8631-8648. [PMID: 32888038 DOI: 10.1007/s00253-020-10860-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 08/22/2020] [Accepted: 08/26/2020] [Indexed: 12/19/2022]
Abstract
Odorant-binding proteins (OBPs) are small soluble proteins whose biological function is believed to be facilitating olfaction by assisting the transport of volatile chemicals in both vertebrate and insect sensory organs, where they are secreted. Their capability to interact with a broad range of hydrophobic compounds combined with interesting features such as being small, stable, and easy to produce and modify, makes them suitable targets for applied research in various industrial segments, including textile, cosmetic, pesticide, and pharmaceutical, as well as for military, environmental, health, and security field applications. In addition to reviewing already established biotechnological applications of OBPs, this paper also discusses their potential use in prospecting of new technologies. The development of new products for insect population management is currently the most prevailing use for OBPs, followed by biosensor technology, an area that has recently seen a significant increase in studies evaluating their incorporation into sensing devices. Finally, less typical approaches include applications in anchorage systems and analytical tools. KEY POINTS: • Odorant-binding proteins (OBPs) present desired characteristics for applied research. • OBPs are mainly used for developing new products for insect population control. • Incorporation of OBPs into chemosensory devices is a growing area of study. • Less conventional uses for OBPs include anchorage systems and analytical purposes. Graphical Abstract.
Collapse
Affiliation(s)
- Nathália F Brito
- Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-909, Brazil
| | - Daniele S Oliveira
- Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-909, Brazil
| | - Thaisa C Santos
- Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-909, Brazil
| | - Monica F Moreira
- Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-909, Brazil.,Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ana Claudia A Melo
- Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-909, Brazil. .,Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
15
|
Tian Z, Li Y, Xing Y, Li R, Liu J. Structural Insights into Two Representative Conformations of the Complex Formed by Grapholita molesta (Busck) Pheromone Binding Protein 2 and Z-8-Dodecenyl Acetate. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:4425-4434. [PMID: 30945860 DOI: 10.1021/acs.jafc.9b00052] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Grapholita molesta is a notorious fruit borer globally, causing severe damage to fruit production. To control the pest, one commonly used mean is pheromone-mediated management. As an important sex pheromone, Z-8-dodecenyl acetate (Z8-12: Ac), is often coformulated with other active ingredients to regulate the behavior of G. molesta. To uncover its interactions with G. molesta pheromone binding protein 2 (GmolPBP2) is used to help develop insect attractants. During 200 ns molecular dynamics simulations, two representative conformations of the GmolPBP2-Z8-12: Ac complex are selected. Conformation II at the time of 14-106 ns is dominantly maintained by the hydrophobic interactions and hydrogen bond. In Conformation I, which lasts from 106 to 200 ns, the hydrophobic interactions are enhanced while the hydrogen bond is quite weakened, due to the formation of a more sophisticated hydrophobic binding pocket and the enlargement of hydrogen bond distance. Taking the two conformations as a whole, the affinity between GmolPBP2 and Z8-12: Ac is crucially determined by three hot-spots including Phe11, Trp36, and Ile51. These results would provide a basis for the discovery, optimization, and design of leading compounds potentially active to attract G. molesta.
Collapse
Affiliation(s)
- Zhen Tian
- Key Laboratory of Plant Protection Resources & Pest Management of the Ministry of Education, College of Plant Protection , Northwest A&F University , Yangling , Shaanxi 712100 , China
- College of Horticulture and Plant Protection , Yangzhou University , Wenhui East Road, No. 48 , Yangzhou , Jiangsu Province 225009 , China
| | - Yue Li
- Key Laboratory of Plant Protection Resources & Pest Management of the Ministry of Education, College of Plant Protection , Northwest A&F University , Yangling , Shaanxi 712100 , China
| | - Yijia Xing
- College of Horticulture and Plant Protection , Yangzhou University , Wenhui East Road, No. 48 , Yangzhou , Jiangsu Province 225009 , China
| | - Ruichi Li
- Key Laboratory of Plant Protection Resources & Pest Management of the Ministry of Education, College of Plant Protection , Northwest A&F University , Yangling , Shaanxi 712100 , China
| | - Jiyuan Liu
- Key Laboratory of Plant Protection Resources & Pest Management of the Ministry of Education, College of Plant Protection , Northwest A&F University , Yangling , Shaanxi 712100 , China
| |
Collapse
|
16
|
Yang F, Zheng G, Fu T, Li X, Tu G, Li YH, Yao X, Xue W, Zhu F. Prediction of the binding mode and resistance profile for a dual-target pyrrolyl diketo acid scaffold against HIV-1 integrase and reverse-transcriptase-associated ribonuclease H. Phys Chem Chem Phys 2019; 20:23873-23884. [PMID: 29947629 DOI: 10.1039/c8cp01843j] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The rapid emergence of drug-resistant variants is one of the most common causes of highly active antiretroviral therapeutic (HAART) failure in patients infected with HIV-1. Compared with the existing HAART, the recently developed pyrrolyl diketo acid scaffold targeting both HIV-1 integrase (IN) and reverse transcriptase-associated ribonuclease H (RNase H) is an efficient approach to counteract the failure of anti-HIV treatment due to drug resistance. However, the binding mode and potential resistance profile of these inhibitors with important mechanistic principles remain poorly understood. To address this issue, an integrated computational method was employed to investigate the binding mode of inhibitor JMC6F with HIV-1 IN and RNase H. By using per-residue binding free energy decomposition analysis, the following residues: Asp64, Thr66, Leu68, Asp116, Tyr143, Gln148 and Glu152 in IN, Asp443, Glu478, Trp536, Lys541 and Asp549 in RNase H were identified as key residues for JMC6F binding. And then computational alanine scanning was carried to further verify the key residues. Moreover, the resistance profile of the currently known major mutations in HIV-1 IN and 2 mutations in RNase H against JMC6F was predicted by in silico mutagenesis studies. The results demonstrated that only three mutations in HIV-1 IN (Y143C, Q148R and N155H) and two mutations in HIV-1 RNase H (Y501R and Y501W) resulted in a reduction of JMC6F potency, thus indicating their potential role in providing resistance to JMC6F. These data provided important insights into the binding mode and resistance profile of the inhibitors with a pyrrolyl diketo acid scaffold in HIV-1 IN and RNase H, which would be helpful for the development of more effective dual HIV-1 IN and RNase H inhibitors.
Collapse
Affiliation(s)
- Fengyuan Yang
- Innovative Drug Research and Bioinformatics Group, School of Pharmaceutical Sciences and Collaborative Innovation Center for Brain Science, Chongqing University, Chongqing 401331, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Younas A, Waris MI, Chang XQ, Shaaban M, Abdelnabby H, Ul Qamar MT, Wang MQ. A chemosensory protein MsepCSP5 involved in chemoreception of oriental armyworm Mythimna separata. Int J Biol Sci 2018; 14:1935-1949. [PMID: 30585258 PMCID: PMC6299372 DOI: 10.7150/ijbs.27315] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 09/29/2018] [Indexed: 01/25/2023] Open
Abstract
Chemosensory proteins (CSPs) have been suggested to perform several functions in insects, including chemoreception. To find out whether MsepCSP5 identified from Mythimna separata shows potential physiological functions in olfaction, gene expression profiles, ligand-binding experiments, molecular docking, RNA interference, and behavioral test were performed. Results showed that MsepCSP5 was highly expressed in female antennae. MsepCSP5 showed high binding affinities to a wide range of host-related semiochemicals, and displayed that 26 out of 35 candidate volatiles were highly bound (Ki < 10 µM) at pH 5.0 rather than pH 7.4. The binding sites of MsepCSP5 to candidate volatiles were well predicted by three-dimensional structure modeling and molecular docking experiments. Pursuing further, biological activities of M. separata to highly bound compounds elicited strong behavioral responses, such as alcoholic compounds displayed strong attractiveness whereas terpenes showed repellency to M. separata. The transcript expression level of MsepCSP5 gene significantly decreased after injecting target dsRNAs, and resulted in non-significant preference responses of M. separata to semiochemicals, such as 3-pentanol and 1-octene-3-ol. In conclusion, MsepCSP5 may involve in semiochemical reception of M. separata.
Collapse
Affiliation(s)
- Aneela Younas
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Muhammad Irfan Waris
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiang-Qian Chang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Muhammad Shaaban
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Hazem Abdelnabby
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.,Department of Plant Protection, Faculty of Agriculture, Benha University, Banha, Qalyubia 13736, Egypt
| | | | - Man-Qun Wang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
18
|
Liu J, Liu L, Tian Z, Li Y, Shi C, Shi J, Wei S, Zhao Y, Zhang C, Bai B, Chen Z, Zhang H. In Silico Discovery of a Small Molecule Suppressing Lung Carcinoma A549 Cells Proliferation and Inducing Autophagy via mTOR Pathway Inhibition. Mol Pharm 2018; 15:5427-5436. [PMID: 30346178 DOI: 10.1021/acs.molpharmaceut.8b00996] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Jiyuan Liu
- Key Laboratory of Plant Protection Resources & Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Li Liu
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi’an, Shaanxi Province 710072, China
- Laboratory Animal Center, Air Force Medical University, No. 169 Changle West Road, Xi’an, Shaanxi Province 710032, China
| | - Zhen Tian
- College of Horticulture and Plant Protection, Yangzhou University, Wenhui East Road, NO. 48, Yangzhou, Jiangsu Province 225009, China
| | - Yifan Li
- Key Laboratory of Plant Protection Resources & Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Changhong Shi
- Laboratory Animal Center, Air Force Medical University, No. 169 Changle West Road, Xi’an, Shaanxi Province 710032, China
| | - Junling Shi
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi’an, Shaanxi Province 710072, China
| | - Sanhua Wei
- Department of Clinical Laboratory and Research Center, Tangdu Hospital, Air Force Medical University, No. 569 Xinsi Road, Xi’an, Shaanxi 710038, China
| | - Yong Zhao
- Laboratory Animal Center, Air Force Medical University, No. 169 Changle West Road, Xi’an, Shaanxi Province 710032, China
| | - Caiqing Zhang
- Laboratory Animal Center, Air Force Medical University, No. 169 Changle West Road, Xi’an, Shaanxi Province 710032, China
| | - Bing Bai
- Laboratory Animal Center, Air Force Medical University, No. 169 Changle West Road, Xi’an, Shaanxi Province 710032, China
| | - Zhinan Chen
- National Translational Science Center for Molecular Medicine, Department of Cell Biology, School of Basic Medicine, Air Force Medical University, Xi’an, Shaanxi Province 710032, China
| | - Hai Zhang
- Laboratory Animal Center, Air Force Medical University, No. 169 Changle West Road, Xi’an, Shaanxi Province 710032, China
- National Translational Science Center for Molecular Medicine, Department of Cell Biology, School of Basic Medicine, Air Force Medical University, Xi’an, Shaanxi Province 710032, China
| |
Collapse
|
19
|
Liu J, Li Y, Tian Z, Sun H, Chen X, Zheng S, Zhang Y. Identification of Key Residues Associated with the Interaction between Plutella xylostella Sigma-Class Glutathione S-Transferase and the Inhibitor S-Hexyl Glutathione. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:10169-10178. [PMID: 30207467 DOI: 10.1021/acs.jafc.8b03967] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Glutathione S-transferases (GSTs) are important detoxification enzymes involved in the development of metabolic resistance in Plutella xylostella. Uncovering the interactions between representative PxGSTs and the inhibitor S-hexyl glutathione (GTX), helps in the development of effective PxGST inhibitors for resistance management. As the PxGST most severely inhibited by GTX, PxGSTσ (sigma-class PxGST) adopts the canonical fold of insect GSTs. The formation of the PxGSTσ-GTX complex is mainly driven by H-bond and hydrophobic interactions derived from the side chains of favorable residues. Of the residues composing the active site of PxGSTσ, Lys43 and Arg99 are two hot spots, first reported in the binding of GSH derivatives to GSTs. Such differences indicate the metabolism discrimination of different insect GSTs. Unfavorable interactions between the PxGSTσ active site and GTX are depicted as well. The research guides the discovery and optimization of PxGSTσ inhibitors.
Collapse
Affiliation(s)
- Jiyuan Liu
- Key Laboratory of Plant Protection Resources & Pest Management of the Ministry of Education, College of Plant Protection , Northwest A&F University , Yangling , Shaanxi 712100 , China
| | - Yifan Li
- Key Laboratory of Plant Protection Resources & Pest Management of the Ministry of Education, College of Plant Protection , Northwest A&F University , Yangling , Shaanxi 712100 , China
| | - Zhen Tian
- College of Horticulture and Plant Protection , Yangzhou University , Wenhui East Road, Number 48 , Yangzhou , Jiangsu 225009 , China
| | - Hong Sun
- Key Laboratory of Plant Protection Resources & Pest Management of the Ministry of Education, College of Plant Protection , Northwest A&F University , Yangling , Shaanxi 712100 , China
| | - Xi'en Chen
- Department of Entomology, College of Agriculture, Food and Environment , University of Kentucky , Lexington , Kentucky 40546 , United States
| | - Shengli Zheng
- College of Chemistry & Pharmacy , Northwest A&F University , Number 3 Taicheng Road , Yangling , Shaanxi 712100 , China
| | - Yalin Zhang
- Key Laboratory of Plant Protection Resources & Pest Management of the Ministry of Education, College of Plant Protection , Northwest A&F University , Yangling , Shaanxi 712100 , China
| |
Collapse
|
20
|
Venthur H, Zhou JJ. Odorant Receptors and Odorant-Binding Proteins as Insect Pest Control Targets: A Comparative Analysis. Front Physiol 2018; 9:1163. [PMID: 30197600 PMCID: PMC6117247 DOI: 10.3389/fphys.2018.01163] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 08/03/2018] [Indexed: 01/09/2023] Open
Abstract
Recently, two alternative targets in insect periphery nerve system have been explored for environmentally-friendly approaches in insect pest management, namely odorant-binding proteins (OBPs) and odorant receptors (ORs). Located in insect antennae, OBPs are thought to be involved in the transport of odorants to ORs for the specific signal transduction of behaviorally active odorants. There is rich information on OBP binding affinity and molecular docking to bioactive compounds as well as ample 3D crystal structures due to feasible production of recombinant proteins. Although these provide excellent opportunities for them to be considered as pest control targets and a tool to design pest control agents, the debates on their binding specificity represent an obstacle. On the other hand, ORs have recently been functionally characterized with increasing evidence for their specificity, sensitivity and functional roles in pest behaviors. However, a major barrier to use ORs for semiochemical discovery is the lack of 3D crystal structures. Thus, OBPs and ORs have not been analyzed comparatively together so far for their feasibility as pest control targets. Here, we summarize the state of OBPs and ORs research in terms of its application in insect pest management. We discuss the suitability of both proteins as pest control targets and their selection toward the discovery of new potent semiochemicals. We argue that both proteins represent promising targets for pest control and can be used to identify new super-ligands likely present in nature and with reduced risk of resistance development than insect pesticides currently used in agriculture. We discuss that with the massive identification of OBPs through RNA-seq and improved binding affinity measurements, these proteins could be reconsidered as suitable targets for semiochemical discovery.
Collapse
Affiliation(s)
- Herbert Venthur
- Laboratorio de Química Ecológica, Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Temuco, Chile.,Center of Excellence in Biotechnology Research Applied to the Environment (CIBAMA), Universidad de La Frontera, Temuco, Chile
| | - Jing-Jiang Zhou
- Department of Biological Chemistry and Crop Protection, Rothamsted Research, Harpenden, United Kingdom.,Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
| |
Collapse
|
21
|
Younas A, Waris MI, Tahir ul Qamar M, Shaaban M, Prager SM, Wang MQ. Functional Analysis of the Chemosensory Protein MsepCSP8 From the Oriental Armyworm Mythimna separata. Front Physiol 2018; 9:872. [PMID: 30050456 PMCID: PMC6052345 DOI: 10.3389/fphys.2018.00872] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 06/19/2018] [Indexed: 11/17/2022] Open
Abstract
Chemosensory proteins (CSPs) play important roles in chemosensation in insects, but their exact physiological functions remain elusive. In order to investigate the functions of CSPs in the oriental armyworm Mythimna separata, in the present study we explored expression patterns and binding characteristics of the CSP, MsepCSP8. The distinctive functions of MsepCSP8 were also validated by RNAi. The results showed that MsepCSP8 shares high sequence similarity with CSPs of other insect family members, including the characteristic four-cysteine signature motif. MsepCSP8 mRNA was specifically expressed in antennae of females at levels well above those in other tissues. Competitive binding assays confirmed that 20 out of 56 ligands bound more strongly to MsepCSP8 at pH 7.4 than at pH 5.0. Protein structure modeling and molecular docking analyses identified amino acid residues involved in binding volatile compounds, and behavioral response experiments showed that M. separata elicited significant responses to five volatiles from compounds displaying high binding affinity to MsepCSP8. MsepCSP8 transcript abundance was decreased by dsMsepCSP8 injection, which affected the behavioral responses of M. separata to representative semiochemicals. Our findings demonstrate that MsepCSP8 likely contributes to mediating responses of M. separata adults to plant volatiles.
Collapse
Affiliation(s)
- Aneela Younas
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Muhammad I. Waris
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | | | - Muhammad Shaaban
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| | - Sean M. Prager
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| | - Man-Qun Wang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
22
|
Hu P, Gao C, Zong S, Luo Y, Tao J. Pheromone Binding Protein EhipPBP1 Is Highly Enriched in the Male Antennae of the Seabuckthorn Carpenterworm and Is Binding to Sex Pheromone Components. Front Physiol 2018; 9:447. [PMID: 29755369 PMCID: PMC5934486 DOI: 10.3389/fphys.2018.00447] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Accepted: 04/10/2018] [Indexed: 12/02/2022] Open
Abstract
The seabuckthorn carpenterworm moth Eogystia hippophaecolus is a major threat to seabuckthorn plantations, causing considerable ecological and economic losses in China. Transcriptomic analysis of E. hippophaecolus previously identified 137 olfactory proteins, including three pheromone-binding proteins (PBPs). We investigated the function of E. hippophaecolus PBP1 by studying its mRNA and protein expression profiles and its binding ability with different compounds. The highest levels of expression were in the antennae, particularly in males, with much lower levels of expression in the legs and external genitals. Recombinant PBP1 showed strong binding to sex-pheromone components, suggesting that antennal EhipPBP1 is involved in binding sex-pheromone components during pheromone communication.
Collapse
Affiliation(s)
- Ping Hu
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing, China.,Xing An Vocational and Technical College, Xinganmeng, China
| | - Chenglong Gao
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing, China
| | - Shixiang Zong
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing, China
| | - Youqing Luo
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing, China
| | - Jing Tao
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing, China
| |
Collapse
|
23
|
Chen M, Liu J, Tian Z, Liu X, Zhang S. Synthesis, cytotoxic activity and binding model analysis of novel isoxazole-docetaxel analogues with C3′-N modification. Med Chem Res 2018. [DOI: 10.1007/s00044-018-2151-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
24
|
Molecular and Functional Characterization of pheromone binding protein 1 from the Oriental Fruit Moth, Grapholita molesta (Busck). Sci Rep 2018; 8:2276. [PMID: 29396476 PMCID: PMC5797111 DOI: 10.1038/s41598-018-20719-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 01/23/2018] [Indexed: 11/24/2022] Open
Abstract
Pheromone binding protein (PBP) is thought primarily to bind and transport the sex pheromone in moths. The accumulated studies suggest that three PBPs were identified in moth species. In Grapholita molesta, the functions of GmolPBP2 and GmolPBP3 have been previously studied. However, the function of GmolPBP1 is still unclear. Furthermore, the Cydia pomonella sex pheromone Codlemone can act as a sex pheromone synergist of G. molesta. In C. pomonella, CpomPBP1 specifically bind the Codlemone. CpomPBP1 displays high identity with GmolPBP1 (70%), indicating that the two PBPs may share a similar 3D structure thus can bind the similar or same ligands. In this study, we explored the molecular and functional characterization of GmolPBP1. GmolPBP1, bearing the typical characteristics of Lepidopteran odorant binding proteins, was closest phylogenetically to CpomPBP1. Binding studies demonstrated that GmolPBP1 exhibited strong binding affinities with (Z)-8-dodecenyl alcohol, 1-dodecanol and Codlemone. Molecular docking showed that GmolPBP1 has different ligand recognition mechanism for the three ligands. Our results suggest that GmolPBP1 functions as recognizer of (Z)-8-dodecenyl alcohol and 1-dodecanol of the female sex pheromone blend, and may be the potential transporter of Codlemone, which contributes to the synergism of the pheromone response of G. molesta by Codlemone.
Collapse
|
25
|
Niu W, Chen F, Wang J, Qian J, Yan S. Antitumor effect of sikokianin C, a selective cystathionine β-synthase inhibitor, against human colon cancer in vitro and in vivo. MEDCHEMCOMM 2018; 9:113-120. [PMID: 30108905 PMCID: PMC6072513 DOI: 10.1039/c7md00484b] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 11/15/2017] [Indexed: 11/21/2022]
Abstract
Cystathionine β-synthase (CBS) overexpression is related to the proliferation and migration of human colon cancers. Targeted therapy that inhibits CBS has achieved promising effects in colon cancer treatments, but no selective inhibitor of CBS is available. In our previous study, a natural biflavonoid compound, sikokianin C, was identified as a potent and selective inhibitor of CBS. However, the mode of action of this compound and its antitumor efficacy in vivo remain unknown. In the present study, we have demonstrated that sikokianin C selectively inhibits CBS activity in a competitive manner, and the five key residues involved in the binding of sikokianin C to the substrate channel of CBS protein were identified via a combination of molecular docking and site-directed mutagenesis. Additionally, we analyzed the antitumor efficacy of sikokianin C against human colon cancer cells in vitro and in vivo. Sikokianin C greatly suppressed the proliferation of HT29 colon cancer cells with an IC50 value of 1.6 μM, and CBS is the target of sikokianin C in mammalian cells, as evidenced by CBS knockdown analyses. Moreover, sikokianin C induced the apoptosis of HT29 cancer cells in a dose dependent manner. Treating mice with sikokianin C dramatically reduced the tumor volume and the weight of the colon cancer xenograft in vivo. These results indicate that the selective CBS inhibitor sikokianin C can potentially be used for the treatment of colon cancer.
Collapse
Affiliation(s)
- Weining Niu
- School of Life Sciences , Northwestern Polytechnical University , Xi'an , 710072 , China .
| | - Fei Chen
- School of Life Sciences , Northwestern Polytechnical University , Xi'an , 710072 , China .
| | - Jun Wang
- School of Life Sciences , Northwestern Polytechnical University , Xi'an , 710072 , China .
| | - Jing Qian
- School of Life Sciences , Northwestern Polytechnical University , Xi'an , 710072 , China .
| | - Shasha Yan
- School of Life Sciences , Northwestern Polytechnical University , Xi'an , 710072 , China .
| |
Collapse
|
26
|
Tian Z, Zhang Y. Molecular characterization and functional analysis of pheromone binding protein 1 from Cydia pomonella (L.). INSECT MOLECULAR BIOLOGY 2016; 25:769-777. [PMID: 27491022 DOI: 10.1111/imb.12261] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
A full-length cDNA encoding Cydia pomonella pheromone binding protein 1 (CpomPBP1) was cloned and characterized. CpomPBP1, possessing the typical characteristics of lepidopteran odorant binding proteins, was detected to be specifically expressed in the antennae of male and female moths at the mRNA and protein level. Soluble recombinant CpomPBP1 was subjected to in vitro binding to analyse its binding properties and to search for potentially active semiochemicals. A competitive binding assay showed that three 12-carbon ligands, codlemone, 1-dodecanol and E,E-2,4-dodecadienal, were able to bind to CpomPBP1 in decreasing order of affinity. Moreover, unlike the wild-type CpomPBP1, the C-terminus truncated CpomPBP1 exhibited high affinity to ligands even in an acidic environment, suggesting that the C-terminus plays a role in preventing ligands from binding to CpomPBP1 in a lower pH environment.
Collapse
Affiliation(s)
- Z Tian
- Key Laboratory of Plant Protection Resources & Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Y Zhang
- Key Laboratory of Plant Protection Resources & Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
27
|
Tian Z, Liu J, Zhang Y. Key Residues Involved in the Interaction between Cydia pomonella Pheromone Binding Protein 1 (CpomPBP1) and Codlemone. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:7994-8001. [PMID: 27709920 DOI: 10.1021/acs.jafc.6b02843] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Codlemone exhibited high affinity to CpomPBP1; studying their binding mode can provide insights into the rational design of active semiochemicals. Our findings suggested that residues including Phe12, Phe36, Trp37, Ile52, Ile 94, Ala115, and Phe118 were favorable to the binding of codlemone to CpomPBP1, whereas residues providing unfavorable contributions such as Ser56 were negative to the binding. van der Waals energy and electrostatic energy, mainly derived from the side chains of favorable residues, contributed most to the formation and stability of the CpomPBP1-codlemone complex. Of the residues involved in the interaction between CpomPBP1 and codlemone, Phe12 and Trp37, the mutation of which into Ala caused a significant decrease of CpomPBP1 binding ability, were two key residues in determining the binding affinity of codlemone to CpomPBP1. This study shed light on discovering novel active semiochemicals as well as facilitating chemical modification of lead semiochemicals.
Collapse
Affiliation(s)
- Zhen Tian
- Key Laboratory of Plant Protection Resources & Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University , Yangling 712100, Shaanxi, China
| | - Jiyuan Liu
- Key Laboratory of Plant Protection Resources & Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University , Yangling 712100, Shaanxi, China
| | - Yalin Zhang
- Key Laboratory of Plant Protection Resources & Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University , Yangling 712100, Shaanxi, China
| |
Collapse
|
28
|
Liu J, Tian Z, Zhang Y. Structure-based discovery of potentially active semiochemicals for Cydia pomonella (L.). Sci Rep 2016; 6:34600. [PMID: 27708370 PMCID: PMC5052595 DOI: 10.1038/srep34600] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 09/15/2016] [Indexed: 12/03/2022] Open
Abstract
The development of physiologically active semiochemicals is largely limited by the labor-consuming searching process. How to screen active semiochemicals efficiently is of significance to the extension of behavior regulation in pest control. Here pharmacophore modeling and shape-based virtual screening were combined to predict candidate ligands for Cydia pomonella pheromone binding protein 1 (CpomPBP1). Out of the predicted compounds, ETrME displayed the highest affinity to CpomPBP1. Further studies on the interaction between CpomPBP1 and ETrME, not only depicted the binding mode, but also revealed residues providing negative and positive contributions to the ETrME binding. Moreover, key residues involved in interacting with ETrME of CpomPBP1 were determined as well. These findings were significant to providing insights for the future searching and optimization of active semiochemicals.
Collapse
Affiliation(s)
- Jiyuan Liu
- Key Laboratory of Plant Protection Resources &Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China.,Department of Medicinal Chemistry, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, Shaanxi, China
| | - Zhen Tian
- Key Laboratory of Plant Protection Resources &Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yalin Zhang
- Key Laboratory of Plant Protection Resources &Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| |
Collapse
|