1
|
Arshadi S, Pishevar A, Javanbakht M, Javanmard SH. Chemotaxis effects on the vascular tumor growth: Phase-field model and simulations. Math Biosci 2025; 380:109366. [PMID: 39681157 DOI: 10.1016/j.mbs.2024.109366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 12/10/2024] [Accepted: 12/12/2024] [Indexed: 12/18/2024]
Abstract
In this paper, we propose a vascular tumor growth model that combines a phase-field tumor model with a phase-field angiogenesis model. By incorporating various tumor cell species, we capture the instabilities of the tumor in the presence of evolving neovasculature. The model not only considers different dynamics of tumor cell phase conversions, movement, and pressure effects but also provides a comprehensive representation of angiogenesis, encompassing chemotaxis of endothelial cells, sprouting, anastomoses, and blood flow in capillaries. This study evaluates the impact of chemotaxis on tumor cell movement in both avascular and vascular tumor growth scenarios. The results highlight the acceleration of tumor growth when angiogenesis is stimulated. Additionally, the investigation explores various initial distances of the tumor from neighboring vessels, revealing a critical threshold distance beyond which the angiogenesis factor fails to stimulate angiogenesis, resulting in the tumor maintaining a stable state. The integration of chemotaxis into the growth model induces instabilities, leading to increased nutrient availability and faster growth for the tumor. Furthermore, the study considers anti-angiogenesis therapy as an ideal approach, assuming complete inhibition of angiogenesis from the early stages. In this scenario, the tumor persists in a steady state, adhering to the avascular size limit in the absence of neovasculature. Conversely, when considering chemotaxis, anti-angiogenesis therapy loses efficiency, enabling unrestrained tumor growth towards neighboring vessels. This work sheds light on the intricate interplay among chemotaxis, angiogenesis, and anti-angiogenesis therapy in the context of vascular tumor growth, providing valuable insights for the development of targeted treatment strategies.
Collapse
Affiliation(s)
- Soroosh Arshadi
- Department of Mechanical Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Ahmadreza Pishevar
- Department of Mechanical Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran.
| | - Mahdi Javanbakht
- Department of Mechanical Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Shaghayegh Haghjooy Javanmard
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
2
|
Coggan H, Weeden CE, Pearce P, Dalwadi MP, Magness A, Swanton C, Page KM. An agent-based modelling framework to study growth mechanisms in EGFR-L858R mutant cell alveolar type II cells. ROYAL SOCIETY OPEN SCIENCE 2024; 11:240413. [PMID: 39021764 PMCID: PMC11252670 DOI: 10.1098/rsos.240413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/21/2024] [Accepted: 06/11/2024] [Indexed: 07/20/2024]
Abstract
Mutations in the epidermal growth factor receptor (EGFR) are common in non-small cell lung cancer (NSCLC), particularly in never-smoker patients. However, these mutations are not always carcinogenic, and have recently been reported in histologically normal lung tissue from patients with and without lung cancer. To investigate the outcome of EGFR mutation in healthy lung stem cells, we grow murine alveolar type II organoids monoclonally in a three-dimensional Matrigel. Our experiments show that the EGFR-L858R mutation induces a change in organoid structure: mutated organoids display more 'budding', in comparison with non-mutant controls, which are nearly spherical. We perform on-lattice computational simulations, which suggest that this can be explained by the concentration of division among a small number of cells on the surface of the mutated organoids. We are currently unable to distinguish the cell-based mechanisms that lead to this spatial heterogeneity in growth, but suggest a number of future experiments which could be used to do so. We suggest that the likelihood of L858R-fuelled tumorigenesis is affected by whether the mutation arises in a spatial environment that allows the development of these surface protrusions. These data may have implications for cancer prevention strategies and for understanding NSCLC progression.
Collapse
Affiliation(s)
- Helena Coggan
- Department of Mathematics, University College London, London, UK
| | - Clare E. Weeden
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Philip Pearce
- Department of Mathematics, University College London, London, UK
- UCL Institute for the Physics of Living Systems, London, UK
| | - Mohit P. Dalwadi
- Department of Mathematics, University College London, London, UK
- UCL Institute for the Physics of Living Systems, London, UK
| | - Alastair Magness
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Charles Swanton
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Department of Oncology, University College London Hospital, London, UK
| | - Karen M. Page
- Department of Mathematics, University College London, London, UK
- UCL Institute for the Physics of Living Systems, London, UK
| |
Collapse
|
3
|
Barrasa-Ramos S, Dessalles CA, Hautefeuille M, Barakat AI. Mechanical regulation of the early stages of angiogenesis. J R Soc Interface 2022; 19:20220360. [PMID: 36475392 PMCID: PMC9727679 DOI: 10.1098/rsif.2022.0360] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Favouring or thwarting the development of a vascular network is essential in fields as diverse as oncology, cardiovascular disease or tissue engineering. As a result, understanding and controlling angiogenesis has become a major scientific challenge. Mechanical factors play a fundamental role in angiogenesis and can potentially be exploited for optimizing the architecture of the resulting vascular network. Largely focusing on in vitro systems but also supported by some in vivo evidence, the aim of this Highlight Review is dual. First, we describe the current knowledge with particular focus on the effects of fluid and solid mechanical stimuli on the early stages of the angiogenic process, most notably the destabilization of existing vessels and the initiation and elongation of new vessels. Second, we explore inherent difficulties in the field and propose future perspectives on the use of in vitro and physics-based modelling to overcome these difficulties.
Collapse
Affiliation(s)
- Sara Barrasa-Ramos
- LadHyX, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, Palaiseau, France
| | - Claire A. Dessalles
- LadHyX, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, Palaiseau, France
| | - Mathieu Hautefeuille
- Laboratoire de Biologie du Développement (UMR7622), Institut de Biologie Paris Seine, Sorbonne Université, Paris, France,Facultad de Ciencias, Universidad Nacional Autónoma de México, CDMX, Mexico
| | - Abdul I. Barakat
- LadHyX, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, Palaiseau, France
| |
Collapse
|
4
|
Minerva D, Othman NL, Nakazawa T, Ito Y, Yoshida M, Goto A, Suzuki T. A New Chemotactic Mechanism Governs Long-Range Angiogenesis Induced by Patching an Arterial Graft into a Vein. Int J Mol Sci 2022; 23:ijms231911208. [PMID: 36232507 PMCID: PMC9569559 DOI: 10.3390/ijms231911208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/18/2022] [Accepted: 09/18/2022] [Indexed: 11/16/2022] Open
Abstract
Chemotaxis, the migration of cells in response to chemical stimulus, is an important concept in the angiogenesis model. In most angiogenesis models, chemotaxis is defined as the migration of a sprout tip in response to the upgradient of the VEGF (vascular endothelial growth factor). However, we found that angiogenesis induced by performing arterial patch grafting on rabbits occurred under the decreasing VEGFA gradient. Data show that the VEGFA concentration peaked at approximately 0.3 to 0.5 cm away from the arterial patch and decreased as the measurement approaches the patch. We also observed that the new blood vessels formed are twisted and congested in some areas, in a distinguishable manner from non-pathological blood vessels. To explain these observations, we developed a mathematical model and compared the results from numerical simulations with the experimental data. We introduced a new chemotactic velocity using the temporal change in the chemoattractant gradient to govern the sprout tip migration. We performed a hybrid simulation to illustrate the growth of new vessels. Results indicated the speed of growth of new vessels oscillated before reaching the periphery of the arterial patch. Crowded and congested blood vessel formation was observed during numerical simulations. Thus, our numerical simulation results agreed with the experimental data.
Collapse
Affiliation(s)
- Dhisa Minerva
- Center for Mathematical Modeling and Data Science, Osaka University, 1-3 Machikaneyama-cho, Toyonaka City 560-8531, Japan
| | - Nuha Loling Othman
- Faculty of Computer Science and Information Technology, Universiti Malaysia Sarawak, Jalan Datuk Mohammad Musa, Kota Samarahan 93400, Malaysia
- Correspondence:
| | - Takashi Nakazawa
- Center for Mathematical Modeling and Data Science, Osaka University, 1-3 Machikaneyama-cho, Toyonaka City 560-8531, Japan
| | - Yukinobu Ito
- Department of Cellular and Organ Pathology, Graduate School of Medicine, Akita University, 1-1-1 Hondo, Akita City 010-8543, Japan
| | - Makoto Yoshida
- Department of Cellular and Organ Pathology, Graduate School of Medicine, Akita University, 1-1-1 Hondo, Akita City 010-8543, Japan
| | - Akiteru Goto
- Department of Cellular and Organ Pathology, Graduate School of Medicine, Akita University, 1-1-1 Hondo, Akita City 010-8543, Japan
| | - Takashi Suzuki
- Center for Mathematical Modeling and Data Science, Osaka University, 1-3 Machikaneyama-cho, Toyonaka City 560-8531, Japan
| |
Collapse
|
5
|
Bhat SM, Badiger VA, Vasishta S, Chakraborty J, Prasad S, Ghosh S, Joshi MB. 3D tumor angiogenesis models: recent advances and challenges. J Cancer Res Clin Oncol 2021; 147:3477-3494. [PMID: 34613483 PMCID: PMC8557138 DOI: 10.1007/s00432-021-03814-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 09/21/2021] [Indexed: 01/02/2023]
Abstract
The development of blood vessels, referred to as angiogenesis, is an intricate process regulated spatially and temporally through a delicate balance between the qualitative and quantitative expression of pro and anti-angiogenic molecules. As angiogenesis is a prerequisite for solid tumors to grow and metastasize, a variety of tumor angiogenesis models have been formulated to better understand the underlying mechanisms and associated clinical applications. Studies have demonstrated independent mechanisms inducing angiogenesis in tumors such as (a) HIF-1/VEGF mediated paracrine interactions between a cancer cell and endothelial cells, (b) recruitment of progenitor endothelial cells, and (c) vasculogenic mimicry. Moreover, single-cell sequencing technologies have indicated endothelial cell heterogeneity among organ systems including tumor tissues. However, existing angiogenesis models often rely upon normal endothelial cells which significantly differ from tumor endothelial cells exhibiting distinct (epi)genetic and metabolic signatures. Besides, the existence of intra-individual variations necessitates the development of improved tumor vascular model systems for personalized medicine. In the present review, we summarize recent advancements of 3D tumor vascular model systems which include (a) tissue engineering-based tumor models; (b) vascular organoid models, and (c) organ-on-chips and their importance in replicating the tumor angiogenesis along with the associated challenges to design improved models.
Collapse
Affiliation(s)
- Sharath M Bhat
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Vaishnavi A Badiger
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Sampara Vasishta
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Juhi Chakraborty
- Regenerative Engineering Laboratory, Department of Textile and Fibre Engineering, Indian Institute of Technology, Delhi, 110016, India
| | - Seetharam Prasad
- Department of Surgery, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Sourabh Ghosh
- Regenerative Engineering Laboratory, Department of Textile and Fibre Engineering, Indian Institute of Technology, Delhi, 110016, India
| | - Manjunath B Joshi
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, India.
| |
Collapse
|
6
|
Andreuzzi E, Capuano A, Poletto E, Pivetta E, Fejza A, Favero A, Doliana R, Cannizzaro R, Spessotto P, Mongiat M. Role of Extracellular Matrix in Gastrointestinal Cancer-Associated Angiogenesis. Int J Mol Sci 2020; 21:E3686. [PMID: 32456248 PMCID: PMC7279269 DOI: 10.3390/ijms21103686] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 05/20/2020] [Accepted: 05/21/2020] [Indexed: 02/07/2023] Open
Abstract
Gastrointestinal tumors are responsible for more cancer-related fatalities than any other type of tumors, and colorectal and gastric malignancies account for a large part of these diseases. Thus, there is an urgent need to develop new therapeutic approaches to improve the patients' outcome and the tumor microenvironment is a promising arena for the development of such treatments. In fact, the nature of the microenvironment in the different gastrointestinal tracts may significantly influence not only tumor development but also the therapy response. In particular, an important microenvironmental component and a potential therapeutic target is the vasculature. In this context, the extracellular matrix is a key component exerting an active effect in all the hallmarks of cancer, including angiogenesis. Here, we summarized the current knowledge on the role of extracellular matrix in affecting endothelial cell function and intratumoral vascularization in the context of colorectal and gastric cancer. The extracellular matrix acts both directly on endothelial cells and indirectly through its remodeling and the consequent release of growth factors. We envision that a deeper understanding of the role of extracellular matrix and of its remodeling during cancer progression is of chief importance for the development of new, more efficacious, targeted therapies.
Collapse
Affiliation(s)
- Eva Andreuzzi
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy; (E.A.); (A.C.); (E.P.); (E.P.); (A.F.); (A.F.); (R.D.); (P.S.)
| | - Alessandra Capuano
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy; (E.A.); (A.C.); (E.P.); (E.P.); (A.F.); (A.F.); (R.D.); (P.S.)
| | - Evelina Poletto
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy; (E.A.); (A.C.); (E.P.); (E.P.); (A.F.); (A.F.); (R.D.); (P.S.)
| | - Eliana Pivetta
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy; (E.A.); (A.C.); (E.P.); (E.P.); (A.F.); (A.F.); (R.D.); (P.S.)
| | - Albina Fejza
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy; (E.A.); (A.C.); (E.P.); (E.P.); (A.F.); (A.F.); (R.D.); (P.S.)
| | - Andrea Favero
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy; (E.A.); (A.C.); (E.P.); (E.P.); (A.F.); (A.F.); (R.D.); (P.S.)
| | - Roberto Doliana
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy; (E.A.); (A.C.); (E.P.); (E.P.); (A.F.); (A.F.); (R.D.); (P.S.)
| | - Renato Cannizzaro
- Department of Clinical Oncology, Experimental Gastrointestinal Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy;
| | - Paola Spessotto
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy; (E.A.); (A.C.); (E.P.); (E.P.); (A.F.); (A.F.); (R.D.); (P.S.)
| | - Maurizio Mongiat
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy; (E.A.); (A.C.); (E.P.); (E.P.); (A.F.); (A.F.); (R.D.); (P.S.)
| |
Collapse
|
7
|
Maity G, Chakraborty J, Ghosh A, Haque I, Banerjee S, Banerjee SK. Aspirin suppresses tumor cell-induced angiogenesis and their incongruity. J Cell Commun Signal 2019; 13:491-502. [PMID: 30610526 PMCID: PMC6946772 DOI: 10.1007/s12079-018-00499-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Accepted: 11/26/2018] [Indexed: 01/10/2023] Open
Abstract
Tumor neovascularization/tumor angiogenesis is a pathophysiological process in which new blood vessels are formed from existing blood vessels in the primary tumors to supply adequate oxygen and nutrition to cancer cells for their proliferation and metastatic growth to the distant organs. Therefore, controlling tumor angiogenesis is an attractive target for cancer therapy. Structural abnormalities of the vasculature (i.e., leakiness due to the abnormal lining of pericytes on the microvessels) are one of the critical features of tumor angiogenesis that sensitizes vascular cells to cytokines and helps circulating tumor cells to metastasize to distant organs. Our goal is to repurpose the drugs that may prevent tumor angiogenesis or normalize the vessels by repairing leakiness via recruiting pericytes or both. In this study, we tested whether aspirin (ASA), which could block primary tumor growth, regulates tumor angiogenesis. We investigated the effects of low (1 mM) and high (2.5 mM) doses of ASA (direct effect), and ASA-treated or untreated triple negative breast cancer (TNBC) cells' conditioned media (indirect effect) on endothelial cell physiology. These include in vitro migration using modified Boyden chamber assay, in vitro capillary-like structure formation on Matrigel, interactions of pericytes-endothelial cells and cell permeability using in vitro endothelial permeability assay. We also examined the effect of ASA on various molecular factors associated with tumor angiogenesis. Finally, we found the outcome of ASA treatment on in vivo tumor angiogenesis. We found that ASA-treatment (direct or indirect) significantly blocks in vitro migration and capillary-like structure formation by endothelial cells. Besides, we found that ASA recruits pericytes from multipotent stem cells and helps in binding with endothelial cells, which is a hallmark of normalization of blood vessels, and decreases in vitro permeability through endothelial cell layer. The antiangiogenic effect of ASA was also documented in vivo assays. Mechanistically, ASA treatment blocks several angiogenic factors that are associated with tumor angiogenesis, and suggesting ASA blocks paracrine-autocrine signaling network between tumor cells and endothelial cells. Collectively, these studies implicate aspirin with proper dose may provide potential therapeutic for breast cancer via blocking as well as normalizing tumor angiogenesis.
Collapse
Affiliation(s)
- Gargi Maity
- Cancer Research Unit, Research Division (151), VA Medical Center, 4801 E Linwood Boulevard, Kansas City, MO, 64128, USA
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Jinia Chakraborty
- Cancer Research Unit, Research Division (151), VA Medical Center, 4801 E Linwood Boulevard, Kansas City, MO, 64128, USA
- Blue Valley High School, 16200 Antioch Rd, Overland Park, KS, 66085, USA
| | - Arnab Ghosh
- Cancer Research Unit, Research Division (151), VA Medical Center, 4801 E Linwood Boulevard, Kansas City, MO, 64128, USA
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Inamul Haque
- Cancer Research Unit, Research Division (151), VA Medical Center, 4801 E Linwood Boulevard, Kansas City, MO, 64128, USA
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Snigdha Banerjee
- Cancer Research Unit, Research Division (151), VA Medical Center, 4801 E Linwood Boulevard, Kansas City, MO, 64128, USA
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Sushanta K Banerjee
- Cancer Research Unit, Research Division (151), VA Medical Center, 4801 E Linwood Boulevard, Kansas City, MO, 64128, USA.
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, USA.
| |
Collapse
|
8
|
Vilanova G, Colominas I, Gomez H. A mathematical model of tumour angiogenesis: growth, regression and regrowth. J R Soc Interface 2017; 14:rsif.2016.0918. [PMID: 28100829 DOI: 10.1098/rsif.2016.0918] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 12/19/2016] [Indexed: 12/14/2022] Open
Abstract
Cancerous tumours have the ability to recruit new blood vessels through a process called angiogenesis. By stimulating vascular growth, tumours get connected to the circulatory system, receive nutrients and open a way to colonize distant organs. Tumour-induced vascular networks become unstable in the absence of tumour angiogenic factors (TAFs). They may undergo alternating stages of growth, regression and regrowth. Following a phase-field methodology, we propose a model of tumour angiogenesis that reproduces the aforementioned features and highlights the importance of vascular regression and regrowth. In contrast with previous theories which focus on vessel remodelling due to the absence of flow, we model an alternative regression mechanism based on the dependency of tumour-induced vascular networks on TAFs. The model captures capillaries at full scale, the plastic dynamics of tumour-induced vessel networks at long time scales, and shows the key role played by filopodia during angiogenesis. The predictions of our model are in agreement with in vivo experiments and may prove useful for the design of antiangiogenic therapies.
Collapse
Affiliation(s)
- Guillermo Vilanova
- Departamento de Métodos Matemáticos e de Representación, Grupo de Métodos Numéricos en Ingeniería-Universidade da Coruña, Campus de Elviña, 15071 A Coruña, Spain
| | - Ignasi Colominas
- Departamento de Métodos Matemáticos e de Representación, Grupo de Métodos Numéricos en Ingeniería-Universidade da Coruña, Campus de Elviña, 15071 A Coruña, Spain
| | - Hector Gomez
- School of Mechanical Engineering, Purdue University, 585 Purdue Mall, West Lafayette, IN 47907, USA
| |
Collapse
|
9
|
Boldock L, Wittkowske C, Perrault CM. Microfluidic traction force microscopy to study mechanotransduction in angiogenesis. Microcirculation 2017; 24. [DOI: 10.1111/micc.12361] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 01/31/2017] [Indexed: 12/22/2022]
Affiliation(s)
- Luke Boldock
- Department of Mechanical Engineering and INSIGNEO Institute for in Silico Medicine; University of Sheffield; Sheffield UK
| | - Claudia Wittkowske
- Department of Mechanical Engineering and INSIGNEO Institute for in Silico Medicine; University of Sheffield; Sheffield UK
| | - Cecile M. Perrault
- Department of Mechanical Engineering and INSIGNEO Institute for in Silico Medicine; University of Sheffield; Sheffield UK
| |
Collapse
|