1
|
Khosropanah MH, Ghofrani A, Vaghasloo MA, Zahir M, Bahrami A, Azimzadeh A, Hassannejad Z, Majidi Zolbin M. Biomedical applications of Bombyx morisilk in skin regeneration and cutaneous wound healing. Biomed Mater 2025; 20:022008. [PMID: 39938211 DOI: 10.1088/1748-605x/adb552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 02/12/2025] [Indexed: 02/14/2025]
Abstract
A mere glance at the foundation of the sericulture industry to produce silk and the consequent establishment of the Silk Road to transport it; elucidates the significant role that this material has played in human history. Owing to its exceptional robustness, silk was introduced into medicine as a surgical suture approximately two millennia ago. During the last decades, silk has garnered attention as a possible source of biological-based materials that can be effectively used in regenerative medicine. Silk's unique characteristics, like its low immunogenicity, suitable adhesive properties, exceptional tensile strength, perfect hemostatic properties, adequate permeability to oxygen and water, resistance to microbial colonization, and most importantly, excellent biodegradability; make it an outstanding choice for biomedical applications. Although there are many different types of silk in nature,Bombyx mori(B. mori) silk accounts for about 90% of global production and is the most thoroughly investigated and the most commonly used. Silk fibroin (SF) and silk sericin (SS) are the two main protein constituents of silk. SF has been manufactured in various morphologic forms (e.g. hydrogels, sponges, films, etc) and has been widely used in the biomedical field, especially as a scaffold in tissue engineering. Similarly, SS has demonstrated a vast potential as a suitable biomaterial in tissue engineering and regenerative medicine. Initial studies on SF and SS as wound dressings have shown encouraging results. This review aims to comprehensively discuss the potential role of silk proteins in refining wound healing and skin regeneration.
Collapse
Affiliation(s)
- Mohammad Hossein Khosropanah
- Pediatric Urology and Regenerative Medicine Research Center, Gene, Cell & Tissue Research Institute, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Traditional Medicine, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Ghofrani
- Pediatric Urology and Regenerative Medicine Research Center, Gene, Cell & Tissue Research Institute, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Mahdi Alizadeh Vaghasloo
- Department of Traditional Medicine, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Persian Medicine Network (PMN), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Mazyar Zahir
- Pediatric Urology and Regenerative Medicine Research Center, Gene, Cell & Tissue Research Institute, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Afshin Bahrami
- Pediatric Urology and Regenerative Medicine Research Center, Gene, Cell & Tissue Research Institute, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ashkan Azimzadeh
- Pediatric Urology and Regenerative Medicine Research Center, Gene, Cell & Tissue Research Institute, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Hassannejad
- Pediatric Urology and Regenerative Medicine Research Center, Gene, Cell & Tissue Research Institute, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoumeh Majidi Zolbin
- Pediatric Urology and Regenerative Medicine Research Center, Gene, Cell & Tissue Research Institute, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Gundogdu K, Kılıc Erkek O, Gundogdu G, Sayin D, Abban Mete G. Anti-inflammatory effects of sericin and swimming exercise in treating experimental Achilles tendinopathy in rat. Appl Physiol Nutr Metab 2024; 49:501-513. [PMID: 38284362 DOI: 10.1139/apnm-2023-0377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
The aim of this study was to assess the effectiveness of combining sericin with swimming exercise as a treatment for type-I collagenase-induced Achilles tendinopathy (AT) in rats, with a focus on inflammatory cytokines. An experimental AT model was established using type-I collagenase in male Sprague-Dawley rats, categorized into five groups: Group 1 (Control + Saline), Group 2 (AT), Group 3 (AT + exercise), Group 4 (AT + sericin), and Group 5 (AT + sericin + exercise). Intratendinous sericin administration (0.8 g/kg/mL) took place from days 3 to 6, coupled with 30 min daily swimming exercise sessions (5 days/week, 4 weeks). Serum samples were analyzed using ELISA for tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1β), interleukin-10 (IL-10), and total antioxidant-oxidant status (TAS-TOS), alongside histopathological and immunohistochemical assessments of Achilles tendon samples. Elevated TNF-α and IL-1β and decreased IL-10 levels were evident in Group 2; Of these, TNF-α and IL-1β were effectively reduced and IL-10 increased across all treatment groups, particularly groups 4 and 5. Serum TAS was notably lower in Group 2 and significantly increased in Group 5 compared to Group 2. Histopathologically, Group 2 displayed severe degeneration, irregular fibers, and round cell nuclei, while Group 5 exhibited decreased degeneration and spindle-shaped fibers. The Bonar score increased in Group 2 and decreased in groups 4 and 5. Collagen type-I alpha-1 (Col1A1) expression was notably lower in Group 2 (P = 0.001) and significantly increased in groups 4 and 5 compared to Group 2 (P = 0.011 and 0.028, respectively). This study underscores the potential of sericin and swimming exercises in mitigating inflammation and oxidative stress linked to AT pathogenesis, presenting a promising combined therapeutic strategy.
Collapse
Affiliation(s)
- Koksal Gundogdu
- Department of Orthopedics and Traumatology, Denizli State Hospital, Denizli, Turkey
| | - Ozgen Kılıc Erkek
- Department of Physiology, Faculty of Medicine, Pamukkale University, Denizli, Turkey
| | - Gulsah Gundogdu
- Department of Physiology, Faculty of Medicine, Pamukkale University, Denizli, Turkey
| | - Dilek Sayin
- Department of Physiology, Faculty of Medicine, Pamukkale University, Denizli, Turkey
| | - Gulcin Abban Mete
- Department of Histology and Embryology, Faculty of Medicine, Pamukkale University, Denizli, Turkey
| |
Collapse
|
3
|
Saad M, El-Samad LM, Gomaa RA, Augustyniak M, Hassan MA. A comprehensive review of recent advances in silk sericin: Extraction approaches, structure, biochemical characterization, and biomedical applications. Int J Biol Macromol 2023; 250:126067. [PMID: 37524279 DOI: 10.1016/j.ijbiomac.2023.126067] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 07/26/2023] [Accepted: 07/28/2023] [Indexed: 08/02/2023]
Abstract
Silks are natural polymers that have been widely used for centuries. Silk consists of a filament core protein, termed fibroin, and a glue-like coating substance formed of sericin (SER) proteins. This protein is extracted from the silkworm cocoons (particularly Bombyx mori) and is mainly composed of amino acids like glycine, serine, aspartic acid, and threonine. Silk SER can be obtained using numerous methods, including enzymatic extraction, high-temperature, autoclaving, ethanol precipitation, cross-linking, and utilizing acidic, alkali, or neutral aqueous solutions. Given the versatility and outstanding properties of SER, it is widely fabricated to produce sponges, films, and hydrogels for further use in diverse biomedical applications. Hence, many authors reported that SER benefits cell proliferation, tissue engineering, and skin tissue restoration thanks to its moisturizing features, antioxidant and anti-inflammatory properties, and mitogenic effect on mammalian cells. Remarkably, SER is used in drug delivery depending on its chemical reactivity and pH-responsiveness. These unique features of SER enhance the bioactivity of drugs, facilitating the fabrication of biomedical materials at nano- and microscales, hydrogels, and conjugated molecules. This review thoroughly outlines the extraction techniques, biological properties, and respective biomedical applications of SER.
Collapse
Affiliation(s)
- Marwa Saad
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Lamia M El-Samad
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Rehab A Gomaa
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Maria Augustyniak
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007 Katowice, Poland
| | - Mohamed A Hassan
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, 21934 Alexandria, Egypt.
| |
Collapse
|
4
|
Kim SI, Jeon GY, Kim SE, Choe SH, Kim SJ, Seo JS, Kang TW, Song JE, Khang G. Injectable Hydrogel Based on Gellan Gum/Silk Sericin for Application as a Retinal Pigment Epithelium Cell Carrier. ACS OMEGA 2022; 7:41331-41340. [PMID: 36406493 PMCID: PMC9670284 DOI: 10.1021/acsomega.2c05113] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
The damage to retinal pigment epithelium (RPE) cells can lead to vision loss and permanent blindness. Therefore, an effective therapeutic strategy has emerged to replace damaged cells through RPE cell delivery. In this study, we fabricated injectable gellan gum (GG)/silk sericin (SS) hydrogels as a cell carrier by blending GG and SS. To determine the appropriate concentration of SS for human RPE ARPE-19, 0, 0.05, 0.1, and 0.5% (w/v) of SS solution were blended in 1% (w/v) GG solution (GG/SS 0%, GG/SS 0.05%, GG/SS 0.1%, and GG/SS 0.5%, respectively). The physical and chemical properties were measured through Fourier-transform infrared spectroscopy, scanning electron microscopy, mass swelling, and weight loss. Also, viscosity, injection force, and compressive tests were used to evaluate mechanical characteristics. Cell proliferation and differentiation of ARPE-19 were evaluated using quantitative dsDNA analysis and real-time polymerase chain reaction, respectively. The addition of SS gave GG/SS hydrogels a compressive strength similar to that of natural RPE tissue, which may well support the growth of RPE and enhance cell proliferation and differentiation. In particular, the GG/SS 0.5% hydrogel showed the most similar compressive strength (about 10 kPa) and exhibited the highest gene expression related to ARPE-19 cell proliferation. These results indicate that GG/SS 0.5% hydrogels can be a promising biomaterial for cell delivery in retina tissue engineering.
Collapse
Affiliation(s)
- Soo in Kim
- Department
of Bionanotechnology and Bio-Convergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeonbuk54896, Republic of Korea
| | - Ga Yeong Jeon
- Department
of Bionanotechnology and Bio-Convergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeonbuk54896, Republic of Korea
| | - Se Eun Kim
- Department
of Bionanotechnology and Bio-Convergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeonbuk54896, Republic of Korea
| | - Seung Ho Choe
- Department
of Bionanotechnology and Bio-Convergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeonbuk54896, Republic of Korea
| | - Seung Jae Kim
- Department
of Bionanotechnology and Bio-Convergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeonbuk54896, Republic of Korea
| | - Jin Sol Seo
- Department
of Bionanotechnology and Bio-Convergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeonbuk54896, Republic of Korea
| | - Tae Woong Kang
- Department
of Bionanotechnology and Bio-Convergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeonbuk54896, Republic of Korea
| | - Jeong Eun Song
- Department
of Bionanotechnology and Bio-Convergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeonbuk54896, Republic of Korea
| | - Gilson Khang
- Department
of Bionanotechnology and Bio-Convergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeonbuk54896, Republic of Korea
- Department
of PolymerNano Science & Technology and Polymer Materials Fusion
Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeonbuk54896, Republic of Korea
- Department
of Orthopaedic & Traumatology, Airlangga
University, Jl. Airlangga
No. 4−6, Airlangga, Kec. Gubeng, Kota
SBY, Jawa Timur60115, Indonesia
| |
Collapse
|
5
|
Liu J, Shi L, Deng Y, Zou M, Cai B, Song Y, Wang Z, Wang L. Silk sericin-based materials for biomedical applications. Biomaterials 2022; 287:121638. [PMID: 35921729 DOI: 10.1016/j.biomaterials.2022.121638] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 06/04/2022] [Accepted: 06/14/2022] [Indexed: 11/17/2022]
Abstract
Silk sericin, a natural protein extracted from silkworm cocoons, has been extensively studied and utilized in the biomedical field because of its superior biological activities and controllable chemical-physical properties. Sericin is biocompatible and naturally cell adhesive, enabling cell attachment, proliferation, and differentiation in sericin-based materials. Moreover, its abundant functional groups from variable amino acids composition allow sericin to be chemically modified and cross-linked to form versatile constructs serving as alternative matrixes for biomedical applications. Recently, sericin has been constructed into various types of biomaterials for tissue engineering and regenerative medicine, including various bulk constructions (films, hydrogels, scaffolds, conduits, and devices) and micro-nano formulations. In this review, we systemically summarize the properties of silk sericin, introduce its different forms, and demonstrate their newly-developed as well as potential biomedical applications.
Collapse
Affiliation(s)
- Jia Liu
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Lin Shi
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yan Deng
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Meizhen Zou
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Bo Cai
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yu Song
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zheng Wang
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Lin Wang
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
6
|
Suzuki S, Sakiragaoglu O, Chirila TV. Study of the Antioxidative Effects of Bombyx mori Silk Sericin in Cultures of Murine Retinal Photoreceptor Cells. Molecules 2022; 27:4635. [PMID: 35889503 PMCID: PMC9315601 DOI: 10.3390/molecules27144635] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/18/2022] [Accepted: 07/20/2022] [Indexed: 02/04/2023] Open
Abstract
The availability of natural substances able to fulfill the role of antioxidants in a physiologic environment is important for the development of therapies against diseases associated with excessive production of reactive oxygen species and ensuing oxidative stress. Antioxidant properties have been reported episodically for sericin, a proteinaceous constituent of the silk thread in the cocoons generated by the larvae of the Lepidoptera order. We investigated the sericin fractions isolated from the cocoons spun by the domesticated (Bombyx mori) silkworm. Three fractions were isolated and evaluated, including two peptidoid fractions, the crude sericin and the purified (dialyzed) sericin, and the non-peptidoid methanolic extract of the crude fraction. When subjected to Trolox equivalent antioxidant capacity (TEAC) assay, the extract showed much higher antioxidant capacity as compared to the crude or purified sericin fractions. The three fractions were also evaluated in cultures of murine retinal photoreceptor cells (661 W), a cell line that is highly susceptible to oxidants and is crucially involved in the retinopathies primarily caused by oxidative stress. The extract displayed a significant dose-dependent protective effect on the cultured cells exposed to hydrogen peroxide. In identical conditions, the crude sericin showed a certain level of antioxidative activity at a higher concentration, while the purified sericin did not show any activity. We concluded that the non-peptidoid components accompanying sericin were chiefly responsible for the previously reported antioxidant capacity associated with sericin fractions, a conclusion supported by the qualitative detection of flavonoids in the extract but not in the purified sericin fraction.
Collapse
Affiliation(s)
- Shuko Suzuki
- Queensland Eye Institute, South Brisbane, QLD 4101, Australia; (S.S.); (O.S.)
| | - Onur Sakiragaoglu
- Queensland Eye Institute, South Brisbane, QLD 4101, Australia; (S.S.); (O.S.)
| | - Traian V. Chirila
- Queensland Eye Institute, South Brisbane, QLD 4101, Australia; (S.S.); (O.S.)
- School of Chemistry & Physics, Queensland University of Technology, Brisbane, QLD 4001, Australia
- Australian Institute of Bioengineering & Nanotechnology (AIBN), University of Queensland, St Lucia, QLD 4072, Australia
- Faculty of Medicine, University of Queensland, Herston, QLD 4006, Australia
- School of Molecular Sciences, University of Western Australia, Crawley, WA 6009, Australia
- Faculty of Medicine, George E. Palade University of Medicine, Pharmacy, Science and Technology, 540139 Târgu Mures, Romania
| |
Collapse
|
7
|
Kanaan R, Medlej-Hashim M, Jounblat R, Pilecki B, Sorensen GL. Microfibrillar-associated protein 4 in health and disease. Matrix Biol 2022; 111:1-25. [DOI: 10.1016/j.matbio.2022.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 05/04/2022] [Accepted: 05/24/2022] [Indexed: 10/18/2022]
|
8
|
Sada M, Watanabe M, Inui T, Nakamoto K, Hirata A, Nakamura M, Honda K, Saraya T, Kurai D, Kimura H, Ishii H, Takizawa H. Ruxolitinib inhibits poly(I:C) and type 2 cytokines-induced CCL5 production in bronchial epithelial cells: A potential therapeutic agent for severe eosinophilic asthma. IMMUNITY INFLAMMATION AND DISEASE 2021; 9:363-373. [PMID: 33534941 PMCID: PMC8127547 DOI: 10.1002/iid3.397] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 11/26/2020] [Accepted: 11/28/2020] [Indexed: 12/18/2022]
Abstract
Rationale Severe eosinophilic asthma is characterized by airway eosinophilia and corticosteroid‐resistance, commonly overlapping with type 2 inflammation. It has been reported that chemokine (C‐C motif) ligand 5 (CCL5) is involved in the exacerbation of asthma by RNA virus infections. Indeed, treatment with a virus‐associated ligand and a T helper type 2 cell (Th2) cytokine can synergistically stimulate CCL5 production in bronchial epithelial cells. We aimed to evaluate the mechanisms underlying CCL5 production in this in vitro model and to assess the potential of Janus kinase 1 (JAK1) as a novel therapeutic target via the use of ruxolitinib. Methods We stimulated primary normal human bronchial epithelial (NHBE) cells and BEAS‐2B cells with poly(I:C) along with interleukin‐13 (IL‐13) or IL‐4, and assessed CCL5 production. We also evaluated the signals involved in virus‐ and Th2‐cytokine‐induced CCL5 production and explored a therapeutic agent that attenuates the CCL5 production. Results Poly(I:C) stimulated NHBE and BEAS‐2B cells to produce CCL5. Poly(I:C) and IL‐13 increased CCL5 production. Poly(I:C)‐induced CCL5 production occurred via the TLR3–IRF3 and IFNAR/JAK1–phosphoinositide 3‐kinase (PI3K) pathways, but not the IFNAR/JAK1–STATs pathway. In addition, IL‐13 did not augment poly(I:C)‐induced CCL5 production via the canonical IL‐13R/IL‐4R/JAK1–STAT6 pathway but likely via subsequent TLR3‐IRF3‐IFNAR/JAK1‐PI3K pathways. JAK1 was identified to be a potential therapeutic target for severe eosinophilic asthma. The JAK1/2 inhibitor, ruxolitinib, was demonstrated to more effectively decrease CCL5 production in BEAS‐2B cells than fluticasone propionate. Conclusion We have demonstrated that JAK1 is a possible therapeutic target for severe corticosteroid‐resistant asthma with airway eosinophilia and persistent Th2‐type inflammation, and that ruxolitinib has potential as an alternative pharmacotherapy.
Collapse
Affiliation(s)
- Mitsuru Sada
- Department of Respiratory Medicine, Kyorin University School of Medicine, Tokyo, Japan
| | - Masato Watanabe
- Department of Respiratory Medicine, Kyorin University School of Medicine, Tokyo, Japan
| | - Toshiya Inui
- Department of Respiratory Medicine, Kyorin University School of Medicine, Tokyo, Japan
| | - Keitaro Nakamoto
- Department of Respiratory Medicine, Kyorin University School of Medicine, Tokyo, Japan
| | - Aya Hirata
- Department of Respiratory Medicine, Kyorin University School of Medicine, Tokyo, Japan
| | - Masuo Nakamura
- Department of Respiratory Medicine, Kyorin University School of Medicine, Tokyo, Japan
| | - Kojiro Honda
- Department of Respiratory Medicine, Kyorin University School of Medicine, Tokyo, Japan
| | - Takeshi Saraya
- Department of Respiratory Medicine, Kyorin University School of Medicine, Tokyo, Japan
| | - Daisuke Kurai
- Division of Infectious Diseases, Department of General Medicine, School of Medicine, Kyorin University, Tokyo, Japan
| | - Hirokazu Kimura
- Department of Health Science, Graduate School of Health Science, Gunma Paz University, Gunma, Japan
| | - Haruyuki Ishii
- Department of Respiratory Medicine, Kyorin University School of Medicine, Tokyo, Japan
| | - Hajime Takizawa
- Department of Respiratory Medicine, Kyorin University School of Medicine, Tokyo, Japan
| |
Collapse
|
9
|
Abstract
Sericin is a 10-to-400 kDa hydrophilic protein with high serine content and is a silk constituent together with fibroin. It is produced in the middle silk gland of the silkworm and encoded by four sericin genes. The molecular weight of sericin and its biological activity vary depending on the extraction method employed. Its chemical structure, in terms of random coil and β-sheet conformations, also differs with the extraction method, thereby extending its applications in various fields. Sericin, which was discarded in the textile industry in the past, is being applied and developed in the biomedical field, owing to its biological properties. In particular, many studies are underway in the field of tissue engineering, evaluating its applicability in burn dressing, drug delivery, bone regeneration, cartilage regeneration, and nerve regeneration.
Collapse
|
10
|
Ritprajak P, Sirithanakorn C, Nguyen TN, Sereemaspun A, Aramwit P. Biosynthetic sericin 1-like protein skews dendritic cells to tolerogenic-like phenotype. Biotechnol Appl Biochem 2020; 68:1508-1517. [PMID: 33146942 DOI: 10.1002/bab.2072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 10/30/2020] [Indexed: 12/17/2022]
Abstract
Silkworm sericin has been widely exploited in biomaterials due to its favorable biological activities. However, the extraction processes of sericin from silkworm cocoons can alter the biological and biophysical properties, including a structural diversity of natural sericin. In addition, extracted natural sericin is often contaminated with fibroin that may be harmful to human cells. Induction of tolerogenic dendritic cell (DC) has become a strategy in biomaterial fields because this cell type plays a key role in immune modulation and wound healing. To overcome undesired effects of extracted natural sericin and to improve its biological properties, we biosynthesized sericin 1-like protein that contained only functional motifs and tested its biological activity and immunomodulatory properties in fibroblasts and DCs, respectively. In comparison to natural sericin, biosynthetic sericin 1 promoted collagen production in fibroblasts at a late time point. Furthermore, DCs treated with biosynthetic sericin 1 exhibited a tolerogenic-like phenotype with semimaturation and low production of proinflammatory cytokines, but high production of anti-inflammatory cytokine, IL-10. Biosynthetic sericin 1 might be developed as immunomodulator or immunosuppressant.
Collapse
Affiliation(s)
- Patcharee Ritprajak
- Research Unit in Integrative Immuno-Microbial Biochemistry and Bioresponsive Nanomaterials, Department of Microbiology and Immunology, Faculty of Dentistry Chulalongkorn University, Bangkok, Thailand
| | - Chaiyos Sirithanakorn
- Faculty of Medicine, King Mongkut's Institute of Technology Ladkrabang, Bangkok, Thailand
| | - Thu Ny Nguyen
- Research Unit in Integrative Immuno-Microbial Biochemistry and Bioresponsive Nanomaterials, Department of Microbiology and Immunology, Faculty of Dentistry Chulalongkorn University, Bangkok, Thailand.,Department of Periodontology, Faculty of Odonto-Stomatology, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Amornpun Sereemaspun
- Nanomedicine Research Unit, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Pornanong Aramwit
- Department of Pharmacy practice, Faculty of Pharmaceutical sciences and Center of Excellence in Bioactive Resources for Innovative Clinical Applications, Chulalongkorn University, Bangkok, Thailand.,The Academy of Science, The Royal Society of Thailand, Dusit, Bangkok, Thailand
| |
Collapse
|
11
|
Khan AZ, Jackson CJ, Utheim TP, Reppe S, Sapkota D, Olstad OK, Thiede B, Eidet JR. Sericin-Induced Melanogenesis in Cultured Retinal Pigment Epithelial Cells Is Associated with Elevated Levels of Hydrogen Peroxide and Inflammatory Proteins. Molecules 2020; 25:molecules25194395. [PMID: 32987810 PMCID: PMC7582875 DOI: 10.3390/molecules25194395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 09/18/2020] [Accepted: 09/21/2020] [Indexed: 11/16/2022] Open
Abstract
We previously demonstrated that the silk protein sericin promotes pigmentation of retinal pigment epithelium (RPE) by activating the NF-κB pathway. Among numerous agents, NF-κB can be activated by hydrogen peroxide. In the present study, we explored possible associations between reactive oxygen species and sericin-induced melanogenesis in RPE. The proteome of human fetal RPE cultured for seven days with or without 1% sericin was analyzed using ingenuity pathway analysis (IPA). The proteomic data was verified by immunofluorescence and immunoblotting. Light microscopy and scanning electron microscopy were used to assess morphology. Dihydroethidium (DHE) and dihydrorhodamine (DHR) assays were used to measure superoxide and hydrogen peroxide species. Expression levels of proteins related to inflammation, differentiation, cell survival and cell adhesion were higher in cells cultured in Dulbecco's Modified Eagle Medium (DMEM) with 1% sericin, whereas cells cultured in DMEM alone showed higher expression levels of proteins associated with Bruch's membrane and cytoskeleton. Despite upregulation of inflammatory proteins, sericin co-cultured RPE yielded significantly higher cell viability compared to cells cultured without sericin. Addition of sericin to culture media significantly increased hydrogen peroxide-levels without significantly affecting superoxide-levels. We suggest that sericin-induced melanogenesis in cultured RPE is associated with elevated levels of superoxide dismutase, hydrogen peroxide and inflammatory proteins.
Collapse
Affiliation(s)
- Ayyad Zartasht Khan
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, P.O. Box 1078, Blindern, 0316 Oslo, Norway
- Department of Medical Biochemistry, Oslo University Hospital, Kirkeveien 166, P.O. Box 4956, Nydalen, 0424 Oslo, Norway; (C.J.J.); (T.P.U.); (S.R.); (O.K.O.); (J.R.E.)
- Correspondence: ; Tel.: +47-2284-5300
| | - Catherine Joan Jackson
- Department of Medical Biochemistry, Oslo University Hospital, Kirkeveien 166, P.O. Box 4956, Nydalen, 0424 Oslo, Norway; (C.J.J.); (T.P.U.); (S.R.); (O.K.O.); (J.R.E.)
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, Sognsvannsveien 10, P.O. Box 1052, 0316 Oslo, Norway;
| | - Tor Paaske Utheim
- Department of Medical Biochemistry, Oslo University Hospital, Kirkeveien 166, P.O. Box 4956, Nydalen, 0424 Oslo, Norway; (C.J.J.); (T.P.U.); (S.R.); (O.K.O.); (J.R.E.)
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, Sognsvannsveien 10, P.O. Box 1052, 0316 Oslo, Norway;
- Department of Plastic and Reconstructive Surgery, Oslo University Hospital, Kirkeveien 166, P.O. Box 4956, Nydalen, 0424 Oslo, Norway
- Department of Ophthalmology, Oslo University Hospital, Kirkeveien 166, P.O. Box 4956, Nydalen, 0424 Oslo, Norway
- Department of Ophthalmology, Sørlandet Hospital Arendal, P.O. Box 416, Lundsiden, 4604 Kristiansand, Norway
- Department of Ophthalmology, Stavanger University Hospital, P.O. Box 8100, 4068 Stavanger, Norway
| | - Sjur Reppe
- Department of Medical Biochemistry, Oslo University Hospital, Kirkeveien 166, P.O. Box 4956, Nydalen, 0424 Oslo, Norway; (C.J.J.); (T.P.U.); (S.R.); (O.K.O.); (J.R.E.)
- Department of Plastic and Reconstructive Surgery, Oslo University Hospital, Kirkeveien 166, P.O. Box 4956, Nydalen, 0424 Oslo, Norway
- Lovisenberg Diakonale Hospital, Unger-Vetlesen Institute, P.O. Box 4970, Nydalen, 0440 Oslo, Norway
| | - Dipak Sapkota
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, Sognsvannsveien 10, P.O. Box 1052, 0316 Oslo, Norway;
| | - Ole Kristoffer Olstad
- Department of Medical Biochemistry, Oslo University Hospital, Kirkeveien 166, P.O. Box 4956, Nydalen, 0424 Oslo, Norway; (C.J.J.); (T.P.U.); (S.R.); (O.K.O.); (J.R.E.)
| | - Bernd Thiede
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, P.O. Box 1066, Blindern, 0316 Oslo, Norway;
| | - Jon Roger Eidet
- Department of Medical Biochemistry, Oslo University Hospital, Kirkeveien 166, P.O. Box 4956, Nydalen, 0424 Oslo, Norway; (C.J.J.); (T.P.U.); (S.R.); (O.K.O.); (J.R.E.)
- Department of Ophthalmology, Oslo University Hospital, Kirkeveien 166, P.O. Box 4956, Nydalen, 0424 Oslo, Norway
| |
Collapse
|
12
|
Khan AZ, Utheim TP, Moe MC, Aass HCD, Sapkota D, Vallenari EM, Eidet JR. The Silk Protein Sericin Promotes Viability of ARPE-19 and Induced Pluripotent Stem Cell-Derived Retinal Pigment Epithelial Cells in vitro. Curr Eye Res 2020; 46:504-514. [PMID: 32777180 DOI: 10.1080/02713683.2020.1809001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
PURPOSE Maintaining mature and viable retinal pigment epithelial cells (RPE) in vitro has proven challenging. Investigating compounds that can promote RPE-viability and maturation is motivated by RPE transplantation research, the quest to understand RPE physiology, and a desire to modulate RPE in pathological states. We have previously reported that the silk protein sericin promotes viability, maturation, and pigmentation of human fetal RPE. In the present study, our aim was to uncover whether these effects can be seen in adult retinal pigment epithelial cell line-19 (ARPE-19) and induced pluripotent stem cell-derived RPE (iPSC-RPE). METHODS ARPE-19 and iPSC-RPE were cultured with or without 10 mg/mL sericin. After 7 days, viability was assessed with calcein-acetoxymethyl ester (CAM) and ethidium homodimer-1 (EH-1) assays, flow cytometry, and morphometric analysis. Expression levels of RPE65, tyrosinase, and Pmel17 were quantified to compare maturation between the sericin-treated and control cultures. Light microscopy and staining of the tight junction protein zonula occludens protein 1 (ZO-1) were employed to study sericin's effects on RPE morphology. We also measured culture medium pH, glucose, lactate, and extracellular ion content. RESULTS Sericin-supplemented RPE cultures demonstrated significantly better viability compared to control cultures. Sericin appeared to improve ARPE-19 maturation and morphology in vitro. No effects were seen on RPE pigmentation with the concentration of sericin and duration of cell culture herein reported. CONCLUSIONS This is the first study to demonstrate that supplementing the culture media with sericin promotes the viability of iPSC-RPE and ARPE-19. Sericin's viability-promoting effects may have important implications for retinal therapeutics and regenerative medicine research.
Collapse
Affiliation(s)
- Ayyad Zartasht Khan
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
| | - Tor Paaske Utheim
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway.,Department of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway.,Department of Plastic and Reconstructive Surgery, Oslo University Hospital, Oslo, Norway.,Department of Ophthalmology, Oslo University Hospital, Oslo, Norway.,Department of Clinical Medicine, Faculty of Medicine, University of Bergen, Bergen, Norway.,Department of Ophthalmology, Stavanger University Hospital, Stavanger, Norway
| | - Morten Carstens Moe
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Ophthalmology, Oslo University Hospital, Oslo, Norway
| | | | - Dipak Sapkota
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | | | - Jon Roger Eidet
- Department of Ophthalmology, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
13
|
Su Y, Wang F, Hu Q, Qu Y, Han Y. Arsenic trioxide inhibits proliferation of retinal pigment epithelium by downregulating expression of extracellular matrix and p27. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2020; 13:172-178. [PMID: 32211097 PMCID: PMC7061785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 01/23/2020] [Indexed: 06/10/2023]
Abstract
The present study aimed to investigate the effect of arsenic trioxide (ATO) on the proliferation of retinal pigment epithelium (RPE) and its mechanism. RPE cells were cultivated with 0.5-11 μmol/L ATO for 24, 48, and 72 h and their survival and growth were measured by MTT assay. The expression of p27 and proliferating cell nuclear antigen (PCNA) in RPE cells was detected using cell immunofluorescence and western blotting. Dose-dependency was evident in both the experimental and control groups. The 50% inhibitory concentration was obtained at a concentration of 6 mol/L with cells treated for 3 days. The optimum concentration of ATO was 6 μmol/L based on the result of MTT. After the third day of ATO treatment, the number of cells was significantly lower in the experimental group compared with the control group. The expression of extracellular matrix (ECM) components decreased relative to the control group. The expression of p27 and PCNA declined gradually in cells treated for 72 h at 6 μmol/L ATO compared with the control group. The difference between the experimental and control groups was significant (P=0.005). ATO has the ability to inhibit the growth and proliferation of RPE cells by regulating the expression of the ECM components' p27 and PCNA, in a time- and dose-dependent manner. Thus, ATO may lead to an innovative method for the treatment of proliferative retinopathy.
Collapse
Affiliation(s)
- Ying Su
- Department of Ophthalmology, The First Affiliated Hospital of Harbin Medical UniversityHarbin, China
| | - Feng Wang
- Department of Ophthalmology, The First Affiliated Hospital of Harbin Medical UniversityHarbin, China
| | - Qi Hu
- Department of Ophthalmology, The First Affiliated Hospital of Harbin Medical UniversityHarbin, China
| | - Yixin Qu
- Department of Ophthalmology, The First Affiliated Hospital of Harbin Medical UniversityHarbin, China
| | - Ying Han
- Department of Geriatrics, The First Affiliated Hospital of Harbin Medical UniversityHarbin, China
| |
Collapse
|
14
|
Tao G, Wang Y, Cai R, Chang H, Song K, Zuo H, Zhao P, Xia Q, He H. Design and performance of sericin/poly(vinyl alcohol) hydrogel as a drug delivery carrier for potential wound dressing application. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 101:341-351. [DOI: 10.1016/j.msec.2019.03.111] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 05/23/2018] [Accepted: 03/28/2019] [Indexed: 01/24/2023]
|
15
|
Chen CS, Zeng F, Xiao X, Wang Z, Li XL, Tan RW, Liu WQ, Zhang YS, She ZD, Li SJ. Three-Dimensionally Printed Silk-Sericin-Based Hydrogel Scaffold: A Promising Visualized Dressing Material for Real-Time Monitoring of Wounds. ACS APPLIED MATERIALS & INTERFACES 2018; 10:33879-33890. [PMID: 30204403 DOI: 10.1021/acsami.8b10072] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
A wound dressing which can be convenient for real-time monitoring of wounds is particularly attractive and user-friendly. In this study, a nature-originated silk-sericin-based (SS-based) transparent hydrogel scaffold was prepared and evaluated for the visualization of wound care. The scaffold was fabricated from a hybrid interpenetrating-network (IPN) hydrogel composed of SS and methacrylic-anhydride-modified gelatin (GelMA) by 3D printing. The scaffold transformed into a highly transparent hydrogel upon swelling in PBS, and thus, anything underneath could be easily read. The scaffold had a high degree of swelling and presented a regularly macroporous structure with pores around 400 μm × 400 μm, which can help maintain the moist and apinoid environment for wound healing. Meanwhile, the scaffolds were conducive to adhesion and proliferation of L929 cells. A coculture of HaCaT and HSF cells on the scaffold showed centralized proliferation of the two cells in distributed layers, respectively, denoting a promising comfortable environment for re-epithelialization. Moreover, in vivo studies demonstrated that the scaffold showed no excessive inflammatory reaction. In short, this work presented an SS-based transparent hydrogel scaffold with steerable physical properties and excellent biocompatibility through 3D printing, pioneering promising applications in the visualization of wound care and drug delivery.
Collapse
Affiliation(s)
- Chang-Sheng Chen
- Key Laboratory of Biomedical Materials and Implant Devices , Research Institute of Tsinghua University in Shenzhen , Shenzhen 518057 , P. R. China
| | - Fei Zeng
- Department of Orthopedics, Zhujiang Hospital , Southern Medical University , Guangzhou 510280 , P. R. China
| | - Xiao Xiao
- Department of Biomedical Engineering , Tsinghua University , Beijing 100084 , P. R. China
- Department of Biomedical Engineering , Graduate School of Tsinghua University at Shenzhen , Shenzhen 518055 , P. R. China
| | - Zhen Wang
- Key Laboratory of Biomedical Materials and Implant Devices , Research Institute of Tsinghua University in Shenzhen , Shenzhen 518057 , P. R. China
| | - Xiao-Li Li
- Key Laboratory of Biomedical Materials and Implant Devices , Research Institute of Tsinghua University in Shenzhen , Shenzhen 518057 , P. R. China
| | - Rong-Wei Tan
- Lando Biomaterials R&D Center, Shenzhen Lando Biomaterials Co., Ltd. , Shenzhen 518057 , P. R. China
| | - Wei-Qiang Liu
- Key Laboratory of Biomedical Materials and Implant Devices , Research Institute of Tsinghua University in Shenzhen , Shenzhen 518057 , P. R. China
- Department of Biomedical Engineering , Tsinghua University , Beijing 100084 , P. R. China
| | - Ye-Shun Zhang
- The Key Laboratory of Genetic Improvement of Silkworm and Mulberry, Ministry of Agriculture, The Sericultural Research Institute , Jiangsu University of Science and Technology , Zhenjiang 212018 , P. R. China
| | - Zhen-Ding She
- Key Laboratory of Biomedical Materials and Implant Devices , Research Institute of Tsinghua University in Shenzhen , Shenzhen 518057 , P. R. China
- Lando Biomaterials R&D Center, Shenzhen Lando Biomaterials Co., Ltd. , Shenzhen 518057 , P. R. China
| | - Song-Jian Li
- Department of Orthopedics, Zhujiang Hospital , Southern Medical University , Guangzhou 510280 , P. R. China
| |
Collapse
|
16
|
Beauvericin inhibits melanogenesis by regulating cAMP/PKA/CREB and LXR-α/p38 MAPK-mediated pathways. Sci Rep 2018; 8:14958. [PMID: 30297846 PMCID: PMC6175938 DOI: 10.1038/s41598-018-33352-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 09/25/2018] [Indexed: 01/15/2023] Open
Abstract
Melanogenesis is the process of production of melanin pigments that are responsible for the colors of skin, eye, and hair and provide protection from ultraviolet radiation. However, excessive levels of melanin formation cause hyperpigmentation disorders such as freckles, melasma, and age spots. Liver X receptors (LXR) are nuclear oxysterol receptors belonging to the family of ligand-activated transcription factors and physiological regulators of lipid and cholesterol metabolism. In the skin, activation of LXRs stimulates differentiation of keratinocytes and augments lipid synthesis in sebocytes. However, the function of LXRs in melanogenesis has not been clearly elucidated. In addition, although beauvericin, a well-known mycotoxin primarily isolated from several fungi, has various biological properties, its involvement in melanogenesis has not been reported. Therefore, in this study, we examined the effects of beauvericin on melanogenesis and its molecular mechanisms. Beauvericin decreased melanin content and tyrosinase activity without any cytotoxicity. Beauvericin also reduced protein levels of MITF, tyrosinase, TRP1, and TRP2. In addition, beauvericin suppressed cAMP-PKA-CREB signaling and upregulated expression of LXR-α, resulting in the suppression of p38 MAPK. Our results indicate that beauvericin attenuates melanogenesis by regulating both cAMP/PKA/CREB and LXR-α/p38 MAPK pathways, consequently leading to a reduction of melanin levels.
Collapse
|
17
|
Pasovic L, Utheim TP, Reppe S, Khan AZ, Jackson CJ, Thiede B, Berg JP, Messelt EB, Eidet JR. Improvement of Storage Medium for Cultured Human Retinal Pigment Epithelial Cells Using Factorial Design. Sci Rep 2018; 8:5688. [PMID: 29632395 PMCID: PMC5890280 DOI: 10.1038/s41598-018-24121-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 03/26/2018] [Indexed: 12/19/2022] Open
Abstract
Storage of human retinal pigment epithelium (hRPE) can contribute to the advancement of cell-based RPE replacement therapies. The present study aimed to improve the quality of stored hRPE cultures by identifying storage medium additives that, alone or in combination, contribute to enhancing cell viability while preserving morphology and phenotype. hRPE cells were cultured in the presence of the silk protein sericin until pigmentation. Cells were then stored for 10 days in storage medium plus sericin and either one of 46 different additives. Individual effects of each additive on cell viability were assessed using epifluorescence microscopy. Factorial design identified promising additive combinations by extrapolating their individual effects. Supplementing the storage medium with sericin combined with adenosine, L-ascorbic acid and allopurinol resulted in the highest cell viability (98.6 ± 0.5%) after storage for three days, as measured by epifluorescence microscopy. Flow cytometry validated the findings. Proteomics identified 61 upregulated and 65 downregulated proteins in this storage group compared to the unstored control. Transmission electron microscopy demonstrated the presence of melanosomes after storage in the optimized medium. We conclude that the combination of adenosine, L-ascorbic acid, allopurinol and sericin in minimal essential medium preserves RPE pigmentation while maintaining cell viability during storage.
Collapse
Affiliation(s)
- L Pasovic
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway. .,Institute of Clinical Medicine, University of Oslo, Oslo, Norway. .,Department of Surgery, Akershus University Hospital, Lørenskog, Norway.
| | - T P Utheim
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway.,Department of Plastic and Reconstructive Surgery, Oslo University Hospital, Oslo, Norway.,Department of Ophthalmology, Oslo University Hospital, Oslo, Norway.,Department of Ophthalmology, Stavanger University Hospital, Stavanger, Norway.,Department of Clinical Medicine, Faculty of Medicine, University of Bergen, Bergen, Norway.,Department of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - S Reppe
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
| | - A Z Khan
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - C J Jackson
- Department of Plastic and Reconstructive Surgery, Oslo University Hospital, Oslo, Norway.,Department of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - B Thiede
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - J P Berg
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
| | - E B Messelt
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - J R Eidet
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway.,Department of Ophthalmology, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
18
|
Khan AZ, Utheim TP, Reppe S, Sandvik L, Lyberg T, Roald BBH, Ibrahim IB, Eidet JR. Cultured Human Retinal Pigment Epithelial (hRPE) Sheets: A Search for Suitable Storage Conditions. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2018; 24:147-155. [PMID: 29637873 DOI: 10.1017/s1431927618000144] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The advancement of human retinal pigment epithelial cell (hRPE) replacement therapy is partly dependent on optimization of cell culture, cell preservation, and storage medium. This study was undertaken to search for a suitable storage temperature and storage medium for hRPE. hRPE monolayer sheets were cultured under standard conditions at 37°C and then randomized for storage at six temperatures (4, 16, 20, 24, 28, and 37°C) for 7 days. After revealing a suitable storage temperature, hRPE sheets were subsequently stored with and without the silk protein sericin added to the storage medium. Live/dead assay, light microscopy, pH, and phenotypic expression of various proteins were used to assess cell cultures stored at different temperatures. After 7 days of storage, hRPE morphology was best preserved at 4°C. Addition of sericin to the storage medium maintained the characteristic morphology of the preserved cells, and improved pigmentation and levels of pigmentation-related proteins in the cultured hRPE sheets following a 7-day storage period at 4°C.
Collapse
Affiliation(s)
- Ayyad Z Khan
- 1Department of Medical Biochemistry,Oslo University Hospital,Kirkeveien 166,P.O. Box 4956,Nydalen,0424 Oslo,Norway
| | - Tor P Utheim
- 1Department of Medical Biochemistry,Oslo University Hospital,Kirkeveien 166,P.O. Box 4956,Nydalen,0424 Oslo,Norway
| | - Sjur Reppe
- 1Department of Medical Biochemistry,Oslo University Hospital,Kirkeveien 166,P.O. Box 4956,Nydalen,0424 Oslo,Norway
| | - Leiv Sandvik
- 10Department of Periodontology,Institute of Clinical Odontology, Faculty of Dentistry,University of Oslo,Sognsvannsveien 10,P.O. Box 1052,0316 Oslo,Norway
| | - Torstein Lyberg
- 1Department of Medical Biochemistry,Oslo University Hospital,Kirkeveien 166,P.O. Box 4956,Nydalen,0424 Oslo,Norway
| | - Borghild B-H Roald
- 2Institute of Clinical Medicine, Faculty of Medicine,University of Oslo,P.O. Box 1171,Blindern,0318 Oslo,Norway
| | - Ibrahim B Ibrahim
- 2Institute of Clinical Medicine, Faculty of Medicine,University of Oslo,P.O. Box 1171,Blindern,0318 Oslo,Norway
| | - Jon R Eidet
- 1Department of Medical Biochemistry,Oslo University Hospital,Kirkeveien 166,P.O. Box 4956,Nydalen,0424 Oslo,Norway
| |
Collapse
|
19
|
Chen X, Jiang C, Qin B, Liu G, Ji J, Sun X, Xu M, Ding S, Zhu M, Huang G, Yan B, Zhao C. LncRNA ZNF503-AS1 promotes RPE differentiation by downregulating ZNF503 expression. Cell Death Dis 2017; 8:e3046. [PMID: 28880276 PMCID: PMC5636965 DOI: 10.1038/cddis.2017.382] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 06/11/2017] [Accepted: 06/13/2017] [Indexed: 01/13/2023]
Abstract
Long noncoding RNAs (lncRNAs) have important roles in various biological processes. Our previous work has revealed that dedifferentiation of retinal pigment epithelium (RPE) cells contributes to the pathology of age-related macular degeneration (AMD). Herein, we show roles of lncRNAs in RPE differentiation. We used microarray to identify lncRNA expression profiles in human induced pluripotent stem cells (hiPSCs) and hiPSC-derived RPE cells. A total of 217 differentially expressed lncRNAs along with the differentiation were initially identified, among which 13 lncRNAs showed a consistent fold change of over 2. LncRNA ZNF503-AS1, located in the cytoplasm of RPE cells, was found consistently upregulated along with RPE differentiation, and downregulated in the RPE-choroid of AMD patients. In vitro study further suggested that ZNF503-AS1 insufficiency could inhibit RPE differentiation, and promote its proliferation and migration. As ZNF503-AS1 is transcribed from the antisense strand of the ZNF503 gene locus, we further revealed its regulatory role in ZNF503 expression. ZNF503-AS1 was reversely correlated with ZNF503 expression. Our results also suggested that ZNF503 could inhibit RPE differentiation, and promote its proliferation and migration. Thus, ZNF503-AS1 potentially promotes RPE differentiation through downregulation of ZNF503 expression. In addition, nuclear factor-κB was recognized as a potential upstream transcript factor for ZNF503-AS1, which might participate in promoting RPE differentiation by regulating the expression of ZNF503-AS1. Taken together, our study identifies a group of RPE differentiation relevant lncRNAs, and the potential role of ZNF503-AS1 in the pathology of atrophic AMD, which might help with the intervention of AMD patients.
Collapse
Affiliation(s)
- Xue Chen
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, State Key Laboratory of Reproductive Medicine, Nanjing 210029, China.,Department of Ophthalmology and Vision Science, Eye &ENT Hospital, Shanghai Medical College, Fudan University, Shanghai 200023, China.,Key Laboratory of Myopia of State Health Ministry (Fudan University) and Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai 200023, China
| | - Chao Jiang
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, State Key Laboratory of Reproductive Medicine, Nanjing 210029, China
| | - Bing Qin
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, State Key Laboratory of Reproductive Medicine, Nanjing 210029, China.,Department of Ophthalmology, The First People's Hospital of Suqian, Suqian 223800, China
| | - Guohua Liu
- Department of Ophthalmology, Qilu Children's Hospital of Shandong University, Jinan 250000, China
| | - Jiangdong Ji
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, State Key Laboratory of Reproductive Medicine, Nanjing 210029, China
| | - Xiantao Sun
- Department of Ophthalmology, Children's Hospital of Zhengzhou, Zhengzhou 450053, China
| | - Min Xu
- Department of Ophthalmology, Northern Jiangsu People's Hospital, Yangzhou 225000, China
| | - Sijia Ding
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, State Key Laboratory of Reproductive Medicine, Nanjing 210029, China
| | - Meidong Zhu
- Save Sight Institute, Discipline of Clinical Ophthalmology and Eye Health, The University of Sydney, Sydney, NSW 2000, Australia
| | - Guofu Huang
- Department of Ophthalmology, The Third Affiliated Hospital of Nanchang University, Nanchang 330000, China
| | - Biao Yan
- Research Center, Eye &ENT Hospital, Shanghai Medical College, Fudan University, Shanghai 200023, China
| | - Chen Zhao
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, State Key Laboratory of Reproductive Medicine, Nanjing 210029, China.,Department of Ophthalmology and Vision Science, Eye &ENT Hospital, Shanghai Medical College, Fudan University, Shanghai 200023, China.,Key Laboratory of Myopia of State Health Ministry (Fudan University) and Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai 200023, China.,Department of Ophthalmology, Children's Hospital of Zhengzhou, Zhengzhou 450053, China
| |
Collapse
|