1
|
Ahn H, Oh Y, Ryu JH, Jo HY. Uranium sequestration in fracture filling materials from fractured granite aquifers. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2020; 225:106440. [PMID: 33027740 DOI: 10.1016/j.jenvrad.2020.106440] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 09/23/2020] [Accepted: 09/27/2020] [Indexed: 06/11/2023]
Abstract
The migration of the uranium (U) in high-level radioactive waste that is held in deep geological repositories via fractures in deep granite aquifers is a serious safety concern, thus, this study investigates the effect of fracture filling materials designed to mitigate these concerns. Geochemical analysis was conducted on granite rock core and groundwater samples collected from boreholes located in granite areas. Sequential extraction tests on fracture filling material (FFM) samples were also conducted. The rock core samples were classified as two-mica granite that had uranium (U) content ranging from 1900 to 22,100 μg/kg with an arithmetic mean of 8500 μg/kg. The total U concentration in the FFM samples was found to range from 790 to 80,781 μg/kg. The U in the FFM samples was mainly associated with a carbonate phase that made up from 29.9 to 100% of the total U in the FFM. The U fraction of carbonate phase was closely correlated with the Ca fraction. U associated with crystalline inorganic FFM constituents (e.g, clay minerals and metal oxyhydroxides) was also found in FFM samples in fractions ranging from 21.1 to 70.1%. U in FFM is mainly incorporated via Ca-carbonate, which might have not been formed in modern groundwater, but the time and temperature during formation are unknown. In addition, the Fe, Si, Al, Ca, K, and U levels were found to be well correlated with each other, suggesting that U can also become geochemically associated with crystalline clay minerals or Fe-oxyhydroxides.
Collapse
Affiliation(s)
- Hyangsig Ahn
- Han River Basin Environmental Office, Ministry of Environment, 229 Misagangbyun Hangang-ro, Hanam, Kyunggi-do, 12902, Republic of Korea
| | - Younsoo Oh
- KoreaMine Reclamation Corporation, 2 Segyero, Wonju, Gangwon-do, 26464, Republic of Korea; Department of Earth and Environmental Sciences, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Ji-Hun Ryu
- Korea Atomic Energy Research Institute, 989 Daedeok-daero, Yuseong-gu, Daejeon, 34057, Republic of Korea
| | - Ho Young Jo
- Department of Earth and Environmental Sciences, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea.
| |
Collapse
|
2
|
Zhang HL, Cheng MX, Li SC, Huang HX, Liu WD, Lyu XJ, Chu J, Ding HH, Zhao D, Wang YP, Huang FY. Roles of extracellular polymeric substances in uranium immobilization by anaerobic sludge. AMB Express 2019; 9:199. [PMID: 31828444 PMCID: PMC6906280 DOI: 10.1186/s13568-019-0922-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 11/30/2019] [Indexed: 01/10/2023] Open
Abstract
The specific roles of extracellular polymeric substances (EPS) and how factors influenced EPS’s roles during U(VI) immobilization are still unclear. In this study, high content of U with the main form of nanoparticles was detected in EPS, accounting for 10–42% of total U(VI) removal. EPS might be utilized as energy source or even as electron donors when external carbon source was unavailable. The influencing degree of each experimental parameter to uranium (U) removal process was elucidated. The influential priority to U(IV)/U(VI) ratios in sludge was as follows: acetate, U(VI), and nitrate. The influential priority to total EPS contents was as follows: U(VI), nitrate and acetate. The complex interaction mechanism between U(VI) and EPS in the U immobilization process was proposed, which might involve three ways including biosorption, bioreduction and bioprecipitation. These results indicate important and various roles of EPS in U(VI) immobilization.
Collapse
|
3
|
Neill TS, Morris K, Pearce CI, Sherriff NK, Burke MG, Chater PA, Janssen A, Natrajan L, Shaw S. Stability, Composition, and Core-Shell Particle Structure of Uranium(IV)-Silicate Colloids. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:9118-9127. [PMID: 30001122 DOI: 10.1021/acs.est.8b01756] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Uranium is typically the most abundant radionuclide by mass in radioactive wastes and is a significant component of effluent streams at nuclear facilities. Actinide(IV) (An(IV)) colloids formed via various pathways, including corrosion of spent nuclear fuel, have the potential to greatly enhance the mobility of poorly soluble An(IV) forms, including uranium. This is particularly important in conditions relevant to decommissioning of nuclear facilities and the geological disposal of radioactive waste. Previous studies have suggested that silicate could stabilize U(IV) colloids. Here the formation, composition, and structure of U(IV)-silicate colloids under the alkaline conditions relevant to spent nuclear fuel storage and disposal were investigated using a range of state of the art techniques. The colloids are formed across a range of pH conditions (9-10.5) and silicate concentrations (2-4 mM) and have a primary particle size 1-10 nm, also forming suspended aggregates <220 nm. X-ray absorption spectroscopy, ultrafiltration, and scanning transmission electron microscopy confirm the particles are U(IV)-silicates. Additional evidence from X-ray diffraction and pair distribution function data suggests the primary particles are composed of a UO2-rich core and a U-silicate shell. U(IV)-silicate colloids formation correlates with the formation of U(OH)3(H3SiO4)32- complexes in solution indicating they are likely particle precursors. Finally, these colloids form under a range of conditions relevant to nuclear fuel storage and geological disposal of radioactive waste and represent a potential pathway for U mobility in these systems.
Collapse
Affiliation(s)
- Thomas S Neill
- Research Centre for Radwaste and Disposal, Williamson Research Centre , The University of Manchester , Oxford Road , Manchester M13 9PL , U.K
| | - Katherine Morris
- Research Centre for Radwaste and Disposal, Williamson Research Centre , The University of Manchester , Oxford Road , Manchester M13 9PL , U.K
| | - Carolyn I Pearce
- Pacific Northwest National Laboratory, Richland , Washington 99354 , United States
| | - Nicholas K Sherriff
- National Nuclear Laboratory, Chadwick House, Warrington Road , Birchwood Park, Warrington WA3 6AE , U.K
| | - M Grace Burke
- Materials Performance Centre , The University of Manchester , Oxford Road , Manchester M13 9PL , U.K
| | - Philip A Chater
- Diamond Light Source, Harwell Campus , Didcot , Oxfordshire OX11 0DE , U.K
| | - Arne Janssen
- Materials Performance Centre , The University of Manchester , Oxford Road , Manchester M13 9PL , U.K
- Diamond Light Source, Harwell Campus , Didcot , Oxfordshire OX11 0DE , U.K
| | - Louise Natrajan
- School of Chemistry , The University of Manchester , Oxford Road , Manchester M13 9PL , U.K
| | - Samuel Shaw
- Research Centre for Radwaste and Disposal, Williamson Research Centre , The University of Manchester , Oxford Road , Manchester M13 9PL , U.K
| |
Collapse
|
4
|
Hernsdorf AW, Amano Y, Miyakawa K, Ise K, Suzuki Y, Anantharaman K, Probst A, Burstein D, Thomas BC, Banfield JF. Potential for microbial H 2 and metal transformations associated with novel bacteria and archaea in deep terrestrial subsurface sediments. ISME JOURNAL 2017; 11:1915-1929. [PMID: 28350393 PMCID: PMC5520028 DOI: 10.1038/ismej.2017.39] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 01/02/2017] [Accepted: 02/05/2017] [Indexed: 01/24/2023]
Abstract
Geological sequestration in deep underground repositories is the prevailing proposed route for radioactive waste disposal. After the disposal of radioactive waste in the subsurface, H2 may be produced by corrosion of steel and, ultimately, radionuclides will be exposed to the surrounding environment. To evaluate the potential for microbial activities to impact disposal systems, we explored the microbial community structure and metabolic functions of a sediment-hosted ecosystem at the Horonobe Underground Research Laboratory, Hokkaido, Japan. Overall, we found that the ecosystem hosted organisms from diverse lineages, including many from the phyla that lack isolated representatives. The majority of organisms can metabolize H2, often via oxidative [NiFe] hydrogenases or electron-bifurcating [FeFe] hydrogenases that enable ferredoxin-based pathways, including the ion motive Rnf complex. Many organisms implicated in H2 metabolism are also predicted to catalyze carbon, nitrogen, iron and sulfur transformations. Notably, iron-based metabolism is predicted in a novel lineage of Actinobacteria and in a putative methane-oxidizing ANME-2d archaeon. We infer an ecological model that links microorganisms to sediment-derived resources and predict potential impacts of microbial activity on H2 consumption and retardation of radionuclide migration.
Collapse
Affiliation(s)
- Alex W Hernsdorf
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
| | - Yuki Amano
- Nuclear Fuel Cycle Engineering Laboratories, Japan Atomic Energy Agency, Tokai, Ibaraki, Japan.,Horonobe Underground Research Center, Japan Atomic Energy Agency, Horonobe, Hokkaido, Japan
| | - Kazuya Miyakawa
- Horonobe Underground Research Center, Japan Atomic Energy Agency, Horonobe, Hokkaido, Japan
| | - Kotaro Ise
- Nuclear Fuel Cycle Engineering Laboratories, Japan Atomic Energy Agency, Tokai, Ibaraki, Japan
| | - Yohey Suzuki
- Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | | | | | - David Burstein
- Department of Earth and Planetary Sciences, Berkeley, CA, USA
| | - Brian C Thomas
- Department of Earth and Planetary Sciences, Berkeley, CA, USA
| | - Jillian F Banfield
- Department of Earth and Planetary Sciences, Berkeley, CA, USA.,Department of Environmental Science, Policy, and Management, Berkeley, CA, USA
| |
Collapse
|