1
|
Yildiz YO, Ruan JL, Gray MD, Bau L, Browning RJ, Mannaris C, Kiltie AE, Vojnovic B, Stride E. Combined drug delivery and treatment monitoring using a single high frequency ultrasound system. Int J Hyperthermia 2024; 41:2430330. [PMID: 39592132 DOI: 10.1080/02656736.2024.2430330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/19/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024] Open
Abstract
Ultrasound-mediated drug delivery is typically performed using transducers with center frequencies ≤ 1 MHz to promote acoustic cavitation. Such frequencies are not commonly used for diagnostic ultrasound due to limited spatial resolution. Therefore, delivery and monitoring of therapeutic ultrasound typically requires two transducers to enable both treatment and imaging. This study investigates the feasibility of using a single commercial ultrasound imaging transducer operating at 5 MHz for both drug delivery and real-time imaging. We compared a single-transducer system (STS) at 5 MHz with a conventional dual-transducer system (DTS) using a 1.1 MHz therapeutic transducer and an imaging probe. in vitro experiments demonstrated that the STS could achieve comparable extravasation depth and area as the DTS, with higher drug deposition observed at 5 MHz. Additionally, extravasation patterns were influenced by peak negative pressure (PNP) and duty cycle, with the narrower beam width at 5 MHz offering potential advantages for targeted drug delivery. in vivo experiments in a murine bladder cancer model confirmed the efficacy of the STS for real-time imaging and drug delivery, with cavitation dose correlating with drug deposition. The results suggest that a single-transducer approach may enhance the precision and efficiency of ultrasound-mediated drug delivery, potentially reducing system complexity and cost.
Collapse
Affiliation(s)
- Yesna O Yildiz
- Department of Oncology, University of Oxford, Oxford, UK
| | - Jia-Ling Ruan
- Department of Oncology, University of Oxford, Oxford, UK
| | - Michael D Gray
- Biomedical Ultrasonics, Biotherapy and Biopharmaceuticals Laboratory (BUBBL), Institute of Biomedical Engineering, University of Oxford, Oxford, UK
| | - Luca Bau
- Biomedical Ultrasonics, Biotherapy and Biopharmaceuticals Laboratory (BUBBL), Institute of Biomedical Engineering, University of Oxford, Oxford, UK
| | | | - Christophoros Mannaris
- Biomedical Ultrasonics, Biotherapy and Biopharmaceuticals Laboratory (BUBBL), Institute of Biomedical Engineering, University of Oxford, Oxford, UK
| | - Anne E Kiltie
- Department of Oncology, University of Oxford, Oxford, UK
| | | | - Eleanor Stride
- Biomedical Ultrasonics, Biotherapy and Biopharmaceuticals Laboratory (BUBBL), Institute of Biomedical Engineering, University of Oxford, Oxford, UK
| |
Collapse
|
2
|
Remlova E, Feig VR, Kang Z, Patel A, Ballinger I, Ginzburg A, Kuosmanen J, Fabian N, Ishida K, Jenkins J, Hayward A, Traverso G. Activated Metals to Generate Heat for Biomedical Applications. ACS MATERIALS LETTERS 2023; 5:2508-2517. [PMID: 37680546 PMCID: PMC10481395 DOI: 10.1021/acsmaterialslett.3c00581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/10/2023] [Indexed: 09/09/2023]
Abstract
Delivering heat in vivo could enhance a wide range of biomedical therapeutic and diagnostic technologies, including long-term drug delivery devices and cancer treatments. To date, providing thermal energy is highly power-intensive, rendering it oftentimes inaccessible outside of clinical settings. We developed an in vivo heating method based on the exothermic reaction between liquid-metal-activated aluminum and water. After establishing a method for consistent activation, we characterized the heat generation capabilities with thermal imaging and heat flux measurements. We then demonstrated one application of this reaction: to thermally actuate a gastric resident device made from a shape-memory alloy called Nitinol. Finally, we highlight the advantages and future directions for leveraging this novel in situ heat generation method beyond the showcased example.
Collapse
Affiliation(s)
- Eva Remlova
- Division
of Gastroenterology, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
- Department
of Health Sciences and Technology, Eidgenössische
Technische Hochschule Zürich, Universitätstrasse 2, 8092 Zürich, Switzerland
| | - Vivian Rachel Feig
- Division
of Gastroenterology, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
- The
David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Ziliang Kang
- Division
of Gastroenterology, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
- Department
of Mechanical Engineering, Massachusetts
Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Ashka Patel
- Division
of Gastroenterology, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
- Department
of Bioengineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Ian Ballinger
- Division
of Gastroenterology, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Anna Ginzburg
- Division
of Gastroenterology, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
- Department
of Cell/Cellular and Molecular Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | - Johannes Kuosmanen
- Department
of Mechanical Engineering, Massachusetts
Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Niora Fabian
- Department
of Mechanical Engineering, Massachusetts
Institute of Technology, Cambridge, Massachusetts 02139, United States
- Division
of Comparative Medicine, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| | - Keiko Ishida
- Division
of Gastroenterology, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
- The
David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Joshua Jenkins
- Division
of Gastroenterology, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
- Department
of Mechanical Engineering, Massachusetts
Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Alison Hayward
- Division
of Gastroenterology, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
- Department
of Mechanical Engineering, Massachusetts
Institute of Technology, Cambridge, Massachusetts 02139, United States
- Division
of Comparative Medicine, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| | - Giovanni Traverso
- Division
of Gastroenterology, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
- The
David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department
of Mechanical Engineering, Massachusetts
Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
3
|
Field RD, Jakus MA, Chen X, Human K, Zhao X, Chitnis PV, Sia SK. Ultrasound-Responsive Aqueous Two-Phase Microcapsules for On-Demand Drug Release. Angew Chem Int Ed Engl 2022; 61:e202116515. [PMID: 35233907 DOI: 10.1002/anie.202116515] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Indexed: 12/21/2022]
Abstract
Traditional implanted drug delivery systems cannot easily change their release profile in real time to respond to physiological changes. Here we present a microfluidic aqueous two-phase system to generate microcapsules that can release drugs on demand as triggered by focused ultrasound (FUS). The biphasic microcapsules are made of hydrogels with an outer phase of mixed molecular weight (MW) poly(ethylene glycol) diacrylate that mitigates premature payload release and an inner phase of high MW dextran with payload that breaks down in response to FUS. Compound release from microcapsules could be triggered as desired; 0.4 μg of payload was released across 16 on-demand steps over days. We detected broadband acoustic signals amidst low heating, suggesting inertial cavitation as a key mechanism for payload release. Overall, FUS-responsive microcapsules are a biocompatible and wirelessly triggerable structure for on-demand drug delivery over days to weeks.
Collapse
Affiliation(s)
- Rachel D Field
- Department of Biomedical Engineering, Columbia University, 351 Engineering Terrace, 1210 Amsterdam Avenue, New York, NY 10027, USA
| | - Margaret A Jakus
- Department of Biomedical Engineering, Columbia University, 351 Engineering Terrace, 1210 Amsterdam Avenue, New York, NY 10027, USA
| | - Xiaoyu Chen
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Kelia Human
- Department of Biomedical Engineering, Columbia University, 351 Engineering Terrace, 1210 Amsterdam Avenue, New York, NY 10027, USA
| | - Xuanhe Zhao
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Parag V Chitnis
- Department of Bioengineering, George Mason University, 4400 University Drive, Fairfax, VA 22030, USA
| | - Samuel K Sia
- Department of Biomedical Engineering, Columbia University, 351 Engineering Terrace, 1210 Amsterdam Avenue, New York, NY 10027, USA
| |
Collapse
|
4
|
Field RD, Jakus MA, Chen X, Human K, Zhao X, Chitnis PV, Sia SK. Ultrasound‐Responsive Aqueous Two‐Phase Microcapsules for On‐Demand Drug Release. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202116515] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Rachel D. Field
- Department of Biomedical Engineering Columbia University 351 Engineering Terrace, 1210 Amsterdam Avenue New York NY 10027 USA
| | - Margaret A. Jakus
- Department of Biomedical Engineering Columbia University 351 Engineering Terrace, 1210 Amsterdam Avenue New York NY 10027 USA
| | - Xiaoyu Chen
- Department of Mechanical Engineering Massachusetts Institute of Technology Cambridge MA 02139 USA
| | - Kelia Human
- Department of Biomedical Engineering Columbia University 351 Engineering Terrace, 1210 Amsterdam Avenue New York NY 10027 USA
| | - Xuanhe Zhao
- Department of Mechanical Engineering Massachusetts Institute of Technology Cambridge MA 02139 USA
- Department of Civil and Environmental Engineering Massachusetts Institute of Technology Cambridge MA 02139 USA
| | - Parag V. Chitnis
- Department of Bioengineering George Mason University 4400 University Drive Fairfax VA 22030 USA
| | - Samuel K. Sia
- Department of Biomedical Engineering Columbia University 351 Engineering Terrace, 1210 Amsterdam Avenue New York NY 10027 USA
| |
Collapse
|
5
|
Kumar R, Aadil KR, Mondal K, Mishra YK, Oupicky D, Ramakrishna S, Kaushik A. Neurodegenerative disorders management: state-of-art and prospects of nano-biotechnology. Crit Rev Biotechnol 2021; 42:1180-1212. [PMID: 34823433 DOI: 10.1080/07388551.2021.1993126] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Neurodegenerative disorders (NDs) are highly prevalent among the aging population. It affects primarily the central nervous system (CNS) but the effects are also observed in the peripheral nervous system. Neural degeneration is a progressive loss of structure and function of neurons, which may ultimately involve cell death. Such patients suffer from debilitating memory loss and altered motor coordination which bring up non-affordable and unavoidable socio-economic burdens. Due to the unavailability of specific therapeutics and diagnostics, the necessity to control or manage NDs raised the demand to investigate and develop efficient alternative approaches. Keeping trends and advancements in view, this report describes both state-of-the-art and challenges in nano-biotechnology-based approaches to manage NDs, toward personalized healthcare management. Sincere efforts are being made to customize nano-theragnostics to control: therapeutic cargo packaging, delivery to the brain, nanomedicine of higher efficacy, deep brain stimulation, implanted stimulation, and managing brain cell functioning. These advancements are useful to design future therapy based on the severity of the patient's neurodegenerative disease. However, we observe a lack of knowledge shared among scientists of a variety of expertise to explore this multi-disciplinary research field for NDs management. Consequently, this review will provide a guideline platform that will be useful in developing novel smart nano-therapies by considering the aspects and advantages of nano-biotechnology to manage NDs in a personalized manner. Nano-biotechnology-based approaches have been proposed as effective and affordable alternatives at the clinical level due to recent advancements in nanotechnology-assisted theragnostics, targeted delivery, higher efficacy, and minimal side effects.
Collapse
Affiliation(s)
- Raj Kumar
- Department of Pharmaceutical Sciences, Center for Drug Delivery and Nanomedicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Keshaw Ram Aadil
- Center for Basic Sciences, Pt. Ravishankar Shukla University, Raipur, India
| | - Kunal Mondal
- Materials Science and Engineering Department, Idaho National Laboratory, Idaho Falls, ID, USA
| | - Yogendra Kumar Mishra
- Mads Clausen Institute, NanoSYD, University of Southern Denmark, Sønderborg, Denmark
| | - David Oupicky
- Department of Pharmaceutical Sciences, Center for Drug Delivery and Nanomedicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Seeram Ramakrishna
- Center for Nanotechnology and Sustainability, National University of Singapore, Singapore, Singapore
| | - Ajeet Kaushik
- NanoBioTech Laboratory, Health Systems Engineering, Department of Environmental Engineering, Florida Polytechnic University, Lakeland, FL, USA
| |
Collapse
|
6
|
Mitri F. Radiation force of stationary elastic compressional and shear plane waves on a cylinder encased in a linear elastic solid. FORCES IN MECHANICS 2021. [DOI: 10.1016/j.finmec.2021.100040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
7
|
Soubeyrand M. CORR Insights®: A Comprehensive Enhanced Recovery Pathway for Rotator Cuff Surgery Reduces Pain, Opioid Use, and Side Effects. Clin Orthop Relat Res 2021; 479:1752-1753. [PMID: 33780386 PMCID: PMC8277260 DOI: 10.1097/corr.0000000000001746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 03/04/2021] [Indexed: 01/31/2023]
Affiliation(s)
- Marc Soubeyrand
- Clinique Saint Jean l'ermitage, Service d'orthopédie, Melun, France
| |
Collapse
|
8
|
Ciancia S, Cafarelli A, Zahoranova A, Menciassi A, Ricotti L. Pulsatile Drug Delivery System Triggered by Acoustic Radiation Force. Front Bioeng Biotechnol 2020; 8:317. [PMID: 32411680 PMCID: PMC7202567 DOI: 10.3389/fbioe.2020.00317] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 03/24/2020] [Indexed: 11/13/2022] Open
Abstract
Since biological systems exhibit a circadian rhythm (24-hour cycle), they are susceptible to the timing of drug administration. Indeed, several disorders require a therapy that synchronizes with the onset of symptoms. A targeted therapy with spatially and temporally precise controlled drug release can guarantee a considerable gain in terms of efficacy and safety of the treatment compared to traditional pharmacological methods, especially for chronotherapeutic disorders. This paper presents a proof of concept of an innovative pulsatile drug delivery system remotely triggered by the acoustic radiation force of ultrasound. The device consists of a case, in which a drug-loaded gel can be embedded, and a sliding top that can be moved on demand by the application of an acoustic stimulus, thus enabling drug release. Results demonstrate for the first time that ultrasound acoustic radiation force (up to 0.1 N) can be used for an efficient pulsatile drug delivery (up to 20 μg of drug released for each shot).
Collapse
Affiliation(s)
- Sabrina Ciancia
- The BioRobotics Institute, Sant'Anna School of Advanced Studies, Pisa, Italy.,Departments of Excellence, Robotics & AI, Sant'Anna School of Advanced Studies, Pisa, Italy
| | - Andrea Cafarelli
- The BioRobotics Institute, Sant'Anna School of Advanced Studies, Pisa, Italy.,Departments of Excellence, Robotics & AI, Sant'Anna School of Advanced Studies, Pisa, Italy
| | - Anna Zahoranova
- Department for Biomaterials Research, Polymer Institute SAS, Bratislava, Slovakia
| | - Arianna Menciassi
- The BioRobotics Institute, Sant'Anna School of Advanced Studies, Pisa, Italy.,Departments of Excellence, Robotics & AI, Sant'Anna School of Advanced Studies, Pisa, Italy
| | - Leonardo Ricotti
- The BioRobotics Institute, Sant'Anna School of Advanced Studies, Pisa, Italy.,Departments of Excellence, Robotics & AI, Sant'Anna School of Advanced Studies, Pisa, Italy
| |
Collapse
|
9
|
Kubiak T, Banaszak J, Józefczak A, Rozynek Z. Direction-Specific Release from Capsules with Homogeneous or Janus Shells Using an Ultrasound Approach. ACS APPLIED MATERIALS & INTERFACES 2020; 12:15810-15822. [PMID: 32186360 DOI: 10.1021/acsami.9b21484] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A variety of approaches have been developed to release contents from capsules, including techniques that use electric or magnetic fields, light, or ultrasound as a stimulus. However, in the majority of the known approaches, capsules are disintegrated in violent way and the liberation of the encapsulated material is often in a random direction. Thus, the controllable and direction-specific release from microcapsules in a simple and effective way is still a great challenge. This greatly limits the use of microcapsules in applications where targeted and directional release is desirable. Here, we present a convenient ultrasonic method for controllable and unidirectional release of an encapsulated substance. The release is achieved by using MHz-frequency ultrasound that enables the inner liquid stretching, which imposes mechanical stress on the capsule's shell. This leads to the puncturing of the shell and enables smooth liberation of the liquid payload in one direction. We demonstrate that 1-4.3 MHz acoustic waves with the intensity of a few W/cm2 are capable of puncturing of particle capsules with diameters ranging from around 300 μm to 5 mm and the release of the encapsulated liquid in a controlled manner. Various aspects of our route, including the role of the capsule size, ultrasound wavelength, and intensity in the performance of the method, are studied in detail. We also show that the additional control of the release can be achieved by using capsules having patchy shells. The presented method can be used to facilitate chemical reactions in micro- and nanolitre droplets and various small-scale laboratory operations carried in bulk liquids in microenvironment. Our results may also serve as an entry point for testing other uses of the method and formulation of theoretical modeling of the presented ultrasound mechanism.
Collapse
Affiliation(s)
- Tomasz Kubiak
- Institute of Acoustics, Faculty of Physics, Adam Mickiewicz University, Uniwersytetu Poznańskiego 2, 61-614 Poznań, Poland
- Hipolit Cegielski State University of Applied Sciences, Stefana Wyszyńskiego 38, 62-200 Gniezno, Poland
| | - Joanna Banaszak
- Institute of Acoustics, Faculty of Physics, Adam Mickiewicz University, Uniwersytetu Poznańskiego 2, 61-614 Poznań, Poland
| | - Arkadiusz Józefczak
- Institute of Acoustics, Faculty of Physics, Adam Mickiewicz University, Uniwersytetu Poznańskiego 2, 61-614 Poznań, Poland
| | - Zbigniew Rozynek
- Institute of Acoustics, Faculty of Physics, Adam Mickiewicz University, Uniwersytetu Poznańskiego 2, 61-614 Poznań, Poland
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
10
|
Ahmed KK, Tamer MA, Ghareeb MM, Salem AK. Recent Advances in Polymeric Implants. AAPS PharmSciTech 2019; 20:300. [PMID: 31482251 DOI: 10.1208/s12249-019-1510-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 08/12/2019] [Indexed: 12/17/2022] Open
Abstract
Implantable drug delivery systems, such as drug pumps and polymeric drug depots, have emerged as means of providing predetermined drug release profiles at the desired site of action. While initial implants aimed at providing an enduring drug supply, developments in polymer chemistry and pharmaceutical technology and the growing need for refined drug delivery patterns have prompted the design of sophisticated drug delivery implants such as on-demand drug-eluting implants and personalized 3D printed implants. The types of cargo loaded into these implants range from small drug molecules to hormones and even therapeutic cells. This review will shed light upon recent advances in materials and composites used for polymeric implant fabrication, highlight select approaches employed in polymeric implant fabrication, feature medical applications where polymeric implants have a significant impact, and report recent advances made in these areas.
Collapse
|
11
|
Lu X, Dong X, Natla S, Kripfgans OD, Fowlkes JB, Wang X, Franceschi R, Putnam AJ, Fabiilli ML. Parametric Study of Acoustic Droplet Vaporization Thresholds and Payload Release From Acoustically-Responsive Scaffolds. ULTRASOUND IN MEDICINE & BIOLOGY 2019; 45:2471-2484. [PMID: 31235205 PMCID: PMC6689245 DOI: 10.1016/j.ultrasmedbio.2019.05.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 05/16/2019] [Accepted: 05/22/2019] [Indexed: 05/11/2023]
Abstract
Hydrogels are commonly used for the delivery of bioactive molecules, especially growth factors and cytokines capable of stimulating tissue regeneration. Regenerative processes are regulated by the concentrations and spatiotemporal presentations of these molecules. With conventional hydrogels, these critical delivery parameters cannot be actively modulated after implantation. We have developed composite hydrogel scaffolds where payload release is non-invasively modulated, in an on-demand manner, using ultrasound (US). These acoustically-responsive scaffolds (ARSs) consist of a fibrin matrix doped with a payload-carrying, perfluorocarbon (PFC) double emulsion. Previously, acoustic droplet vaporization (ADV) was used to trigger release of a pro-angiogenic growth factor, encapsulated in the ARS, which stimulated blood vessel formation in vivo. In the present study, we assess how characteristics of the monodispersed emulsion, fibrin matrix, and US impact ADV thresholds and the release efficiency of a dextran payload. ADV thresholds increased with the molecular weight of the PFC in the emulsion and inversely with the volume fraction of emulsion in the ARS. Payload release from ARSs with perfluoroheptane (C7) or perfluorooctane (C8) emulsions was dependent on the number of z-planes of US used to generate ADV and inversely dependent on the lateral spacing. Conversely, release from ARSs with perfluoropentane (C5) or perfluorohexane (C6) emulsions was less dependent on these US exposure parameters. After ADV, payload diffusion decreased significantly in ARSs with C5 or C6 emulsions compared with ARSs with C7 or C8 emulsions. The expansion of the ARS after ADV decreased with the molecular weight of the PFC. Non-selective release increased with the molecular weight of the PFC and thrombin concentration. Overall, these findings can be used for optimization of ARS properties and US parameters in future therapeutic applications.
Collapse
Affiliation(s)
- Xiaofang Lu
- Department of Radiology, University of Michigan Health System, Ann Arbor, USA
| | - Xiaoxiao Dong
- Department of Radiology, University of Michigan Health System, Ann Arbor, USA; Department of Ultrasound, Army Medical University, Chongqing, China
| | - Sam Natla
- Department of Radiology, University of Michigan Health System, Ann Arbor, USA
| | - Oliver D Kripfgans
- Department of Radiology, University of Michigan Health System, Ann Arbor, USA; Applied Physics Program, University of Michigan, Ann Arbor, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, USA
| | - J Brian Fowlkes
- Department of Radiology, University of Michigan Health System, Ann Arbor, USA; Applied Physics Program, University of Michigan, Ann Arbor, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, USA
| | - Xueding Wang
- Department of Radiology, University of Michigan Health System, Ann Arbor, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, USA
| | - Renny Franceschi
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, USA; Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, USA; Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, USA
| | - Andrew J Putnam
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, USA
| | - Mario L Fabiilli
- Department of Radiology, University of Michigan Health System, Ann Arbor, USA; Applied Physics Program, University of Michigan, Ann Arbor, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, USA.
| |
Collapse
|
12
|
Prasad C, Banerjee R. Ultrasound-Triggered Spatiotemporal Delivery of Topotecan and Curcumin as Combination Therapy for Cancer. J Pharmacol Exp Ther 2019; 370:876-893. [PMID: 30988010 DOI: 10.1124/jpet.119.256487] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 04/08/2019] [Indexed: 08/30/2023] Open
Abstract
Chemotherapy is limited by the low availability of drug at the tumor site and drug resistance by the tumor. In this report we describe a combination therapy for codelivery of two anticancer drugs with spatiotemporal control by ultrasound pulses. We developed curcumin and topotecan-coencapsulated nanoconjugates Cur_Tpt_NC.MB to have an ultrasound contrast property. MDA MB 231 and B16F10 cells were incubated with Cur_Tpt_NC.MB and exposed to ultrasound. Ultrasound exposure reduced the IC50 concentration of topotecan and curcumin significantly (P < 0.05) compared with free drug. Antitumor efficacy study of the Cur_Tpt_NC.MB in B16F10 melanoma tumor-bearing C57BL/6 mice showed that ultrasound exposure of right tumor reduced growth by 3.5 times compared with the unexposed left tumor of same mice and 14.8 times compared with a group treated with a physical mixture of drugs. These results suggest that the nanotherapeutic system we developed induces site-specific inhibition of tumor growth at a high rate and has the potential to be used as a therapeutic regimen for spatiotemporal delivery of dual drugs for treatment of cancer.
Collapse
Affiliation(s)
- Chandrashekhar Prasad
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Bombay, Mumbai, India
| | - Rinti Banerjee
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Bombay, Mumbai, India
| |
Collapse
|
13
|
Wu CH, Sun MK, Shieh J, Chen CS, Huang CW, Dai CA, Chang SW, Chen WS, Young TH. Ultrasound-responsive NIPAM-based hydrogels with tunable profile of controlled release of large molecules. ULTRASONICS 2018; 83:157-163. [PMID: 28408049 DOI: 10.1016/j.ultras.2017.03.019] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 03/31/2017] [Accepted: 03/31/2017] [Indexed: 05/19/2023]
Abstract
Episodic release of bioactive compounds plays an important role in biological systems. "On-demand" release systems which based on polymeric materials and activated by external stimuli may provide the necessary functionality. Here we describe an ultrasound-responsive hydrogel based on N-isopropylacrylamide (NIPAM) and N,N'-methylenebisacrylamide (MBAm), which is suitable for triggered release of two large molecules: bovine serum albumin (BSA, 66kDa) and dextran (3-5kDa). It is shown that the release amount of these two large molecules increased with increasing hydrogel temperature, and the application of ultrasound further increased the release. By simply adjusting the contents of NIPAM and MBAm, the difference of BSA release between the presence and absence of ultrasound could be adjusted from 2.7 to 84 folds. There was also a positive correlation between the ultrasound intensity and release amount. These properties made the NIPAM-based hydrogel a tunable platform for focal drug delivery.
Collapse
Affiliation(s)
- Chueh-Hung Wu
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan; Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital, Taipei, Taiwan
| | - Ming-Kuan Sun
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli, Taiwan
| | - Jay Shieh
- Department of Materials Science and Engineering, National Taiwan University, Taipei, Taiwan
| | - Chuin-Shan Chen
- Department of Civil Engineering, National Taiwan University, Taipei, Taiwan
| | - Chang-Wei Huang
- Department of Civil Engineering, Chung Yuan Christian University, Taoyuan, Taiwan
| | - Chi-An Dai
- Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan; Institute of Polymer Science and Engineering, National Taiwan University, Taipei, Taiwan
| | - Shu-Wei Chang
- Department of Civil Engineering, National Taiwan University, Taipei, Taiwan
| | - Wen-Shiang Chen
- Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital, Taipei, Taiwan; Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli, Taiwan; Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital Hsin-Chu Branch, Hsinchu, Taiwan
| | - Tai-Horng Young
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|