1
|
Xie L, Yu S, Lu X, Liu S, Tang Y, Lu H. Different Responses of Bacteria and Archaea to Environmental Variables in Brines of the Mahai Potash Mine, Qinghai-Tibet Plateau. Microorganisms 2023; 11:2002. [PMID: 37630563 PMCID: PMC10458105 DOI: 10.3390/microorganisms11082002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/29/2023] [Accepted: 07/31/2023] [Indexed: 08/27/2023] Open
Abstract
Salt mines feature both autochthonous and allochthonous microbial communities introduced by industrialization. It is important to generate the information on the diversity of the microbial communities present in the salt mines and how they are shaped by the environment representing ecological diversification. Brine from Mahai potash mine (Qianghai, China), an extreme hypersaline environment, is used to produce potash salts for hundreds of millions of people. However, halophiles preserved in this niche during deposition are still unknown. In this study, using high-throughput 16S rRNA gene amplicon sequencing and estimation of physicochemical variables, we examined brine samples collected from locations with the gradient of industrial activity intensity and discrete hydrochemical compositions in the Mahai potash mine. Our findings revealed a highly diverse bacterial community, mainly composed of Pseudomonadota in the hypersaline brines from the industrial area, whereas in the natural brine collected from the upstream Mahai salt lake, most of the 16S rRNA gene reads were assigned to Bacteroidota. Halobacteria and halophilic methanogens dominated archaeal populations. Furthermore, we discovered that in the Mahai potash mining area, bacterial communities tended to respond to anthropogenic influences. In contrast, archaeal diversity and compositions were primarily shaped by the chemical properties of the hypersaline brines. Conspicuously, distinct methanogenic communities were discovered in sets of samples with varying ionic compositions, indicating their strong sensitivity to the brine hydrochemical alterations. Our findings provide the first taxonomic snapshot of microbial communities from the Mahai potash mine and reveal the different responses of bacteria and archaea to environmental variations in this high-altitude aquatic ecosystem.
Collapse
Affiliation(s)
- Linglu Xie
- School of Earth and Space Sciences, Peking University, Beijing 100871, China; (L.X.)
| | - Shan Yu
- Beijing International Center for Gas Hydrate, School of Earth and Space Sciences, Peking University, Beijing 100871, China
- National Engineering Research Center for Gas Hydrate Exploration and Development, Guangzhou 511466, China
| | - Xindi Lu
- School of Earth and Space Sciences, Peking University, Beijing 100871, China; (L.X.)
| | - Siwei Liu
- School of Earth and Space Sciences, Peking University, Beijing 100871, China; (L.X.)
| | - Yukai Tang
- School of Earth and Space Sciences, Peking University, Beijing 100871, China; (L.X.)
| | - Hailong Lu
- School of Earth and Space Sciences, Peking University, Beijing 100871, China; (L.X.)
- Beijing International Center for Gas Hydrate, School of Earth and Space Sciences, Peking University, Beijing 100871, China
- National Engineering Research Center for Gas Hydrate Exploration and Development, Guangzhou 511466, China
| |
Collapse
|
2
|
Wang Y, Bao G. Diversity of prokaryotic microorganisms in alkaline saline soil of the Qarhan Salt Lake area in the Qinghai-Tibet Plateau. Sci Rep 2022; 12:3365. [PMID: 35233041 PMCID: PMC8888737 DOI: 10.1038/s41598-022-07311-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 02/14/2022] [Indexed: 12/20/2022] Open
Abstract
The composition of microbial communities varies considerably across ecological environments, particularly in extreme environments, where unique microorganisms are typically used as the indicators of environmental conditions. However, the ecological reasons for the differences in microbial communities remain largely unknown. Herein, we analyzed taxonomic and functional community profiles via high-throughput sequencing to determine the alkaline saline soil bacterial and archaeal communities in the Qarhan Salt Lake area in the Qinghai-Tibet Plateau. The results showed that Betaproteobacteria (Proteobacteria) and Halobacteria (Euryarchaeota) were the most abundant in the soils of this area, which are common in high salinity environments. Accordingly, microbes that can adapt to local extremes typically have unique metabolic pathways and functions, such as chemoheterotrophy, aerobic chemoheterotrophy, nitrogen fixation, ureolysis, nitrate reduction, fermentation, dark hydrogen oxidation, and methanogenesis. Methanogenesis pathways include hydrogenotrophic methanogenesis, CO2 reduction with H2, and formate methanogenesis. Thus, prokaryotic microorganisms in high salinity environments are indispensable in nitrogen and carbon cycling via particular metabolic pathways.
Collapse
Affiliation(s)
- Yaqiong Wang
- School of Ecology, Environment and Resources, Qinghai Minzu University, Bayi Road, Xining, 810007, Qinghai, China.
- Qinghai Provincial Key Laboratory of High-Value Utilization of Characteristic Economic Plants, Xining, 810007, China.
- Qinghai Provincial Biotechnology and Analytical Test Key Laboratory, Tibetan Plateau Juema Research Centre, Xining, 810007, China.
| | - Guoyuan Bao
- School of Ecology, Environment and Resources, Qinghai Minzu University, Bayi Road, Xining, 810007, Qinghai, China
| |
Collapse
|
3
|
Scheffer G, Hubert CRJ, Enning DR, Lahme S, Mand J, de Rezende JR. Metagenomic Investigation of a Low Diversity, High Salinity Offshore Oil Reservoir. Microorganisms 2021; 9:2266. [PMID: 34835392 PMCID: PMC8621343 DOI: 10.3390/microorganisms9112266] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 12/22/2022] Open
Abstract
Oil reservoirs can represent extreme environments for microbial life due to low water availability, high salinity, high pressure and naturally occurring radionuclides. This study investigated the microbiome of saline formation water samples from a Gulf of Mexico oil reservoir. Metagenomic analysis and associated anaerobic enrichment cultures enabled investigations into metabolic potential for microbial activity and persistence in this environment given its high salinity (4.5%) and low nutrient availability. Preliminary 16S rRNA gene amplicon sequencing revealed very low microbial diversity. Accordingly, deep shotgun sequencing resulted in nine metagenome-assembled genomes (MAGs), including members of novel lineages QPJE01 (genus level) within the Halanaerobiaceae, and BM520 (family level) within the Bacteroidales. Genomes of the nine organisms included respiratory pathways such as nitrate reduction (in Arhodomonas, Flexistipes, Geotoga and Marinobacter MAGs) and thiosulfate reduction (in Arhodomonas, Flexistipes and Geotoga MAGs). Genomic evidence for adaptation to high salinity, withstanding radioactivity, and metal acquisition was also observed in different MAGs, possibly explaining their occurrence in this extreme habitat. Other metabolic features included the potential for quorum sensing and biofilm formation, and genes for forming endospores in some cases. Understanding the microbiomes of deep biosphere environments sheds light on the capabilities of uncultivated subsurface microorganisms and their potential roles in subsurface settings, including during oil recovery operations.
Collapse
Affiliation(s)
- Gabrielle Scheffer
- Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada;
| | - Casey R. J. Hubert
- Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada;
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK; (S.L.); (J.R.d.R.)
| | - Dennis R. Enning
- Faculty of Life Sciences and Technology, Berlin University of Applied Sciences and Technology, D-13347 Berlin, Germany;
| | - Sven Lahme
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK; (S.L.); (J.R.d.R.)
- Exxon Mobil Upstream Research Company, Spring, TX 77389, USA;
| | - Jaspreet Mand
- Exxon Mobil Upstream Research Company, Spring, TX 77389, USA;
| | - Júlia R. de Rezende
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK; (S.L.); (J.R.d.R.)
- The Lyell Centre, Heriot-Watt University, Edinburgh EH14 4AS, UK
| |
Collapse
|
4
|
Abou Khalil C, Prince VL, Prince RC, Greer CW, Lee K, Zhang B, Boufadel MC. Occurrence and biodegradation of hydrocarbons at high salinities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 762:143165. [PMID: 33131842 DOI: 10.1016/j.scitotenv.2020.143165] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/13/2020] [Accepted: 10/15/2020] [Indexed: 06/11/2023]
Abstract
Hypersaline environments are found around the world, above and below ground, and many are exposed to hydrocarbons on a continuous or a frequent basis. Some surface hypersaline environments are exposed to hydrocarbons because they have active petroleum seeps while others are exposed because of oil exploration and production, or nearby human activities. Many oil reservoirs overlie highly saline connate water, and some national oil reserves are stored in salt caverns. Surface hypersaline ecosystems contain consortia of halophilic and halotolerant microorganisms that decompose organic compounds including hydrocarbons, and subterranean ones are likely to contain the same. However, the rates and extents of hydrocarbon biodegradation are poorly understood in such ecosystems. Here we describe hypersaline environments potentially or likely to become contaminated with hydrocarbons, including perennial and transient environments above and below ground, and discuss what is known about the microbes degrading hydrocarbons and the extent of their activities. We also discuss what limits the microbial hydrocarbon degradation in hypersaline environments and whether there are opportunities for inhibiting (oil storage) or stimulating (oil spills) such biodegradation as the situation requires.
Collapse
Affiliation(s)
- Charbel Abou Khalil
- Center for Natural Resources, Department of Civil and Environmental Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | | | | | - Charles W Greer
- National Research Council Canada, Energy, Mining and Environment Research Centre, Montreal, QC H4P 2R2, Canada
| | - Kenneth Lee
- Fisheries and Oceans Canada, Ecosystem Science, Ottawa, ON K1A 0E6, Canada
| | - Baiyu Zhang
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John's, NL A1B 3X5, Canada
| | - Michel C Boufadel
- Center for Natural Resources, Department of Civil and Environmental Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA.
| |
Collapse
|
5
|
Wilpiszeski RL, Sherwood Lollar B, Warr O, House CH. In Situ Growth of Halophilic Bacteria in Saline Fracture Fluids from 2.4 km below Surface in the Deep Canadian Shield. Life (Basel) 2020; 10:E307. [PMID: 33255232 PMCID: PMC7760289 DOI: 10.3390/life10120307] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/19/2020] [Accepted: 11/20/2020] [Indexed: 12/22/2022] Open
Abstract
Energy derived from water-rock interactions such as serpentinization and radiolysis, among others, can sustain microbial ecosystems deep within the continental crust, expanding the habitable biosphere kilometers below the earth's surface. Here, we describe a viable microbial community including sulfate-reducing microorganisms from one such subsurface lithoautotrophic ecosystem hosted in fracture waters in the Canadian Shield, 2.4 km below the surface in the Kidd Creek Observatory in Timmins, Ontario. The ancient groundwater housed in fractures in this system was previously shown to be rich in abiotically produced hydrogen, sulfate, methane, and short-chain hydrocarbons. We have further investigated this system by collecting filtered water samples and deploying sterile in situ biosampler units into boreholes to provide an attachment surface for the actively growing fraction of the microbial community. Scanning electron microscopy, energy-dispersive X-ray spectroscopy, and DNA sequencing analyses were undertaken to classify the recovered microorganisms. Moderately halophilic taxa (e.g., Marinobacter, Idiomarina, Chromohalobacter, Thiobacillus, Hyphomonas, Seohaeicola) were recovered from all sampled boreholes, and those boreholes that had previously been sealed to equilibrate with the fracture water contained taxa consistent with sulfate reduction (e.g., Desulfotomaculum) and hydrogen-driven homoacetogenesis (e.g., Fuchsiella). In contrast to this "corked" borehole that has been isolated from the mine environment for approximately 7 years at the time of sampling, we sampled additional open boreholes. The waters flowing freely from these open boreholes differ from those of the long-sealed borehole. This work complements ongoing efforts to describe the microbial diversity in fracture waters at Kidd Creek in order to better understand the processes shaping life in the deep terrestrial subsurface. In particular, this work demonstrates that anaerobic bacteria and known halophilic taxa are present and viable in the fracture waters presently outflowing from existing boreholes. Major cations and anions found in the fracture waters at the 2.4 km level of the mine are also reported.
Collapse
Affiliation(s)
- Regina L. Wilpiszeski
- Department of Geosciences and Earth and Environmental Systems Institute, The Pennsylvania State University, University Park, PA 16802, USA;
| | - Barbara Sherwood Lollar
- Stable Isotope Laboratory, University of Toronto, Toronto, ON M5S 3B1, Canada; (B.S.L.); (O.W.)
| | - Oliver Warr
- Stable Isotope Laboratory, University of Toronto, Toronto, ON M5S 3B1, Canada; (B.S.L.); (O.W.)
| | - Christopher H. House
- Department of Geosciences and Earth and Environmental Systems Institute, The Pennsylvania State University, University Park, PA 16802, USA;
| |
Collapse
|
6
|
Potts LD, Perez Calderon LJ, Gubry-Rangin C, Witte U, Anderson JA. Characterisation of microbial communities of drill cuttings piles from offshore oil and gas installations. MARINE POLLUTION BULLETIN 2019; 142:169-177. [PMID: 31232291 DOI: 10.1016/j.marpolbul.2019.03.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 03/03/2019] [Accepted: 03/08/2019] [Indexed: 06/09/2023]
Abstract
Drill cuttings (DC) are produced during hydrocarbon drilling operations and are composed of subsurface rock coated with hydrocarbons and drilling fluids. Historic disposal of DC at sea has resulted in the formation of large piles on the seabed that may be left in situ following infrastructure decommissioning. This study provides a first insight into the microbial abundance, diversity and community structure of two DC piles from North Sea oil and gas installations. The abundance of both bacteria and archaea was lower in DC than in surrounding natural sediments. Microbial diversity and richness within DC were low but increased with distance from the piles. Microbial community structure was significantly different in DC piles compared to nearby natural sediments. DC bacterial communities were dominated by Halomonas, Dietzia and Dethiobacter. The presence of such organisms suggests a potential function of hydrocarbon degradation ability and may play an active role in DC pile remediation.
Collapse
Affiliation(s)
- Lloyd D Potts
- School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom; Chemical and Materials Engineering, School of Engineering, University of Aberdeen, Aberdeen, United Kingdom.
| | - Luis J Perez Calderon
- School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom; Chemical and Materials Engineering, School of Engineering, University of Aberdeen, Aberdeen, United Kingdom
| | - Cecile Gubry-Rangin
- School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Ursula Witte
- School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - James A Anderson
- Chemical and Materials Engineering, School of Engineering, University of Aberdeen, Aberdeen, United Kingdom
| |
Collapse
|
7
|
Abundance and diversity of prokaryotes in ephemeral hypersaline lake Chott El Jerid using Illumina Miseq sequencing, DGGE and qPCR assays. Extremophiles 2018; 22:811-823. [DOI: 10.1007/s00792-018-1040-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Accepted: 07/09/2018] [Indexed: 11/26/2022]
|
8
|
Das KR, Kerkar S, Meena Y, Mishra S. Effects of iron nanoparticles on iron-corroding bacteria. 3 Biotech 2017; 7:385. [PMID: 29201585 DOI: 10.1007/s13205-017-1018-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 10/31/2017] [Indexed: 01/22/2023] Open
Abstract
The toxicological effects of Fe3O4 nanoparticles were evaluated with an iron-corroding bacterium (ICB) for preventing the biocorrosion of iron. Fe3O4 nanoparticles of 18 nm were successfully prepared and characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD) patterns and scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDS). A halophilic ICB strain L4 was isolated from Ribandar saltpan Goa, India and identified biochemically and by 16S rRNA gene sequence analysis as Halanaerobium sp. The Fe3O4 nanoparticles in increasing doses (0.1-100 mg/L) caused transformation in growth and sulfide production of ICB strain L4. SEM-EDS analysis revealed a deformed cell structure with adsorption of nanoparticle on the cell surface and increased cell size. Comet assay revealed genotoxic effect of Fe3O4 nanoparticles on strain L4 which resulted in dose-dependent DNA damage by increasing percentage tail DNA from 5 to 88% with increasing Fe3O4 nanoparticles concentration. Furthermore, sulfide production rate was reduced to 11.8% in presence of 100 mg/L Fe3O4 nanoparticles which reduced the corroding property of ICB strain L4; thus, it was unable to corrode the iron nail in presence of Fe3O4 nanoparticle. This work suggests the possible application of Fe3O4 nanoparticle in addressing biocorrosion problems faced by different industries.
Collapse
Affiliation(s)
| | - Savita Kerkar
- Department of Biotechnology, Goa University, Goa, 403206 India
| | - Yogeeta Meena
- Department of Biotechnology, Goa University, Goa, 403206 India
| | - Samir Mishra
- Environmental Biotechnology Laboratory, School of Biotechnology, KIIT University, Odisha, 751024 India
| |
Collapse
|