1
|
Car C, Quevarec L, Gilles A, Réale D, Bonzom JM. Evolutionary approach for pollution study: The case of ionizing radiation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 349:123692. [PMID: 38462194 DOI: 10.1016/j.envpol.2024.123692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 03/12/2024]
Abstract
Estimating the consequences of environmental changes, specifically in a global change context, is essential for conservation issues. In the case of pollutants, the interest in using an evolutionary approach to investigate their consequences has been emphasized since the 2000s, but these studies remain rare compared to the characterization of direct effects on individual features. We focused on the study case of anthropogenic ionizing radiation because, despite its potential strong impact on evolution, the scarcity of evolutionary approaches to study the biological consequences of this stressor is particularly true. In this study, by investigating some particular features of the biological effects of this stressor, and by reviewing existing studies on evolution under ionizing radiation, we suggest that evolutionary approach may help provide an integrative view on the biological consequences of ionizing radiation. We focused on three topics: (i) the mutagenic properties of ionizing radiation and its disruption of evolutionary processes, (ii) exposures at different time scales, leading to an interaction between past and contemporary evolution, and (iii) the special features of contaminated areas called exclusion zones and how evolution could match field and laboratory observed effects. This approach can contribute to answering several key issues in radioecology: to explain species differences in the sensitivity to ionizing radiation, to improve our estimation of the impacts of ionizing radiation on populations, and to help identify the environmental features impacting organisms (e.g., interaction with other pollution, migration of populations, anthropogenic environmental changes). Evolutionary approach would benefit from being integrated to the ecological risk assessment process.
Collapse
Affiliation(s)
- Clément Car
- Laboratoire de Recherche sur Les Effets des Radionucléides sur L'écosystème (LECO), Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Saint-Paul Lèz Durance, France
| | - Loïc Quevarec
- Laboratoire de Recherche sur Les Effets des Radionucléides sur L'écosystème (LECO), Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Saint-Paul Lèz Durance, France.
| | - André Gilles
- UMR Risques, ECOsystèmes, Vulnérabilité, Environnement, Résilience (RECOVER), Aix-Marseille Université (AMU), Marseille, France
| | - Denis Réale
- Département des Sciences Biologiques, Université Du Québec à Montréal, (UQAM), Montréal, Canada
| | - Jean-Marc Bonzom
- Laboratoire de Recherche sur Les Effets des Radionucléides sur L'écosystème (LECO), Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Saint-Paul Lèz Durance, France
| |
Collapse
|
2
|
Petit P, Hayoun K, Alpha-Bazin B, Armengaud J, Rivasseau C. First Isolation and Characterization of Bacteria from the Core's Cooling Pool of an Operating Nuclear Reactor. Microorganisms 2023; 11:1871. [PMID: 37630434 PMCID: PMC10456712 DOI: 10.3390/microorganisms11081871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/18/2023] [Accepted: 07/20/2023] [Indexed: 08/27/2023] Open
Abstract
Microbial life can thrive in the most inhospitable places, such as nuclear facilities with high levels of ionizing radiation. Using direct meta-analyses, we have previously highlighted the presence of bacteria belonging to twenty-five different genera in the highly radioactive water of the cooling pool of an operating nuclear reactor core. In the present study, we further characterize this specific environment by isolating and identifying some of these microorganisms and assessing their radiotolerance and their ability to decontaminate uranium. This metal is one of the major radioactive contaminants of anthropogenic origin in the environment due to the nuclear and mining industries and agricultural practices. The microorganisms isolated when sampling was performed during the reactor operation consisted mainly of Actinobacteria and Firmicutes, whereas Proteobacteria were dominant when sampling was performed during the reactor shutdown. We investigated their tolerance to gamma radiation under different conditions. Most of the bacterial strains studied were able to survive 200 Gy irradiation. Some were even able to withstand 1 kGy, with four of them showing more than 10% survival at this dose. We also assessed their uranium uptake capacity. Seven strains were able to remove almost all the uranium from a 5 µM solution. Four strains displayed high efficiency in decontaminating a 50 µM uranium solution, demonstrating promising potential for use in bioremediation processes in environments contaminated by radionuclides.
Collapse
Affiliation(s)
- Pauline Petit
- Université Grenoble Alpes, CEA, CNRS, IRIG, F-38000 Grenoble, France;
| | - Karim Hayoun
- Département Médicaments et Technologies pour la Santé (DMTS), Université Paris-Saclay, CEA, INRAE, SPI, F-30200 Bagnols-sur-Cèze, France; (K.H.); (B.A.-B.); (J.A.)
- Laboratoire Innovations Technologiques pour la Détection et le Diagnostic (Li2D), Université de Montpellier, F-30207 Bagnols-sur-Cèze, France
| | - Béatrice Alpha-Bazin
- Département Médicaments et Technologies pour la Santé (DMTS), Université Paris-Saclay, CEA, INRAE, SPI, F-30200 Bagnols-sur-Cèze, France; (K.H.); (B.A.-B.); (J.A.)
| | - Jean Armengaud
- Département Médicaments et Technologies pour la Santé (DMTS), Université Paris-Saclay, CEA, INRAE, SPI, F-30200 Bagnols-sur-Cèze, France; (K.H.); (B.A.-B.); (J.A.)
| | - Corinne Rivasseau
- Université Grenoble Alpes, CEA, CNRS, IRIG, F-38000 Grenoble, France;
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, F-91190 Gif-sur-Yvette, France
| |
Collapse
|
3
|
Videvall E, Burraco P, Orizaola G. Impact of ionizing radiation on the environmental microbiomes of Chornobyl wetlands. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 330:121774. [PMID: 37178954 DOI: 10.1016/j.envpol.2023.121774] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/21/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023]
Abstract
Radioactive contamination has the potential to cause damage to DNA and other biomolecules. Anthropogenic sources of radioactive contamination include accidents in nuclear power plants, such as the one in Chornobyl in 1986 which caused long-term radioactive pollution. Studies on animals within radioactive zones have provided us with a greater understanding of how wildlife can persevere despite chronic radiation exposure. However, we still know very little about the effects of radiation on the microbial communities in the environment. We examined the impact of ionizing radiation and other environmental factors on the diversity and composition of environmental microbiomes in the wetlands of Chornobyl. We combined detailed field sampling along a gradient of radiation together with 16 S rRNA high-throughput metabarcoding. While radiation did not affect the alpha diversity of the microbiomes in sediment, soil, or water, it had a significant effect on the beta diversity in all environment types, indicating that the microbial composition was affected by ionizing radiation. Specifically, we detected several microbial taxa that were more abundant in areas with high radiation levels within the Chornobyl Exclusion Zone, including bacteria and archaea known to be radioresistant. Our results reveal the existence of rich and diverse microbiomes in Chornobyl wetlands, with multiple taxonomic groups that are able to thrive despite the radioactive contamination. These results, together with additional field and laboratory-based approaches examining how microbes cope with ionizing radiation will help to forecast the functionality and re-naturalization dynamics of radiocontaminated environments.
Collapse
Affiliation(s)
- Elin Videvall
- Department of Ecology, Evolution and Organismal Biology, Brown University, Providence, RI, 02912, USA; Institute at Brown for Environment and Society, Brown University, Providence, RI, 02912, USA; Center for Conservation Genomics, Smithsonian Conservation Biology Institute, 20013, Washington, DC, USA; Animal Ecology, Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, 75236, Uppsala, Sweden
| | - Pablo Burraco
- Animal Ecology, Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, 75236, Uppsala, Sweden; Doñana Biological Station, Spanish Research Council (EBD-CSIC), 41092, Sevilla, Spain
| | - Germán Orizaola
- IMIB-Biodiversity Research Institute (Univ. Oviedo-CSIC-Princip. Asturias), 33600, Mieres, Asturias, Spain; Zoology Unit, Department of Biology of Organisms and Systems, University of Oviedo, 33071, Oviedo, Asturias, Spain.
| |
Collapse
|
4
|
Wintenberg M, Manglass L, Martinez NE, Blenner M. Global Transcriptional Response of Escherichia coli Exposed In Situ to Different Low-Dose Ionizing Radiation Sources. mSystems 2023; 8:e0071822. [PMID: 36779725 PMCID: PMC10134817 DOI: 10.1128/msystems.00718-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 01/11/2023] [Indexed: 02/14/2023] Open
Abstract
Characterization of biological and chemical responses to ionizing radiation by various organisms is essential for potential applications in bioremediation, alternative modes of detecting nuclear material, and national security. Escherichia coli DH10β is an optimal system to study the microbial response to low-dose ionizing radiation at the transcriptional level because it is a well-characterized model bacterium and its responses to other environmental stressors, including those to higher radiation doses, have been elucidated in prior studies. In this study, RNA sequencing with downstream transcriptomic analysis (RNA-seq) was employed to characterize the global transcriptional response of stationary-phase E. coli subjected to 239Pu, 3H (tritium), and 55Fe, at an approximate absorbed dose rate of 10 mGy day-1 for 1 day and 15 days. Differential expression analysis identified significant changes in gene expression of E. coli for both short- and long-term exposures. Radionuclide source exposure induced differential expression in E. coli of genes involved in biosynthesis pathways of nuclear envelope components, amino acids, and siderophores, transport systems such as ABC transporters and type II secretion proteins, and initiation of stress response and regulatory systems of temperature stress, the RpoS regulon, and oxidative stress. These findings provide a basic understanding of the relationship between low-dose exposure and biological effect of a model bacterium that is critical for applications in alternative nuclear material detection and bioremediation. IMPORTANCE Escherichia coli strain DH10β, a well-characterized model bacterium, was subjected to short-term (1-day) and long-term (15-day) exposures to three different in situ radiation sources comprised of radionuclides relevant to nuclear activities to induce a measurable and identifiable genetic response. We found E. coli had both common and unique responses to the three exposures studied, suggesting both dose rate- and radionuclide-specific effects. This study is the first to provide insights into the transcriptional response of a microorganism in short- and long-term exposure to continuous low-dose ionizing radiation with multiple in situ radionuclide sources and the first to examine microbial transcriptional response in stationary phase. Moreover, this work provides a basis for the development of biosensors and informing more robust dose-response relationships to support ecological risk assessment.
Collapse
Affiliation(s)
- Molly Wintenberg
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, South Carolina, USA
| | - Lisa Manglass
- Department of Environmental Engineering and Earth Sciences, Clemson University, Clemson, South Carolina, USA
- Department of Physics and Engineering, Francis Marion University, Florence, South Carolina, USA
| | - Nicole E. Martinez
- Department of Environmental Engineering and Earth Sciences, Clemson University, Clemson, South Carolina, USA
| | - Mark Blenner
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, South Carolina, USA
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware, USA
| |
Collapse
|
5
|
Quevarec L, Réale D, Dufourcq-Sekatcheff E, Armant O, Adam-Guillermin C, Bonzom JM. Ionizing radiation affects the demography and the evolution of Caenorhabditis elegans populations. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 249:114353. [PMID: 36516628 DOI: 10.1016/j.ecoenv.2022.114353] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 11/24/2022] [Accepted: 11/26/2022] [Indexed: 06/17/2023]
Abstract
Ionizing radiation can reduce survival, reproduction and affect development, and lead to the extinction of populations if their evolutionary response is insufficient. However, demographic and evolutionary studies on the effects of ionizing radiation are still scarce. Using an experimental evolution approach, we analyzed population growth rate and associated change in life history traits across generations in Caenorhabditis elegans populations exposed to 0, 1.4, and 50.0 mGy.h-1 of ionizing radiation (gamma external irradiation). We found a higher population growth rate in the 1.4 mGy.h-1 treatment and a lower in the 50.0 mGy.h-1 treatment compared to the control. Realized fecundity was lower in both 1.4 and 50.0 mGy.h-1 than control treatment. High irradiation levels decreased brood size from self-fertilized hermaphrodites, specifically early brood size. Finally, high irradiation levels decreased hatching success compared to the control condition. In reciprocal-transplant experiments, we found that life in low irradiation conditions led to the evolution of higher hatching success and late brood size. These changes could provide better tolerance against ionizing radiation, investing more in self-maintenance than in reproduction. These evolutionary changes were with some costs of adaptation. This study shows that ionizing radiation has both demographic and evolutionary consequences on populations.
Collapse
Affiliation(s)
- Loïc Quevarec
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-ENV/SRTE/LECO, Cadarache 13115, Saint Paul Lez Durance, France.
| | - Denis Réale
- Département des sciences biologiques, Université du Québec à Montréal, Montréal, QC, Canada
| | - Elizabeth Dufourcq-Sekatcheff
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-ENV/SRTE/LECO, Cadarache 13115, Saint Paul Lez Durance, France
| | - Olivier Armant
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-ENV/SRTE/LECO, Cadarache 13115, Saint Paul Lez Durance, France
| | - Christelle Adam-Guillermin
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-SANTE/SDOS/LMDN, Cadarache 13115, Saint Paul Lez Durance, France
| | - Jean-Marc Bonzom
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-ENV/SRTE/LECO, Cadarache 13115, Saint Paul Lez Durance, France.
| |
Collapse
|
6
|
Kharkhota M, Hrabova H, Kharchuk M, Ivanytsia T, Mozhaieva L, Poliakova A, Avdieieva L. Chromogenicity of aerobic spore-forming bacteria of the Bacillaceae family isolated from different ecological niches and physiographic zones. Braz J Microbiol 2022; 53:1395-1408. [PMID: 35438476 PMCID: PMC9433553 DOI: 10.1007/s42770-022-00755-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 04/05/2022] [Indexed: 11/28/2022] Open
Abstract
To determine the distribution patterns of pigmented bacteria of the Bacilaceae family in different physiographic zones and ecological niches, we recovered 787 isolates from 185 environmental samples (including the areas with radiation pollution). Among the strains obtained, 149 pigmented representatives were detected, which synthesized intracellular and extracellular pigments of yellow, red, pink, and dark colors. In compliance with physiological, biochemical, and chemotaxonomic features, the isolates were identified as 7 species of the Bacilaceae family. We demonstrated that the ability to synthesize pigments significantly depended on the culture medium composition. According to the color of the colonies, the absorption spectra of pigment extracts, their physicochemical properties, and the implementation of several qualitative tests, the pigmented isolates were divided into ten groups. The relative number of pigmented strains in the physiographic zone was consistent with the total level of solar radiation for the year. Most pigmented members of the Bacillaceae family were recovered from deserts and semi-deserts, and fewest of them originated from mixed forests. We show that among the studied ecological niches, pigmented strains were most often isolated from the phyllosphere and aquatic environment and least often from soils. However, the isolates from soils and aquatic environments exhibited a greater diversity of pigmentation, and a lesser variety of colored strains was obtained from the phyllosphere and the gastrointestinal tract of animals. We established that the quantitative and qualitative composition of pigmented isolates from the areas with radiation contamination differed significantly from those coming from the natural radiation background.
Collapse
Affiliation(s)
- M Kharkhota
- Department of Antibiotics, D.K. Zabolotny Institute of Microbiology and Virology of the NASU, Kyiv, Ukraine.,Laboratory of Biological Polymer Compounds, D.K. Zabolotny Institute of Microbiology and Virology of the NASU, Kyiv, Ukraine
| | - H Hrabova
- Department of Antibiotics, D.K. Zabolotny Institute of Microbiology and Virology of the NASU, Kyiv, Ukraine
| | - M Kharchuk
- Department of Antibiotics, D.K. Zabolotny Institute of Microbiology and Virology of the NASU, Kyiv, Ukraine.,Laboratory of Biological Polymer Compounds, D.K. Zabolotny Institute of Microbiology and Virology of the NASU, Kyiv, Ukraine
| | - T Ivanytsia
- Department of Microbiology, Virology, and Biotechnology, Odesa I.I. Mechnikov National University, Odesa, Ukraine
| | - L Mozhaieva
- Department of Antibiotics, D.K. Zabolotny Institute of Microbiology and Virology of the NASU, Kyiv, Ukraine
| | - A Poliakova
- Laboratory of Biological Polymer Compounds, D.K. Zabolotny Institute of Microbiology and Virology of the NASU, Kyiv, Ukraine.
| | - L Avdieieva
- Department of Antibiotics, D.K. Zabolotny Institute of Microbiology and Virology of the NASU, Kyiv, Ukraine
| |
Collapse
|
7
|
Abstract
Environmental disasters offer the unique opportunity for landscape-scale ecological and evolutionary studies that are not possible in the laboratory or small experimental plots. The nuclear accident at Chernobyl (1986) allows for rigorous analyses of radiation effects on individuals and populations at an ecosystem scale. Here, the current state of knowledge related to populations within the Chernobyl region of Ukraine and Belarus following the largest civil nuclear accident in history is reviewed. There is now a significant literature that provides contrasting and occasionally conflicting views of the state of animals and how they are affected by this mutagenic stressor. Studies of genetic and physiological effects have largely suggested significant injuries to individuals inhabiting the more radioactive areas of the Chernobyl region. Most population censuses for most species suggest that abundances are reduced in the more radioactive areas.
Collapse
Affiliation(s)
- Timothy A. Mousseau
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina 29208, USA
| |
Collapse
|
8
|
Lavrinienko A, Hämäläinen A, Hindström R, Tukalenko E, Boratyński Z, Kivisaari K, Mousseau TA, Watts PC, Mappes T. Comparable response of wild rodent gut microbiome to anthropogenic habitat contamination. Mol Ecol 2021; 30:3485-3499. [PMID: 33955637 DOI: 10.1111/mec.15945] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 04/07/2021] [Accepted: 04/29/2021] [Indexed: 12/11/2022]
Abstract
Species identity is thought to dominate over environment in shaping wild rodent gut microbiota, but it remains unknown whether the responses of host gut microbiota to shared anthropogenic habitat impacts are species-specific or if the general gut microbiota response is similar across host species. Here, we compare the influence of exposure to radionuclide contamination on the gut microbiota of four wild mouse species: Apodemus flavicollis, A. sylvaticus, A. speciosus and A. argenteus. Building on the evidence that radiation impacts bank vole (Myodes glareolus) gut microbiota, we hypothesized that radiation exposure has a general impact on rodent gut microbiota. Because we sampled (n = 288) two species pairs of Apodemus mice that occur in sympatry in habitats affected by the Chernobyl and Fukushima nuclear accidents, these comparisons provide an opportunity for a general assessment of the effects of exposure to environmental contamination (radionuclides) on gut microbiota across host phylogeny and geographical areas. In general agreement with our hypothesis, analyses of bacterial 16S rRNA gene sequences revealed that radiation exposure alters the gut microbiota composition and structure in three of the four species of Apodemus mice. The notable lack of an association between the gut microbiota and soil radionuclide contamination in one mouse species from Fukushima (A. argenteus) probably reflects host "radiation escape" through its unique tree-dwelling lifestyle. The finding that host ecology can modulate effects of radiation exposure offers an interesting counterpoint for future analyses into effects of radiation or any other toxic exposure on host and its associated microbiota. Our data show that exposure to radionuclide contamination is linked to comparable gut microbiota responses across multiple species of rodents.
Collapse
Affiliation(s)
- Anton Lavrinienko
- Ecology and Genetics, University of Oulu, Oulu, Finland.,Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | - Anni Hämäläinen
- Ecology and Genetics, University of Oulu, Oulu, Finland.,Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland.,Institute of Environmental Sciences, Jagiellonian University, Kraków, Poland
| | | | - Eugene Tukalenko
- Ecology and Genetics, University of Oulu, Oulu, Finland.,National Research Center for Radiation Medicine of the National Academy of Medical Science, Kyiv, Ukraine
| | - Zbyszek Boratyński
- CIBIO-InBIO Associate Laboratory, Research Center in Biodiversity and Genetic Resources, University of Porto, Vairão, Portugal
| | - Kati Kivisaari
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | - Timothy A Mousseau
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA.,SURA/LASSO/NASA, ISS Utilization and Life Sciences Division, Kennedy Space Center, Cape Canaveral, FL, USA
| | - Phillip C Watts
- Ecology and Genetics, University of Oulu, Oulu, Finland.,Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | - Tapio Mappes
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| |
Collapse
|
9
|
Antwis RE, Beresford NA, Jackson JA, Fawkes R, Barnett CL, Potter E, Walker L, Gaschak S, Wood MD. Impacts of radiation exposure on the bacterial and fungal microbiome of small mammals in the Chernobyl Exclusion Zone. J Anim Ecol 2021; 90:2172-2187. [PMID: 33901301 DOI: 10.1111/1365-2656.13507] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 04/11/2021] [Indexed: 12/19/2022]
Abstract
Environmental impacts of the 1986 Chernobyl Nuclear Power Plant accident are much debated, but the effects of radiation on host microbiomes have received little attention to date. We present the first analysis of small mammal gut microbiomes from the Chernobyl Exclusion Zone in relation to total absorbed dose rate, including both caecum and faeces samples. We provide novel evidence that host species determines fungal community composition, and that associations between microbiome (both bacterial and fungal) communities and radiation exposure vary between host species. Using ambient versus total weighted absorbed dose rates in analyses produced different results, with the latter more robust for interpreting microbiome changes at the individual level. We found considerable variation between results for faecal and gut samples of bank voles, suggesting faecal samples are not an accurate indicator of gut composition. Associations between radiation exposure and microbiome composition of gut samples were not robust against geographical variation, although we identified families of bacteria (Lachnospiraceae and Muribaculaceae) and fungi (Steccherinaceae and Strophariaceae) in the guts of bank voles that may serve as biomarkers of radiation exposure. Further studies considering a range of small mammal species are needed to establish the robustness of these potential biomarkers.
Collapse
Affiliation(s)
- Rachael E Antwis
- School of Science, Engineering and Environment, University of Salford, Salford, UK
| | - Nicholas A Beresford
- School of Science, Engineering and Environment, University of Salford, Salford, UK.,UK Centre for Ecology & Hydrology, Lancaster Environment Centre, Bailrigg, UK
| | - Joseph A Jackson
- School of Science, Engineering and Environment, University of Salford, Salford, UK
| | - Ross Fawkes
- School of Science, Engineering and Environment, University of Salford, Salford, UK
| | - Catherine L Barnett
- UK Centre for Ecology & Hydrology, Lancaster Environment Centre, Bailrigg, UK
| | - Elaine Potter
- UK Centre for Ecology & Hydrology, Lancaster Environment Centre, Bailrigg, UK
| | - Lee Walker
- UK Centre for Ecology & Hydrology, Lancaster Environment Centre, Bailrigg, UK
| | - Sergey Gaschak
- Chornobyl Center for Nuclear Safety, Radioactive Waste and Radioecology, International Radioecology Laboratory, Slavutych, Ukraine
| | - Michael D Wood
- School of Science, Engineering and Environment, University of Salford, Salford, UK
| |
Collapse
|
10
|
Exemplifying an archetypal thorium-EPS complexation by novel thoriotolerant Providencia thoriotolerans AM3. Sci Rep 2021; 11:3189. [PMID: 33542436 PMCID: PMC7862642 DOI: 10.1038/s41598-021-82863-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 01/27/2021] [Indexed: 12/23/2022] Open
Abstract
It is the acquisition of unique traits that adds to the enigma of microbial capabilities to carry out extraordinary processes. One such ecosystem is the soil exposed to radionuclides, in the vicinity of atomic power stations. With the aim to study thorium (Th) tolerance in the indigenous bacteria of such soil, the bacteria were isolated and screened for maximum thorium tolerance. Out of all, only one strain AM3, found to tolerate extraordinary levels of Th (1500 mg L−1), was identified to be belonging to genus Providencia and showed maximum genetic similarity with the type strain P. vermicola OP1T. This is the first report suggesting any bacteria to tolerate such high Th and we propose to term such microbes as ‘thoriotolerant’. The medium composition for cultivating AM3 was optimized using response surface methodology (RSM) which also led to an improvement in its Th-tolerance capabilities by 23%. AM3 was found to be a good producer of EPS and hence one component study was also employed for its optimization. Moreover, the EPS produced by the strain showed interaction with Th, which was deduced by Fourier Transform Infrared (FTIR) spectroscopy.
Collapse
|
11
|
Chen X, Li X, Xu Z, Liu Q, Peng Z, Zhu Y, Hong J, Lu W, Cui J, Xiao L. The distinct microbial community in Aurelia coerulea polyps versus medusae and its dynamics after exposure to 60Co-γ radiation. ENVIRONMENTAL RESEARCH 2020; 188:109843. [PMID: 32846637 DOI: 10.1016/j.envres.2020.109843] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/14/2020] [Accepted: 06/15/2020] [Indexed: 06/11/2023]
Abstract
Radiation (e.g., nuclear leakage) is a common harmful factor in the ocean that potentially affects the microbial community in nearby benthic hosts such as jellyfish polyps, which is essential for the maintenance of jellyfish populations and high-quality medusae. After comparison with the microbial community of medusae, the effect of 60Co-γ on the microbial community in Aurelia coerulea polyps was dynamically tested using 16S rRNA gene sequencing. Our results suggested that Proteobacteria (76.19 ± 3.24%), Tenericutes (12.93 ± 3.20%) and Firmicutes (8.33 ± 1.06%) are most abundant in medusae, while Proteobacteria (29.49 ± 2.29%), Firmicutes (46.25 ± 5.59%), and Bacteroidetes (20.16 ± 2.65%) are the top three phyla in polyps. After 60Co-γ radiation, the proportion of Proteobacteria increased from 29.49 ± 2.29% to 59.40 ± 3.09% over 5 days, while that of Firmicutes decreased from 46.25 ± 5.59% to 13.58 ± 3.74%. At the class level, Gammaproteobacteria continually increased during the 5 days after radiation exposure, whereas Bacilli declined, followed by partial recovery, and Alphaproteobacteria and Flavobacteriia remained almost unchanged. Intriguingly, Staphylococcus from Firmicutes and three other genera, Rhodobacter, Vibrio, and Methylophaga, from Proteobacteria greatly overlapped according to their KEGG functions. It is concluded that the microbial community in A. coerulea polyps is distinct from that in the medusae and is greatly affected by 60Co-γ exposure, with a growth (0-3 d) period and a redistribution (3-5 d) period. The dynamic change in the microbial community is probably an important self-defense process in response to external interference that is regulated by the host's physiological characteristics and the intense interspecific competition among symbiotic microbes with similar functions and functional redundancies.
Collapse
Affiliation(s)
- XinTong Chen
- Faculty of Naval Medicine, Naval Medical University (Second Military Medical University), Shanghai, 200433, China.
| | - XiaoYa Li
- Faculty of Naval Medicine, Naval Medical University (Second Military Medical University), Shanghai, 200433, China.
| | - Zheng Xu
- Administration Office for Scientific Research, Naval Medical University (Second Military Medical University), Shanghai, 200433, China.
| | - Qing Liu
- College of Animal Science and Veterinary Medicine; ShanXi Agricultural University, ShanXi, TaiGu, 030801, China.
| | - ZhaoYun Peng
- Faculty of Naval Medicine, Naval Medical University (Second Military Medical University), Shanghai, 200433, China
| | - YiNa Zhu
- Faculty of Naval Medicine, Naval Medical University (Second Military Medical University), Shanghai, 200433, China
| | - JianPing Hong
- College of Resources and Environment; ShanXi Agricultural University, ShanXi, TaiGu, 030801, China.
| | - Wei Lu
- 905th Hospital of PLA Navy, Naval Medical University (Second Military Medical University), Shanghai, 200052, China.
| | - Jianguo Cui
- Faculty of Naval Medicine, Naval Medical University (Second Military Medical University), Shanghai, 200433, China.
| | - Liang Xiao
- Faculty of Naval Medicine, Naval Medical University (Second Military Medical University), Shanghai, 200433, China.
| |
Collapse
|
12
|
Mothersill CE, Oughton DH, Schofield PN, Abend M, Adam-Guillermin C, Ariyoshi K, Beresford NA, Bonisoli-Alquati A, Cohen J, Dubrova Y, Geras’kin SA, Hevrøy TH, Higley KA, Horemans N, Jha AN, Kapustka LA, Kiang JG, Madas BG, Powathil G, Sarapultseva EI, Seymour CB, Vo NTK, Wood MD. From tangled banks to toxic bunnies; a reflection on the issues involved in developing an ecosystem approach for environmental radiation protection. Int J Radiat Biol 2020; 98:1185-1200. [DOI: 10.1080/09553002.2020.1793022] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
| | | | - Paul N. Schofield
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Michael Abend
- Bundeswehr Institute of Radiobiology, Munich, Germany
| | | | - Kentaro Ariyoshi
- Integrated Center for Science and Humanities, Fukushima Medical University, Fukushima City, Japan
| | | | | | - Jason Cohen
- Department of Biology and Department of Physics and Astronomy, McMaster University, Hamilton, Canada
| | - Yuri Dubrova
- Department of Genetics, University of Leicester, Leicester, UK
| | | | | | - Kathryn A. Higley
- School of Nuclear Science and Engineering, Oregon State University, Corvallis, OR, USA
| | - Nele Horemans
- Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
| | - Awadhesh N. Jha
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, UK
| | | | - Juliann G. Kiang
- Armed Forces Radiobiology Research Institute, Uniformed services University of the Health Sciences, Bethesda, MD, USA
| | - Balázs G. Madas
- Environmental Physics Department, Centre for Energy Research, Budapest, Hungary
| | - Gibin Powathil
- Department of Mathematics, Computational Foundry, Swansea University, Swansea, UK
| | | | | | - Nguyen T. K. Vo
- Department of Biology and Department of Physics and Astronomy, McMaster University, Hamilton, Canada
| | - Michael D. Wood
- School of Science, Engineering & Environment, University of Salford, Salford, UK
| |
Collapse
|
13
|
Arnaise S, Shykoff JA, Møller AP, Mousseau TA, Giraud T. Anther-smut fungi from more contaminated sites in Chernobyl show lower infection ability and lower viability following experimental irradiation. Ecol Evol 2020; 10:6409-6420. [PMID: 32724522 PMCID: PMC7381591 DOI: 10.1002/ece3.6376] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 04/25/2020] [Accepted: 04/27/2020] [Indexed: 11/07/2022] Open
Abstract
The long-term contamination that followed the nuclear disaster at Chernobyl provides a case study for the effects of chronic ionizing radiation on living organisms and on their ability to tolerate or evolve resistance to such radiation. Previously, we studied the fertility and viability of early developmental stages of a castrating plant pathogen, the anther-smut fungus Microbotryum lychnidis-dioicae, isolated from field sites varying over 700-fold in degree of radioactive contamination. Neither the budding rate of haploid spores following meiosis nor the karyotype structure varied with increasing radiation levels at sampling sites. Here, we assessed the ability of the same M. lychnidis-dioicae strains to perform their whole life cycle, up to the production of symptoms in the plants, that is, the development of anthers full of fungal spores; we also assessed their viability under experimental radiation. Fungal strains from more contaminated sites had no lower spore numbers in anthers or viability, but infected host plants less well, indicating lower overall fitness due to radioactivity exposure. These findings improve our understanding of the previous field data, in which the anther-smut disease prevalence on Silene latifolia plants caused by M. lychnidis-dioicae was lower at more contaminated sites. Although the fungus showed relatively high resistance to experimental radiation, we found no evidence that increased resistance to radiation has evolved in populations from contaminated sites. Fungal strains from more contaminated sites even tolerated or repaired damage from a brief acute exposure to γ radiation less well than those from non- or less contaminated sites. Our results more generally concur with previous studies in showing that the fitness of living organisms is affected by radiation after nuclear disasters, but that they do not rapidly evolve higher tolerance.
Collapse
Affiliation(s)
- Sylvie Arnaise
- Ecologie Systematique EvolutionCNRSUniversité Paris‐SaclayOrsayFrance
| | - Jacqui A. Shykoff
- Ecologie Systematique EvolutionCNRSUniversité Paris‐SaclayOrsayFrance
| | - Anders P. Møller
- Ecologie Systematique EvolutionCNRSUniversité Paris‐SaclayOrsayFrance
| | | | - Tatiana Giraud
- Ecologie Systematique EvolutionCNRSUniversité Paris‐SaclayOrsayFrance
| |
Collapse
|
14
|
Ogwu MC, Srinivasan S, Dong K, Ramasamy D, Waldman B, Adams JM. Community Ecology of Deinococcus in Irradiated Soil. MICROBIAL ECOLOGY 2019; 78:855-872. [PMID: 30980101 DOI: 10.1007/s00248-019-01343-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 02/12/2019] [Indexed: 05/24/2023]
Abstract
Deinococcus is a genus of soil bacteria known for radiation resistance. However, the effects of radiation exposure on its community structure are unknown. We exposed soil to three levels of gamma radiation, 0.1 kGy/h (low), 1 kGy/h (medium), and 3 kGy/h (high), once a week for 6 weeks and then extracted soil DNA for 16S rRNA amplicon sequencing. We found the following: (1) Increasing radiation dose produced a major increase in relative abundance of Deinococcus, reaching ~ 80% of reads at the highest doses. Differing abundances of the various Deinococcus species in relation to exposure levels indicate distinct "radiation niches." At 3 kGy/h, a single OTU identified as D. ficus overwhelmingly dominated the mesocosms. (2) Corresponding published genome data show that the dominant species at 3 kGy/h, D. ficus, has a larger and more complex genome than other Deinococcus species with a greater proportion of genes related to DNA and nucleotide metabolism, cell wall, membrane, and envelope biogenesis as well as more cell cycle control, cell division, and chromosome partitioning-related genes. Deinococcus ficus also has a higher guanine-cytosine ratio than most other Deinococcus. These features may be linked to genome stability and may explain its greater abundance in this apparently competitive system, under high-radiation exposures. (3) Genomic analysis suggests that Deinococcus, including D. ficus, are capable of utilizing diverse carbon sources derived from both microbial cells killed by the radiation (including C5-C12-containing compounds, like arabinose, lactose, N-acetyl-D-glucosamine) and plant-derived organic matter in the soil (e.g., cellulose and hemicellulose). (4) Overall, based on its metagenome, even the most highly irradiated (3 kGy/h) soil possesses a wide range of the activities necessary for a functional soil system. Future studies may consider the resilience and sustainability of such soils in a high-radiation environment.
Collapse
Affiliation(s)
- Matthew Chidozie Ogwu
- School of Biological Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
- Department of Plant Biology and Biotechnology, University of Benin, PMB 1154, Ugbowo, Benin City, Edo State, Nigeria
| | - Sathiyaraj Srinivasan
- Department of Bio and Environmental Technology, Division of Environmental and Life Science, College of Natural Science, Seoul Women's University, 623 Hwarangno, Nowon-gu, Seoul, 139-774, Republic of Korea
| | - Ke Dong
- Department of Life Sciences, Kyonggi University, Suwon, 443-760, Republic of Korea
| | - Dhamodharan Ramasamy
- School of Biological Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Bruce Waldman
- School of Biological Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea.
- Department of Integrative Biology, Oklahoma State University, 501 Life Sciences West, Stillwater, OK, 74078, USA.
| | - Jonathan M Adams
- School of Geographic and Oceanographic Sciences, Nanjing University, Nanjing, 210023, Qixia District, Jiangsu Province, People's Republic of China.
| |
Collapse
|
15
|
Lampe N, Marin P, Coulon M, Micheau P, Maigne L, Sarramia D, Piquemal F, Incerti S, Biron DG, Ghio C, Sime-Ngando T, Hindre T, Breton V. Reducing the ionizing radiation background does not significantly affect the evolution of Escherichia coli populations over 500 generations. Sci Rep 2019; 9:14891. [PMID: 31624294 PMCID: PMC6797783 DOI: 10.1038/s41598-019-51519-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 09/30/2019] [Indexed: 12/31/2022] Open
Abstract
Over millennia, life has been exposed to ionizing radiation from cosmic rays and natural radioisotopes. Biological experiments in underground laboratories have recently demonstrated that the contemporary terrestrial radiation background impacts the physiology of living organisms, yet the evolutionary consequences of this biological stress have not been investigated. Explaining the mechanisms that give rise to the results of underground biological experiments remains difficult, and it has been speculated that hereditary mechanisms may be involved. Here, we have used evolution experiments in standard and very low-radiation backgrounds to demonstrate that environmental ionizing radiation does not significantly impact the evolutionary trajectories of E. coli bacterial populations in a 500 generations evolution experiment.
Collapse
Affiliation(s)
- Nathanael Lampe
- Université Clermont Auvergne, CNRS/IN2P3, LPC, F-63000, Clermont-Ferrand, France
| | - Pierre Marin
- Université Clermont Auvergne, CNRS/IN2P3, LPC, F-63000, Clermont-Ferrand, France
| | - Marianne Coulon
- Université Clermont Auvergne, CNRS/IN2P3, LPC, F-63000, Clermont-Ferrand, France
| | - Pierre Micheau
- Université Clermont Auvergne, CNRS/IN2P3, LPC, F-63000, Clermont-Ferrand, France
| | - Lydia Maigne
- Université Clermont Auvergne, CNRS/IN2P3, LPC, F-63000, Clermont-Ferrand, France
| | - David Sarramia
- Université Clermont Auvergne, CNRS/IN2P3, LPC, F-63000, Clermont-Ferrand, France
| | - Fabrice Piquemal
- Laboratoire Souterrain de Modane, 1125 Route de Bardonèche, F-73500, Modane, France
- Université de Bordeaux, CNRS/IN2P3, CENBG, F-33170, Gradignan, France
| | - Sébastien Incerti
- Université de Bordeaux, CNRS/IN2P3, CENBG, F-33170, Gradignan, France
| | - David G Biron
- CNRS UMR 6023, Université Clermont-Auvergne, Laboratoire "Microorganismes: Génome et Environnement" (LMGE), F-63000, Clermont-Ferrand, France
| | - Camille Ghio
- CNRS UMR 6023, Université Clermont-Auvergne, Laboratoire "Microorganismes: Génome et Environnement" (LMGE), F-63000, Clermont-Ferrand, France
| | - Télesphore Sime-Ngando
- CNRS UMR 6023, Université Clermont-Auvergne, Laboratoire "Microorganismes: Génome et Environnement" (LMGE), F-63000, Clermont-Ferrand, France
| | - Thomas Hindre
- Univ. Grenoble Alpes, CNRS, Grenoble INP, TIMC-IMAG, F-38000, Grenoble, France.
| | - Vincent Breton
- Université Clermont Auvergne, CNRS/IN2P3, LPC, F-63000, Clermont-Ferrand, France
| |
Collapse
|
16
|
Yamanouchi K, Tsujiguchi T, Shiroma Y, Suzuki T, Tamakuma Y, Yamaguchi M, Sakamoto Y, Hegedűs M, Iwaoka K, Hosoda M, Kashiwakura I, Miura T, Tokonami S. COMPARISON OF BACTERIAL FLORA IN RIVER SEDIMENTS FROM FUKUSHIMA AND AOMORI PREFECTURES BY 16S RDNA SEQUENCE ANALYSIS. RADIATION PROTECTION DOSIMETRY 2019; 184:504-509. [PMID: 31038686 DOI: 10.1093/rpd/ncz114] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Monitoring of radioactive materials has been reported in rivers and soil in Fukushima post the Fukushima Daiichi Nuclear Power Plant accident in March 2011. However, there are few reports on the influence of this event on bacteria in forest soils and rivers. Therefore, through amplicon sequencing of 16S rDNA we compared the bacterial flora in river sediment soils from Fukushima prefecture and from an area not exposed to radioactive contamination, Aomori prefecture. The bacterial composition in the Aomori prefecture soil and Fukushima soil were found to be very similar at the phylum level. However, Fukushima soil had significantly fewer Bacteroidetes than the Aomori soil (p = 0.014), while the content of Firmicutes and Latescibacteria (WS3) was significantly higher (p = 0.001, 0.013 respectively). However, no increase in the content of radioactive-resistant bacteria was observed. In future studies, it is necessary to standardise the conditions for soil collection to assess its content of radioactive substances.
Collapse
Affiliation(s)
- K Yamanouchi
- Hirosaki University Graduate School of Health Sciences, Hirosaki, Japan
| | - T Tsujiguchi
- Hirosaki University Graduate School of Health Sciences, Hirosaki, Japan
| | - Y Shiroma
- Hirosaki University Graduate School of Health Sciences, Hirosaki, Japan
| | - T Suzuki
- Hirosaki University Graduate School of Health Sciences, Hirosaki, Japan
| | - Y Tamakuma
- Hirosaki University Graduate School of Health Sciences, Hirosaki, Japan
| | - M Yamaguchi
- Hirosaki University Graduate School of Health Sciences, Hirosaki, Japan
| | - Y Sakamoto
- Hirosaki University Graduate School of Health Sciences, Hirosaki, Japan
| | - M Hegedűs
- Institute of Radiation Emergency Medicine, Hirosaki University, Hirosaki, Japan
| | - K Iwaoka
- Institute of Radiation Emergency Medicine, Hirosaki University, Hirosaki, Japan
- National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - M Hosoda
- Hirosaki University Graduate School of Health Sciences, Hirosaki, Japan
| | - I Kashiwakura
- Hirosaki University Graduate School of Health Sciences, Hirosaki, Japan
| | - T Miura
- Hirosaki University Graduate School of Health Sciences, Hirosaki, Japan
| | - S Tokonami
- Institute of Radiation Emergency Medicine, Hirosaki University, Hirosaki, Japan
| |
Collapse
|
17
|
Hoyos-Hernandez C, Courbert C, Simonucci C, David S, Vogel TM, Larose C. Community structure and functional genes in radionuclide contaminated soils in Chernobyl and Fukushima. FEMS Microbiol Lett 2019; 366:5556529. [DOI: 10.1093/femsle/fnz180] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 08/26/2019] [Indexed: 12/19/2022] Open
Abstract
ABSTRACT
Chernobyl and Fukushima were subjected to radionuclide (RN) contamination that has led to environmental problems. In order to explore the ability of microorganisms to survive in these environments, we used a combined 16S rRNA and metagenomic approach to describe the prokaryotic community structure and metabolic potential over a gradient of RN concentrations (137Cs 1680–0.4 and 90Sr 209.1–1.9 kBq kg−1) in soil samples. The taxonomic results showed that samples with low 137Cs content (37.8–0.4 kBq kg−1) from Fukushima and Chernobyl clustered together. In order to determine the effect of soil chemical parameters such as organic carbon (OC), Cesium-137 (137Cs) and Strontium-90 (90Sr) on the functional potential of microbial communities, multiple predictor model analysis using piecewiseSEM was carried out on Chernobyl soil metagenomes. The model identified 46 genes that were correlated to these parameters of which most have previously been described as mechanisms used by microorganisms under stress conditions. This study provides a baseline taxonomic and metagenomic dataset for Fukushima and Chernobyl, respectively, including physical and chemical characteristics. Our results pave the way for evaluating the possible RN selective pressure that might contribute to shaping microbial community structure and their functions in contaminated soils.
Collapse
Affiliation(s)
- Carolina Hoyos-Hernandez
- Laboratoire sur le devenir des pollutions de sites radioactifs, Institut de Radioprotection et de Sûreté Nucléaire, 31 avenue de la Division Leclerc, 92320, Fontenay-aux-Roses Cedex, France
| | - Christelle Courbert
- Laboratoire sur le devenir des pollutions de sites radioactifs, Institut de Radioprotection et de Sûreté Nucléaire, 31 avenue de la Division Leclerc, 92320, Fontenay-aux-Roses Cedex, France
| | - Caroline Simonucci
- Laboratoire sur le devenir des pollutions de sites radioactifs, Institut de Radioprotection et de Sûreté Nucléaire, 31 avenue de la Division Leclerc, 92320, Fontenay-aux-Roses Cedex, France
- Laboratoire d'expertise et d'intervention en radioprotection Nord, Institut de Radioprotection et de Sûreté Nucléaire, 31 avenue de la Division Leclerc, 92320 Fontenay aux Roses, France
| | - Sebastien David
- Environmental Microbial Genomics, Laboratoire Ampere, Ecole Centrale de Lyon, Université de Lyon, 36 avenue Guy de Collongue 69134, Ecully, France
| | - Timothy M Vogel
- Environmental Microbial Genomics, Laboratoire Ampere, Ecole Centrale de Lyon, Université de Lyon, 36 avenue Guy de Collongue 69134, Ecully, France
| | - Catherine Larose
- Environmental Microbial Genomics, Laboratoire Ampere, Ecole Centrale de Lyon, Université de Lyon, 36 avenue Guy de Collongue 69134, Ecully, France
| |
Collapse
|
18
|
Møller AP, Mousseau TA. Reduced colonization by soil invertebrates to irradiated decomposing wood in Chernobyl. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 645:773-779. [PMID: 30031335 DOI: 10.1016/j.scitotenv.2018.07.195] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 07/13/2018] [Accepted: 07/15/2018] [Indexed: 06/08/2023]
Abstract
Soil is inhabited by a range of microbes, invertebrates and vertebrates that disintegrate and decompose dead wood and leaf litter. These communities can be perturbed by ionizing radiation from natural radiation sources or from radiation originating from nuclear accidents such as those at Chernobyl, Fukushima and Three Mile Island. We used experimental manipulations of wood quality due to differences in exposure to ionizing radiation among tree trunks and ambient radiation levels of the soil to test the hypothesis that radioactively contaminated wood would result in a negative correlation between the abundance of soil invertebrates colonizing slices of wood and level of radioactive contamination. We extracted soil invertebrates underneath decomposing wood using mustard powder diluted in water. The abundance of soil invertebrates extracted was highly repeatable at study sites and decreased with increasing ambient radiation and total dose measured with thermoluminescent dosimeters (TLDs). Four 10 cm thick slices of ca. 70-year old Scots pines (Pinus sylvestris) were deposited at 20 sites and the invertebrate taxa and their colonization and their abundance was assessed annually during 2014-2017. There were more soil invertebrates under uncontaminated than contaminated slices of wood. In addition, there were more soil invertebrates in areas with less ambient radioactivity, and there was an interaction effect between contamination of wood and ambient radiation implying that the role of contamination differed among slices. Finally, there was an increase in the abundance of soil invertebrates under wood slices during 2013-2017 implying that the abundance of soil invertebrates increased over time. These findings imply that the abundance of soil animals colonizing wood slices was dependent on background radiation, radioactive contamination of wood and the interaction between contamination of wood and ambient radiation.
Collapse
Affiliation(s)
- A P Møller
- Ecologie Systématique Evolution, Université Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, F-91405 Orsay Cedex, France.
| | - T A Mousseau
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| |
Collapse
|
19
|
Lavrinienko A, Tukalenko E, Mappes T, Watts PC. Skin and gut microbiomes of a wild mammal respond to different environmental cues. MICROBIOME 2018; 6:209. [PMID: 30477569 PMCID: PMC6258405 DOI: 10.1186/s40168-018-0595-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 11/14/2018] [Indexed: 05/08/2023]
Abstract
BACKGROUND Animal skin and gut microbiomes are important components of host fitness. However, the processes that shape the microbiomes of wildlife are poorly understood, particularly with regard to exposure to environmental contaminants. We used 16S rRNA amplicon sequencing to quantify how exposure to radionuclides impacts the skin and gut microbiota of a small mammal, the bank vole Myodes glareolus, inhabiting areas within and outside the Chernobyl Exclusion Zone (CEZ), Ukraine. RESULTS Skin microbiomes of male bank voles were more diverse than females. However, the most pronounced differences in skin microbiomes occurred at a larger spatial scale, with higher alpha diversity in the skin microbiomes of bank voles from areas within the CEZ, whether contaminated by radionuclides or not, than in the skin microbiomes of animals from uncontaminated locations outside the CEZ, near Kyiv. Similarly, irrespective of the level of radionuclide contamination, skin microbiome communities (beta diversity) showed greater similarities within the CEZ, than to the areas near Kyiv. Hence, bank vole skin microbiome communities are structured more by geography than the level of soil radionuclides. This pattern presents a contrast with bank vole gut microbiota, where microbiomes could be strikingly similar among distant (~ 80 km of separation), uncontaminated locations, and where differences in microbiome community structure were associated with the level of radioactivity. We also found that the level of (dis)similarity between the skin and gut microbiome communities from the same individuals was contingent on the potential for exposure to radionuclides. CONCLUSIONS Bank vole skin and gut microbiomes have distinct responses to similar environmental cues and thus are structured at different spatial scales. Our study shows how exposure to environmental pollution can affect the relationship between a mammalian host's skin and gut microbial communities, potentially homogenising the microbiomes in habitats affected by pollution.
Collapse
Affiliation(s)
- Anton Lavrinienko
- Department of Ecology and Genetics, University of Oulu, 90570 Oulu, Finland
| | - Eugene Tukalenko
- Department of Ecology and Genetics, University of Oulu, 90570 Oulu, Finland
- Institute of Biology and Medicine, Taras Shevchenko National University of Kyiv, Kyiv, 03022 Ukraine
| | - Tapio Mappes
- Department of Biological and Environmental Science, University of Jyväskylä, 40014 Jyväskylä, Finland
| | - Phillip C. Watts
- Department of Ecology and Genetics, University of Oulu, 90570 Oulu, Finland
- Department of Biological and Environmental Science, University of Jyväskylä, 40014 Jyväskylä, Finland
| |
Collapse
|
20
|
Silva R, de Almeida DM, Cabral BCA, Dias VHG, Mello ICDTE, Ürményi TP, Woerner AE, Neto RSDM, Budowle B, Nassar CAG. Microbial enrichment and gene functional categories revealed on the walls of a spent fuel pool of a nuclear power plant. PLoS One 2018; 13:e0205228. [PMID: 30286173 PMCID: PMC6171911 DOI: 10.1371/journal.pone.0205228] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 09/21/2018] [Indexed: 11/28/2022] Open
Abstract
Microorganisms developing in the liner of the spent fuel pool (SFP) and the fuel transfer channel (FTC) of a Nuclear Power Plant (NPP) can form high radiation resistant biofilms and cause corrosion. Due to difficulties and limitations to obtain large samples from SFP and FTC, cotton swabs were used to collect the biofilm from the wall of these installations. Molecular characterization was performed using massively parallel sequencing to obtain a taxonomic and functional gene classification. Also, samples from the drainage system were evaluated because microorganisms may travel over the 12-meter column of the pool water of the Brazilian Nuclear Power Plant (Angra1), which has been functioning since 1985. Regardless of the treatment of the pool water, our data reveal the unexpected presence of Fungi (Basidiomycota and Ascomycota) as the main contaminators of the SFP and FTC. Ustilaginomycetes (Basidiomycota) was the major class contributor (70%) in the SFP and FTC reflecting the little diversity in these sites; nevertheless, Proteobacteria, Actinobacteria, Firmicutes (Bacilli) were present in small proportions. Mapping total reads against six fungal reference genomes indicate that there is, in fact, a high abundance of fungal sequences in samples collected from SFP and FTC. Analysis of the ribosomal internal transcribed spacer (ITS) 1 and 2 regions and the protein found in the mitochondria of eukaryotic cells, cytochrome b (cytb) grouped our sample fungi in the clade 7 as Ustilago and Pseudozyma. In contrast, in the drainage system, Alphaproteobacteria were present in high abundances (55%). The presence of Sphingopyxis, Mesorhizobium, Erythrobacter, Sphingomonas, Novosphingobium, Sphingobium, Chelativorans, Oceanicaulis, Acidovorax, and Cyanobacteria was observed. Based on genomic annotation data, the assessment of the biological function found a higher proportion of protein-coding sequences related to respiration and protein metabolism in SFP and FTC samples. The knowledge of this biological inventory present in the system may contribute to further studies of potential microorganisms that might be useful for bioremediation of nuclear waste.
Collapse
Affiliation(s)
- Rosane Silva
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- * E-mail:
| | - Darcy Muniz de Almeida
- Escola Politécnica & Escola de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Victor Hugo Giordano Dias
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Turán Péter Ürményi
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - August E. Woerner
- Center for Human Identification, University of North Texas Health Science Center, Fort Worth, United States of America
| | | | - Bruce Budowle
- Center for Human Identification, University of North Texas Health Science Center, Fort Worth, United States of America
- Center of Excellence in Genomic Medicine Research (CEGMR), King Abdulaziz University, Jeddah, Saudi Arabia
| | | |
Collapse
|
21
|
Lavrinienko A, Mappes T, Tukalenko E, Mousseau TA, Møller AP, Knight R, Morton JT, Thompson LR, Watts PC. Environmental radiation alters the gut microbiome of the bank vole Myodes glareolus. ISME JOURNAL 2018; 12:2801-2806. [PMID: 29988064 PMCID: PMC6193954 DOI: 10.1038/s41396-018-0214-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 05/16/2018] [Accepted: 06/11/2018] [Indexed: 02/07/2023]
Abstract
Gut microbiota composition depends on many factors, although the impact of environmental pollution is largely unknown. We used amplicon sequencing of bacterial 16S rRNA genes to quantify whether anthropogenic radionuclides at Chernobyl (Ukraine) impact the gut microbiome of the bank vole Myodes glareolus. Exposure to elevated levels of environmental radionuclides had no detectable effect on the gut community richness but was associated with an almost two-fold increase in the Firmicutes:Bacteroidetes ratio. Animals inhabiting uncontaminated areas had remarkably similar gut communities irrespective of their proximity to the nuclear power plant. Hence, samples could be classified to high-radiation or low-radiation sites based solely on microbial community with >90% accuracy. Radiation-associated bacteria had distinct inferred functional profiles, including pathways involved in degradation, assimilation and transport of carbohydrates, xenobiotics biodegradation, and DNA repair. Our results suggest that exposure to environmental radionuclides significantly alters vertebrate gut microbiota.
Collapse
Affiliation(s)
- Anton Lavrinienko
- Department of Ecology and Genetics, University of Oulu, 90014, Oulu, Finland.
| | - Tapio Mappes
- Department of Biological and Environmental Science, University of Jyväskylä, 40014, Jyväskylä, Finland
| | - Eugene Tukalenko
- Department of Biological and Environmental Science, University of Jyväskylä, 40014, Jyväskylä, Finland.,Institute of Biology and Medicine, Taras Shevchenko National University of Kyiv, Kyiv, 03022, Ukraine
| | - Timothy A Mousseau
- Department of Biological Sciences, University of South Carolina, Columbia, SC, 29208, USA
| | - Anders P Møller
- Ecologie Systématique Evolution, Université Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, 91405, Orsay Cedex, France
| | - Rob Knight
- Department of Pediatrics, University of California San Diego, La Jolla, CA, 92037, USA.,Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA, 92037, USA.,Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, 92037, USA
| | - James T Morton
- Department of Pediatrics, University of California San Diego, La Jolla, CA, 92037, USA.,Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA, 92037, USA
| | - Luke R Thompson
- Department of Biological Sciences and Northern Gulf Institute, University of Southern Mississippi, Hattiesburg, MS, USA.,Atlantic Oceanographic and Meteorological Laboratory, National Oceanic and Atmospheric Administration, stationed at Southwest Fisheries Science Center, National Marine Fisheries Service, La Jolla, CA, USA
| | - Phillip C Watts
- Department of Ecology and Genetics, University of Oulu, 90014, Oulu, Finland
| |
Collapse
|
22
|
Beblo-Vranesevic K, Bohmeier M, Perras AK, Schwendner P, Rabbow E, Moissl-Eichinger C, Cockell CS, Vannier P, Marteinsson VT, Monaghan EP, Ehrenfreund P, Garcia-Descalzo L, Gómez F, Malki M, Amils R, Gaboyer F, Westall F, Cabezas P, Walter N, Rettberg P. Lack of correlation of desiccation and radiation tolerance in microorganisms from diverse extreme environments tested under anoxic conditions. FEMS Microbiol Lett 2018; 365:4883205. [PMID: 29474542 PMCID: PMC5939664 DOI: 10.1093/femsle/fny044] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 02/19/2018] [Indexed: 12/21/2022] Open
Abstract
Four facultative anaerobic and two obligate anaerobic bacteria were isolated from extreme environments (deep subsurface halite mine, sulfidic anoxic spring, mineral-rich river) in the frame MASE (Mars Analogues for Space Exploration) project. The isolates were investigated under anoxic conditions for their survivability after desiccation up to 6 months and their tolerance to ionizing radiation up to 3000 Gy. The results indicated that tolerances to both stresses are strain-specific features. Yersinia intermedia MASE-LG-1 showed a high desiccation tolerance but its radiation tolerance was very low. The most radiation-tolerant strains were Buttiauxella sp. MASE-IM-9 and Halanaerobium sp. MASE-BB-1. In both cases, cultivable cells were detectable after an exposure to 3 kGy of ionizing radiation, but cells only survived desiccation for 90 and 30 days, respectively. Although a correlation between desiccation and ionizing radiation resistance has been hypothesized for some aerobic microorganisms, our data showed that there was no correlation between tolerance to desiccation and ionizing radiation, suggesting that the physiological basis of both forms of tolerances is not necessarily linked. In addition, these results indicated that facultative and obligate anaerobic organisms living in extreme environments possess varied species-specific tolerances to extremes.
Collapse
Affiliation(s)
- Kristina Beblo-Vranesevic
- Radiation Biology Department, Institute of Aerospace Medicine, German Aerospace Center (DLR), Linder Hoehe, 51147 Cologne, Germany
| | - Maria Bohmeier
- Radiation Biology Department, Institute of Aerospace Medicine, German Aerospace Center (DLR), Linder Hoehe, 51147 Cologne, Germany
| | - Alexandra K Perras
- Department of Internal Medicine, Medical University of Graz, Auerbruggerplatz 15, 8010 Graz, Austria
- Department of Microbiology and Archaea, University of Regensburg, Universitätsstr. 31, 93053 Regensburg, Germany
| | - Petra Schwendner
- UK Center for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Peter Guthrie Tait Road, EH9 3FD, Edinburgh, UK
| | - Elke Rabbow
- Radiation Biology Department, Institute of Aerospace Medicine, German Aerospace Center (DLR), Linder Hoehe, 51147 Cologne, Germany
| | - Christine Moissl-Eichinger
- Department of Internal Medicine, Medical University of Graz, Auerbruggerplatz 15, 8010 Graz, Austria
- BioTechMed Graz, Mozartgasse 12/II, 8010 Graz, Austria
| | - Charles S Cockell
- UK Center for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Peter Guthrie Tait Road, EH9 3FD, Edinburgh, UK
| | | | - Viggo T Marteinsson
- MATISProkaria, Vinlandsleid 12, 113 Reykjavík, Iceland
- Faculty of Food Science and Nutrition, University of Iceland, Vatnsmýrarvegur 16, 101 Reykjavík, Iceland
| | - Euan P Monaghan
- Leiden Observatory, Universiteit Leiden, Niels Bohrweg 2, 2333 Leiden, Netherland
| | - Pascale Ehrenfreund
- Leiden Observatory, Universiteit Leiden, Niels Bohrweg 2, 2333 Leiden, Netherland
- Space Policy Institute, George Washington University, 1957 E Street, 20052 Washington DC, USA
| | - Laura Garcia-Descalzo
- Instituto Nacional de Técnica Aeroespacial-Centro de Astrobiología (INTA-CAB), Torrejón de Ardoz, 28850 Madrid, Spain
| | - Felipe Gómez
- Instituto Nacional de Técnica Aeroespacial-Centro de Astrobiología (INTA-CAB), Torrejón de Ardoz, 28850 Madrid, Spain
| | - Moustafa Malki
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid (UAM), Calle Nicolás Cabrera 1, 28049 Madrid, Spain
| | - Ricardo Amils
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid (UAM), Calle Nicolás Cabrera 1, 28049 Madrid, Spain
| | - Frédéric Gaboyer
- Centre de Biophysique Moléculaire, Centre National de la Recherche Scientifique (CNRS), Rue Charles Sadron, 45071 Orléans, France
| | - Frances Westall
- Centre de Biophysique Moléculaire, Centre National de la Recherche Scientifique (CNRS), Rue Charles Sadron, 45071 Orléans, France
| | - Patricia Cabezas
- European Science Foundation (ESF), Quai Lezay-Marnésia, 67080 Strasbourg, France
| | - Nicolas Walter
- European Science Foundation (ESF), Quai Lezay-Marnésia, 67080 Strasbourg, France
| | - Petra Rettberg
- Radiation Biology Department, Institute of Aerospace Medicine, German Aerospace Center (DLR), Linder Hoehe, 51147 Cologne, Germany
| |
Collapse
|
23
|
Farci D, Slavov C, Piano D. Coexisting properties of thermostability and ultraviolet radiation resistance in the main S-layer complex of Deinococcus radiodurans. Photochem Photobiol Sci 2018; 17:81-88. [DOI: 10.1039/c7pp00240h] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Deinococcus radiodurans is well known for its unusual resistance to different environmental stresses.
Collapse
Affiliation(s)
- Domenica Farci
- Department of Life and Environmental Sciences
- Laboratory of Plant Physiology and Photobiology
- University of Cagliari
- 09123 Cagliari
- Italy
| | - Chavdar Slavov
- Institute of Physical and Theoretical Chemistry
- Goethe University
- D-60438 Frankfurt am Main
- Germany
| | - Dario Piano
- Department of Life and Environmental Sciences
- Laboratory of Plant Physiology and Photobiology
- University of Cagliari
- 09123 Cagliari
- Italy
| |
Collapse
|
24
|
Ruiz-Rodríguez M, Møller AP, Mousseau TA, Soler JJ. Capacity of blood plasma is higher in birds breeding in radioactively contaminated areas. PLoS One 2017; 12:e0179209. [PMID: 28662048 PMCID: PMC5490992 DOI: 10.1371/journal.pone.0179209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 05/25/2017] [Indexed: 11/18/2022] Open
Abstract
Background Environmental pollution in general, and radioactive contamination in particular, may deeply affect host-parasite relationships and their consequences for the evolution of organisms. The nuclear accident that occurred more than 30 years ago in Chernobyl resulted in significant changes in diversity and richness of microbial communities that could influence characteristics of animal-bacteria interactions, including host immune responses and competitive interference by bacteria. Given the high mortality rate of birds breeding in radioactively contaminated zones, those with stronger defences against infections should experience significant fitness advantages. Methodology/Principal Findings Here we characterized antimicrobial capacity of barn swallows (Hirundo rustica) from different Ukrainian populations (subject to a gradient of ionizing radiation) against 12 bacterial species. We also quantified constitutive innate immunity, which is the non-specific first barrier of protection of hosts against microbial parasites. We found a positive association between specific antimicrobial capacity of individual hosts and radiation levels in breeding habitats even after controlling for other confounding variables such as sex and age. However, no significant relationship was found between immunocompetence (non-specific response) and background radiation. Conclusions/Significance These results suggest that radiation selects for broad antimicrobial spectra of barn swallows, although not for all bacterial strains. We discuss these results in the framework of host-parasite evolution under extreme environmental conditions.
Collapse
Affiliation(s)
- Magdalena Ruiz-Rodríguez
- Departamento de Ecología Funcional y Evolutiva, Estación Experimental de Zonas Áridas, CSIC, La Cañada de San Urbano, Almería, Spain
- Ecologie Systématique Evolution, CNRS, Université Paris-Sud, AgroParisTech, Université Paris-Saclay, Orsay, France
- * E-mail:
| | - Anders P. Møller
- Ecologie Systématique Evolution, CNRS, Université Paris-Sud, AgroParisTech, Université Paris-Saclay, Orsay, France
| | - Timothy A. Mousseau
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina, United States of America
| | - Juan J. Soler
- Departamento de Ecología Funcional y Evolutiva, Estación Experimental de Zonas Áridas, CSIC, La Cañada de San Urbano, Almería, Spain
| |
Collapse
|
25
|
Lampe N, Biron DG, Brown JMC, Incerti S, Marin P, Maigne L, Sarramia D, Seznec H, Breton V. Simulating the Impact of the Natural Radiation Background on Bacterial Systems: Implications for Very Low Radiation Biological Experiments. PLoS One 2016; 11:e0166364. [PMID: 27851794 PMCID: PMC5112919 DOI: 10.1371/journal.pone.0166364] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 10/27/2016] [Indexed: 11/19/2022] Open
Abstract
At very low radiation dose rates, the effects of energy depositions in cells by ionizing radiation is best understood stochastically, as ionizing particles deposit energy along tracks separated by distances often much larger than the size of cells. We present a thorough analysis of the stochastic impact of the natural radiative background on cells, focusing our attention on E. coli grown as part of a long term evolution experiment in both underground and surface laboratories. The chance per day that a particle track interacts with a cell in the surface laboratory was found to be 6 × 10-5 day-1, 100 times less than the expected daily mutation rate for E. coli under our experimental conditions. In order for the chance cells are hit to approach the mutation rate, a gamma background dose rate of 20 μGy hr-1 is predicted to be required.
Collapse
Affiliation(s)
- Nathanael Lampe
- Clermont Université, Université Blaise Pascal, CNRS/IN2P3, Laboratoire de Physique Corpusculaire, BP 10448, F-63000 Clermont-Ferrand, France
| | - David G. Biron
- Clermont Université, Université Blaise Pascal, Laboratoire Microorganismes Génome et Environnement, UMR CNRS 6023, BP 10448, F-63000 Clermont-Ferrand, France
| | - Jeremy M. C. Brown
- School of Mathematics and Physics, Queen’s University Belfast, Belfast, Northern Ireland, United Kingdom
| | - Sébastien Incerti
- Université de Bordeaux, CENBG, UMR 5797, F-33170 Gradignan, France
- CNRS, IN2P3, CENBG, UMR 5797, F-33170 Gradignan, France
| | - Pierre Marin
- Clermont Université, Université Blaise Pascal, CNRS/IN2P3, Laboratoire de Physique Corpusculaire, BP 10448, F-63000 Clermont-Ferrand, France
| | - Lydia Maigne
- Clermont Université, Université Blaise Pascal, CNRS/IN2P3, Laboratoire de Physique Corpusculaire, BP 10448, F-63000 Clermont-Ferrand, France
| | - David Sarramia
- Clermont Université, Université Blaise Pascal, CNRS/IN2P3, Laboratoire de Physique Corpusculaire, BP 10448, F-63000 Clermont-Ferrand, France
| | - Hervé Seznec
- Université de Bordeaux, CENBG, UMR 5797, F-33170 Gradignan, France
- CNRS, IN2P3, CENBG, UMR 5797, F-33170 Gradignan, France
| | - Vincent Breton
- Clermont Université, Université Blaise Pascal, CNRS/IN2P3, Laboratoire de Physique Corpusculaire, BP 10448, F-63000 Clermont-Ferrand, France
| |
Collapse
|
26
|
Defenses against keratinolytic bacteria in birds living in radioactively contaminated areas. Naturwissenschaften 2016; 103:71. [PMID: 27542091 DOI: 10.1007/s00114-016-1397-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 08/04/2016] [Indexed: 02/07/2023]
Abstract
Microorganisms have shaped the evolution of a variety of defense mechanisms against pathogenic infections. Radioactivity modifies bacterial communities and, therefore, bird hosts breeding in contaminated areas are expected to adapt to the new bacterial environment. We tested this hypothesis in populations of barn swallows (Hirundo rustica) from a gradient of background radiation levels at Chernobyl and uncontaminated controls from Denmark. Investment in defenses against keratinolytic bacteria was measured from feather structure (i.e., susceptibility to degradation) and uropygial secretions. We studied degradability of tail feathers from areas varying in contamination in laboratory experiments using incubation of feathers with a feather-degrading bacterium, Bacillus licheniformis, followed by measurement of the amount of keratin digested. The size of uropygial glands and secretion amounts were quantified, followed by antimicrobial tests against B. licheniformis and quantification of wear of feathers. Feathers of males, but not of females, from highly contaminated areas degraded at a lower rate than those from medium and low contamination areas. However, feathers of both sexes from the Danish populations showed little evidence of degradation. Individual barn swallows from the more contaminated areas of Ukraine produced the largest uropygial secretions with higher antimicrobial activity, although wear of feathers did not differ among males from different populations. In Denmark, swallows produced smaller quantities of uropygial secretion with lower antimicrobial activity, which was similar to swallow populations from uncontaminated areas in Ukraine. Therefore, barn swallows breeding in contaminated areas invested more in all defenses against keratinolytic bacteria than in uncontaminated areas of Ukraine and Denmark, although they had similar levels of feather wear. Strong natural selection exerted by radioactivity may have selected for individuals with higher defense capacity against bacterial infections during the 30 years since the Chernobyl disaster.
Collapse
|
27
|
Aguileta G, Badouin H, Hood ME, Møller AP, Le Prieur S, Snirc A, Siguenza S, Mousseau TA, Shykoff JA, Cuomo CA, Giraud T. Lower prevalence but similar fitness in a parasitic fungus at higher radiation levels near Chernobyl. Mol Ecol 2016; 25:3370-83. [PMID: 27136128 DOI: 10.1111/mec.13675] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 04/04/2016] [Accepted: 04/15/2016] [Indexed: 12/24/2022]
Abstract
Nuclear disasters at Chernobyl and Fukushima provide examples of effects of acute ionizing radiation on mutations that can affect the fitness and distribution of species. Here, we investigated the prevalence of Microbotryum lychnidis-dioicae, a pollinator-transmitted fungal pathogen of plants causing anther-smut disease in Chernobyl, its viability, fertility and karyotype variation, and the accumulation of nonsynonymous mutations in its genome. We collected diseased flowers of Silene latifolia from locations ranging by more than two orders of magnitude in background radiation, from 0.05 to 21.03 μGy/h. Disease prevalence decreased significantly with increasing radiation level, possibly due to lower pollinator abundance and altered pollinator behaviour. Viability and fertility, measured as the budding rate of haploid sporidia following meiosis from the diploid teliospores, did not vary with increasing radiation levels and neither did karyotype overall structure and level of chromosomal size heterozygosity. We sequenced the genomes of twelve samples from Chernobyl and of four samples collected from uncontaminated areas and analysed alignments of 6068 predicted genes, corresponding to 1.04 × 10(7) base pairs. We found no dose-dependent differences in substitution rates (neither dN, dS, nor dN/dS). Thus, we found no significant evidence of increased deleterious mutation rates at higher levels of background radiation in this plant pathogen. We even found lower levels of nonsynonymous substitution rates in contaminated areas compared to control regions, suggesting that purifying selection was stronger in contaminated than uncontaminated areas. We briefly discuss the possibilities for a mechanistic basis of radio resistance in this nonmelanized fungus.
Collapse
Affiliation(s)
- Gabriela Aguileta
- Ecologie Systématique Evolution, CNRS, Univ. Paris-Sud, AgroParisTech, Université Paris-Saclay, 91400, Orsay, France
| | - Helene Badouin
- Ecologie Systématique Evolution, CNRS, Univ. Paris-Sud, AgroParisTech, Université Paris-Saclay, 91400, Orsay, France
| | - Michael E Hood
- Biology Department, Amherst College, Amherst, MA 01002, USA
| | - Anders P Møller
- Ecologie Systématique Evolution, CNRS, Univ. Paris-Sud, AgroParisTech, Université Paris-Saclay, 91400, Orsay, France
| | - Stephanie Le Prieur
- Ecologie Systématique Evolution, CNRS, Univ. Paris-Sud, AgroParisTech, Université Paris-Saclay, 91400, Orsay, France
| | - Alodie Snirc
- Ecologie Systématique Evolution, CNRS, Univ. Paris-Sud, AgroParisTech, Université Paris-Saclay, 91400, Orsay, France
| | - Sophie Siguenza
- INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, Castanet-Tolosan, F-31326, France.,CNRS, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR2594, Castanet-Tolosan, F-31326, France
| | - Timothy A Mousseau
- Department of Biological Sciences, University of South Carolina, Columbia, SC, 29208, USA
| | - Jacqui A Shykoff
- Ecologie Systématique Evolution, CNRS, Univ. Paris-Sud, AgroParisTech, Université Paris-Saclay, 91400, Orsay, France
| | | | - Tatiana Giraud
- Ecologie Systématique Evolution, CNRS, Univ. Paris-Sud, AgroParisTech, Université Paris-Saclay, 91400, Orsay, France
| |
Collapse
|
28
|
Are Organisms Adapting to Ionizing Radiation at Chernobyl? Trends Ecol Evol 2016; 31:281-289. [PMID: 26868287 DOI: 10.1016/j.tree.2016.01.005] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 01/01/2016] [Accepted: 01/12/2016] [Indexed: 11/23/2022]
Abstract
Numerous organisms have shown an ability to survive and reproduce under low-dose ionizing radiation arising from natural background radiation or from nuclear accidents. In a literature review, we found a total of 17 supposed cases of adaptation, mostly based on common garden experiments with organisms only deriving from typically two or three sampling locations. We only found one experimental study showing evidence of improved resistance to radiation. Finally, we examined studies for the presence of hormesis (i.e., superior fitness at low levels of radiation compared with controls and high levels of radiation), but found no evidence to support its existence. We conclude that rigorous experiments based on extensive sampling from multiple sites are required.
Collapse
|