1
|
Song M, Zhuge Y, Tu Y, Liu J, Liu W. The Multifunctional Role of KCNE2: From Cardiac Arrhythmia to Multisystem Disorders. Cells 2024; 13:1409. [PMID: 39272981 PMCID: PMC11393857 DOI: 10.3390/cells13171409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 08/17/2024] [Accepted: 08/21/2024] [Indexed: 09/15/2024] Open
Abstract
The KCNE2 protein is encoded by the kcne2 gene and is a member of the KCNE protein family, also known as the MinK-related protein 1 (MiRP1). It is mostly present in the epicardium of the heart and gastric mucosa, and it is also found in the thyroid, pancreatic islets, liver and lung, among other locations, to a lesser extent. It is involved in numerous physiological processes because of its ubiquitous expression and partnering promiscuity, including the modulation of voltage-dependent potassium and calcium channels involved in cardiac action potential repolarization, and regulation of secretory processes in multiple epithelia, such as gastric acid secretion, thyroid hormone synthesis, generation and secretion of cerebrospinal fluid. Mutations in the KCNE2 gene or aberrant expression of the protein may play a critical role in cardiovascular, neurological, metabolic and multisystem disorders. This article provides an overview of the advancements made in understanding the physiological functions in organismal homeostasis and the pathophysiological consequences of KCNE2 in multisystem diseases.
Collapse
Affiliation(s)
| | | | | | - Jie Liu
- Department of Pathophysiology, Medical School, Shenzhen University, Shenzhen 518060, China; (M.S.); (Y.Z.); (Y.T.)
| | - Wenjuan Liu
- Department of Pathophysiology, Medical School, Shenzhen University, Shenzhen 518060, China; (M.S.); (Y.Z.); (Y.T.)
| |
Collapse
|
2
|
Abbott GW. Kv Channel Ancillary Subunits: Where Do We Go from Here? Physiology (Bethesda) 2022; 37:0. [PMID: 35797055 PMCID: PMC9394777 DOI: 10.1152/physiol.00005.2022] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/29/2022] [Accepted: 04/29/2022] [Indexed: 01/10/2023] Open
Abstract
Voltage-gated potassium (Kv) channels each comprise four pore-forming α-subunits that orchestrate essential duties such as voltage sensing and K+ selectivity and conductance. In vivo, however, Kv channels also incorporate regulatory subunits-some Kv channel specific, others more general modifiers of protein folding, trafficking, and function. Understanding all the above is essential for a complete picture of the role of Kv channels in physiology and disease.
Collapse
Affiliation(s)
- Geoffrey W Abbott
- Bioelectricity Laboratory, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, California
| |
Collapse
|
3
|
Papanikolaou M, Crump SM, Abbott GW. The focal adhesion protein Testin modulates KCNE2 potassium channel β subunit activity. Channels (Austin) 2021; 15:229-238. [PMID: 33464998 PMCID: PMC7833772 DOI: 10.1080/19336950.2021.1874119] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 01/05/2021] [Accepted: 01/06/2021] [Indexed: 11/25/2022] Open
Abstract
Coronary Artery Disease (CAD) typically kills more people globally each year than any other single cause of death. A better understanding of genetic predisposition to CAD and the underlying mechanisms will help to identify those most at risk and contribute to improved therapeutic approaches. KCNE2 is a functionally versatile, ubiquitously expressed potassium channel β subunit associated with CAD and cardiac arrhythmia susceptibility in humans and mice. Here, to identify novel KCNE2 interaction partners, we employed yeast two-hybrid screening of adult and fetal human heart libraries using the KCNE2 intracellular C-terminal domain as bait. Testin (encoded by TES), an endothelial cell-expressed, CAD-associated, focal adhesion protein, was identified as a high-confidence interaction partner for KCNE2. We confirmed physical association between KCNE2 and Testin in vitro by co-immunoprecipitation. Whole-cell patch clamp electrophysiology revealed that KCNE2 negative-shifts the voltage dependence and increases the rate of activation of the endothelial cell and cardiomyocyte-expressed Kv channel α subunit, Kv1.5 in CHO cells, whereas Testin did not alter Kv1.5 function. However, Testin nullified KCNE2 effects on Kv1.5 voltage dependence and gating kinetics. In contrast, Testin did not prevent KCNE2 regulation of KCNQ1 gating. The data identify a novel role for Testin as a tertiary ion channel regulatory protein. Future studies will address the potential role for KCNE2-Testin interactions in arterial and myocyte physiology and CAD.
Collapse
Affiliation(s)
- Maria Papanikolaou
- Bioelectricity Laboratory, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, USA
| | - Shawn M. Crump
- Bioelectricity Laboratory, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, USA
| | - Geoffrey W. Abbott
- Bioelectricity Laboratory, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, USA
| |
Collapse
|
4
|
Fluorescence Fluctuation Spectroscopy enables quantification of potassium channel subunit dynamics and stoichiometry. Sci Rep 2021; 11:10719. [PMID: 34021177 PMCID: PMC8140153 DOI: 10.1038/s41598-021-90002-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 04/15/2021] [Indexed: 11/08/2022] Open
Abstract
Voltage-gated potassium (Kv) channels are a family of membrane proteins that facilitate K+ ion diffusion across the plasma membrane, regulating both resting and action potentials. Kv channels comprise four pore-forming α subunits, each with a voltage sensing domain, and they are regulated by interaction with β subunits such as those belonging to the KCNE family. Here we conducted a comprehensive biophysical characterization of stoichiometry and protein diffusion across the plasma membrane of the epithelial KCNQ1-KCNE2 complex, combining total internal reflection fluorescence (TIRF) microscopy and a series of complementary Fluorescence Fluctuation Spectroscopy (FFS) techniques. Using this approach, we found that KCNQ1-KCNE2 has a predominant 4:4 stoichiometry, while non-bound KCNE2 subunits are mostly present as dimers in the plasma membrane. At the same time, we identified unique spatio-temporal diffusion modalities and nano-environment organization for each channel subunit. These findings improve our understanding of KCNQ1-KCNE2 channel function and suggest strategies for elucidating the subunit stoichiometry and forces directing localization and diffusion of ion channel complexes in general.
Collapse
|
5
|
Lisewski U, Köhncke C, Schleussner L, Purfürst B, Lee SM, De Silva A, Manville RW, Abbott GW, Roepke TK. Hypochlorhydria reduces mortality in heart failure caused by Kcne2 gene deletion. FASEB J 2020; 34:10699-10719. [PMID: 32584506 DOI: 10.1096/fj.202000013rr] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 05/20/2020] [Accepted: 06/02/2020] [Indexed: 12/23/2022]
Abstract
Heart failure (HF) is an increasing global health crisis, affecting 40 million people and causing 50% mortality within 5 years of diagnosis. A fuller understanding of the genetic and environmental factors underlying HF, and novel therapeutic approaches to address it, are urgently warranted. Here, we discovered that cardiac-specific germline deletion in mice of potassium channel β subunit-encoding Kcne2 (Kcne2CS-/- ) causes dilated cardiomyopathy and terminal HF (median longevity, 28 weeks). Mice with global Kcne2 deletion (Kcne2Glo-/- ) exhibit multiple HF risk factors, yet, paradoxically survived over twice as long as Kcne2CS-/- mice. Global Kcne2 deletion, which inhibits gastric acid secretion, reduced the relative abundance of species within Bacteroidales, a bacterial order that positively correlates with increased lifetime risk of human cardiovascular disease. Strikingly, the proton-pump inhibitor omeprazole similarly altered the microbiome and delayed terminal HF in Kcne2CS-/- mice, increasing survival 10-fold at 44 weeks. Thus, genetic or pharmacologic induction of hypochlorhydria and decreased gut Bacteroidales species are associated with lifespan extension in a novel HF model.
Collapse
Affiliation(s)
| | - Clemens Köhncke
- Experimental and Clinical Research Center, Berlin, Germany.,Department of Cardiology, Campus Virchow - Universitätsmedizin Berlin, Berlin, Germany
| | | | - Bettina Purfürst
- Electron Microscopy Core Facility, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Soo Min Lee
- Bioelectricity Laboratory, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, USA
| | - Angele De Silva
- Bioelectricity Laboratory, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, USA
| | - Rían W Manville
- Bioelectricity Laboratory, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, USA
| | - Geoffrey W Abbott
- Bioelectricity Laboratory, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, USA
| | - Torsten K Roepke
- Experimental and Clinical Research Center, Berlin, Germany.,Department of Cardiology and Angiology, Campus Mitte, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
6
|
Hu Z, Liu J, Zhou L, Tian X, Abbott GW. AKT and ERK1/2 activation via remote ischemic preconditioning prevents Kcne2-dependent sudden cardiac death. Physiol Rep 2020; 7:e13957. [PMID: 30737904 PMCID: PMC6368489 DOI: 10.14814/phy2.13957] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 11/26/2018] [Indexed: 02/05/2023] Open
Abstract
Sudden cardiac death (SCD) is the leading global cause of mortality. SCD often arises from cardiac ischemia reperfusion (IR) injury, pathologic sequence variants within ion channel genes, or a combination of the two. Alternative approaches are needed to prevent or ameliorate ventricular arrhythmias linked to SCD. Here, we investigated the efficacy of remote ischemic preconditioning (RIPC) of the limb versus the liver in reducing ventricular arrhythmias in a mouse model of SCD. Mice lacking the Kcne2 gene, which encodes a potassium channel β subunit associated with acquired Long QT syndrome were exposed to IR injury via coronary ligation. This resulted in ventricular arrhythmias in all mice (15/15) and SCD in 5/15 mice during reperfusion. Strikingly, prior RIPC (limb or liver) greatly reduced the incidence and severity of all ventricular arrhythmias and completely prevented SCD. Biochemical and pharmacological analysis demonstrated that RIPC cardioprotection required ERK1/2 and/or AKT phosphorylation. A lack of alteration in GSK‐3β phosphorylation suggested against conventional reperfusion injury salvage kinase (RISK) signaling pathway protection. If replicated in human studies, limb RIPC could represent a noninvasive, nonpharmacological approach to limit dangerous ventricular arrhythmias associated with ischemia and/or channelopathy‐linked SCD.
Collapse
Affiliation(s)
- Zhaoyang Hu
- Laboratory of Anesthesiology & Critical Care Medicine, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jin Liu
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Leng Zhou
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xin Tian
- Laboratory of Anesthesiology & Critical Care Medicine, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Geoffrey W Abbott
- Bioelectricity Laboratory, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, California
| |
Collapse
|
7
|
Zhou L, Köhncke C, Hu Z, Roepke TK, Abbott GW. The KCNE2 potassium channel β subunit is required for normal lung function and resilience to ischemia and reperfusion injury. FASEB J 2019; 33:9762-9774. [PMID: 31162977 DOI: 10.1096/fj.201802519r] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The KCNE2 single transmembrane-spanning voltage-gated potassium (Kv) channel β subunit is ubiquitously expressed and essential for normal function of a variety of cell types, often via regulation of the KCNQ1 Kv channel. A polymorphism upstream of KCNE2 is associated with reduced lung function in human populations, but the pulmonary consequences of KCNE2 gene disruption are unknown. Here, germline deletion of mouse Kcne2 reduced pulmonary expression of potassium channel α subunits Kcnq1 and Kcnb1 but did not alter expression of other Kcne genes. Kcne2 colocalized and coimmunoprecipitated with Kcnq1 in mouse lungs, suggesting the formation of pulmonary Kcnq1-Kcne2 potassium channel complexes. Kcne2 deletion reduced blood O2, increased CO2, increased pulmonary apoptosis, and increased inflammatory mediators TNF-α, IL-6, and leukocytes in bronchoalveolar lavage (BAL) fluids. Consistent with increased pulmonary vascular leakage, Kcne2 deletion increased plasma, BAL albumin, and the BAL:plasma albumin concentration ratio. Kcne2-/- mouse lungs exhibited baseline induction of the reperfusion injury salvage kinase pathway but were less able to respond via this pathway to imposed pulmonary ischemia/reperfusion injury (IRI). We conclude that KCNE2 regulates KCNQ1 in the lungs and is required for normal lung function and resistance to pulmonary IRI. Our data support a causal relationship between KCNE2 gene disruption and lung dysfunction.-Zhou, L., Köhncke, C., Hu, Z., Roepke, T. K., Abbott, G. W. The KCNE2 potassium channel β subunit is required for normal lung function and resilience to ischemia and reperfusion injury.
Collapse
Affiliation(s)
- Leng Zhou
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Clemens Köhncke
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Zhaoyang Hu
- Laboratory of Anesthesiology and Critical Care Medicine, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, China
| | - Torsten K Roepke
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine, Berlin, Germany.,Clinic for Cardiology and Angiology, Charité-Berlin University of Medicine Campus Mitte, Berlin, Germany.,Clinic for Internal Medicine and Cardiology Klinikum Niederlausitz, Senftenberg, Germany
| | - Geoffrey W Abbott
- Bioelectricity Laboratory, Department of Physiology and Biophysics, School of Medicine, University of California-Irvine, Irvine, California, USA
| |
Collapse
|
8
|
Hu Z, Jepps TA, Zhou L, Liu J, Li M, Abbott GW. Kcne4 deletion sex dependently inhibits the RISK pathway response and exacerbates hepatic ischemia-reperfusion injury in mice. Am J Physiol Regul Integr Comp Physiol 2019; 316:R552-R562. [PMID: 30758982 DOI: 10.1152/ajpregu.00251.2018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Activation of antiapoptotic signaling cascades, such as the reperfusion injury salvage kinase (RISK) and survivor activating factor enhancement (SAFE) pathways, is protective in a variety of tissues in the context of ischemia-reperfusion (IR) injury. Hepatic IR injury causes clinically significant hepatocellular damage in surgical procedures, including liver transplantation and hepatic resection, increasing associated morbidity and mortality. We previously found that the cardiovascular-expressed K+ voltage-gated channel ancillary subunit KCNE4 sex specifically influences the cardiac RISK/SAFE pathway response to IR and that Kcne4 deletion testosterone dependently exacerbates cardiac IR injury. Here, we discovered that germline Kcne4 deletion exacerbates hepatic IR injury damage in 13-mo-old male mice, despite a lack of Kcne4 expression in male mouse liver. Examining RISK/SAFE pathway induction, we found that Kcne4 deletion prevents the hepatic ERK1/2 phosphorylation response to IR injury. Conversely, in 13-mo-old female mice, Kcne4 deletion increased both baseline and post-IR GSK-3β inhibitory phosphorylation, and pharmacological GSK-3β inhibition was hepatoprotective. Finally, castration of male mice restored normal hepatic RISK/SAFE pathway responses in Kcne4-/- mice, eliminated Kcne4 deletion-dependent serum alanine aminotransferase elevation, and genotype independently augmented the hepatic post-IR GSK-3β phosphorylation response. These findings support a role for KCNE4 as a systemic modulator of IR injury response and uncover hormonally influenced, sex-specific, KCNE4-dependent and -independent RISK/SAFE pathway induction.
Collapse
Affiliation(s)
- Zhaoyang Hu
- Laboratory of Anesthesiology and Critical Care Medicine, Translational Neuroscience Center, West China Hospital, Sichuan University , Chengdu, Sichuan , China
| | - Thomas A Jepps
- Department of Biomedical Sciences, University of Copenhagen , Copenhagen , Denmark
| | - Leng Zhou
- Department of Anesthesiology, West China Hospital, Sichuan University , Chengdu, Sichuan , China
| | - Jin Liu
- Department of Anesthesiology, West China Hospital, Sichuan University , Chengdu, Sichuan , China
| | - Mufeng Li
- Laboratory of Anesthesiology and Critical Care Medicine, Translational Neuroscience Center, West China Hospital, Sichuan University , Chengdu, Sichuan , China
| | - Geoffrey W Abbott
- Bioelectricity Laboratory, Department of Physiology and Biophysics, School of Medicine, University of California , Irvine, California
| |
Collapse
|
9
|
David JP, Lisewski U, Crump SM, Jepps TA, Bocksteins E, Wilck N, Lossie J, Roepke TK, Schmitt N, Abbott GW. Deletion in mice of X-linked, Brugada syndrome- and atrial fibrillation-associated Kcne5 augments ventricular K V currents and predisposes to ventricular arrhythmia. FASEB J 2018; 33:2537-2552. [PMID: 30289750 DOI: 10.1096/fj.201800502r] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
KCNE5 is an X-linked gene encoding KCNE5, an ancillary subunit to voltage-gated potassium (KV) channels. Human KCNE5 mutations are associated with atrial fibrillation (AF)- and Brugada syndrome (BrS)-induced cardiac arrhythmias that can arise from increased potassium current in cardiomyocytes. Seeking to establish underlying molecular mechanisms, we created and studied Kcne5 knockout ( Kcne5-/0) mice. Intracardiac ECG revealed that Kcne5 deletion caused ventricular premature beats, increased susceptibility to induction of polymorphic ventricular tachycardia (60 vs. 24% in Kcne5+/0 mice), and 10% shorter ventricular refractory period. Kcne5 deletion increased mean ventricular myocyte KV current density in the apex and also in the subpopulation of septal myocytes that lack fast transient outward current ( Ito,f). The current increases arose from an apex-specific increase in slow transient outward current-1 ( IKslow,1) (conducted by KV1.5) and Ito,f (conducted by KV4) and an increase in IKslow,2 (conducted by KV2.1) in both apex and septum. Kcne5 protein localized to the intercalated discs in ventricular myocytes, where KV2.1 was also detected in both Kcne5-/0 and Kcne5+/0 mice. In HL-1 cardiac cells and human embryonic kidney cells, KCNE5 and KV2.1 colocalized at the cell surface, but predominantly in intracellular vesicles, suggesting that Kcne5 deletion increases IK,slow2 by reducing KV2.1 intracellular sequestration. The human AF-associated mutation KCNE5-L65F negative shifted the voltage dependence of KV2.1-KCNE5 channels, increasing their maximum current density >2-fold, whereas BrS-associated KCNE5 mutations produced more subtle negative shifts in KV2.1 voltage dependence. The findings represent the first reported native role for Kcne5 and the first demonstrated Kcne regulation of KV2.1 in mouse heart. Increased KV current is a manifestation of KCNE5 disruption that is most likely common to both mouse and human hearts, providing a plausible mechanistic basis for human KCNE5-linked AF and BrS.-David, J.-P., Lisewski, U., Crump, S. M., Jepps, T. A., Bocksteins, E., Wilck, N., Lossie, J., Roepke, T. K., Schmitt, N., Abbott, G. W. Deletion in mice of X-linked, Brugada syndrome- and atrial fibrillation-associated Kcne5 augments ventricular KV currents and predisposes to ventricular arrhythmia.
Collapse
Affiliation(s)
- Jens-Peter David
- Danish National Research Foundation Centre for Cardiac Arrhythmia, University of Copenhagen, Copenhagen, Denmark.,Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ulrike Lisewski
- Medical Clinic and Polyclinic for Cardiology and Angiology, Charité Medical University of Berlin, Berlin, Germany.,Experimental and Clinical Research Center (ECRC), Charité Medical University of Berlin, Berlin, Germany
| | - Shawn M Crump
- Bioelectricity Laboratory, Department of Physiology and Biophysics, University of California, Irvine, Irvine, California, USA; and
| | - Thomas A Jepps
- Danish National Research Foundation Centre for Cardiac Arrhythmia, University of Copenhagen, Copenhagen, Denmark.,Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Elke Bocksteins
- Laboratory for Molecular Biophysics, Physiology, and Pharmacology, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Nicola Wilck
- Medical Clinic and Polyclinic for Cardiology and Angiology, Charité Medical University of Berlin, Berlin, Germany.,Experimental and Clinical Research Center (ECRC), Charité Medical University of Berlin, Berlin, Germany
| | - Janine Lossie
- Medical Clinic and Polyclinic for Cardiology and Angiology, Charité Medical University of Berlin, Berlin, Germany.,Experimental and Clinical Research Center (ECRC), Charité Medical University of Berlin, Berlin, Germany
| | - Torsten K Roepke
- Medical Clinic and Polyclinic for Cardiology and Angiology, Charité Medical University of Berlin, Berlin, Germany.,Experimental and Clinical Research Center (ECRC), Charité Medical University of Berlin, Berlin, Germany
| | - Nicole Schmitt
- Danish National Research Foundation Centre for Cardiac Arrhythmia, University of Copenhagen, Copenhagen, Denmark.,Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Geoffrey W Abbott
- Bioelectricity Laboratory, Department of Physiology and Biophysics, University of California, Irvine, Irvine, California, USA; and
| |
Collapse
|
10
|
Crooks DR, Maio N, Lane AN, Jarnik M, Higashi RM, Haller RG, Yang Y, Fan TWM, Linehan WM, Rouault TA. Acute loss of iron-sulfur clusters results in metabolic reprogramming and generation of lipid droplets in mammalian cells. J Biol Chem 2018. [PMID: 29523684 DOI: 10.1074/jbc.ra118.001885] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Iron-sulfur (Fe-S) clusters are ancient cofactors in cells and participate in diverse biochemical functions, including electron transfer and enzymatic catalysis. Although cell lines derived from individuals carrying mutations in the Fe-S cluster biogenesis pathway or siRNA-mediated knockdown of the Fe-S assembly components provide excellent models for investigating Fe-S cluster formation in mammalian cells, these experimental strategies focus on the consequences of prolonged impairment of Fe-S assembly. Here, we constructed and expressed dominant-negative variants of the primary Fe-S biogenesis scaffold protein iron-sulfur cluster assembly enzyme 2 (ISCU2) in human HEK293 cells. This approach enabled us to study the early metabolic reprogramming associated with loss of Fe-S-containing proteins in several major cellular compartments. Using multiple metabolomics platforms, we observed a ∼12-fold increase in intracellular citrate content in Fe-S-deficient cells, a surge that was due to loss of aconitase activity. The excess citrate was generated from glucose-derived acetyl-CoA, and global analysis of cellular lipids revealed that fatty acid biosynthesis increased markedly relative to cellular proliferation rates in Fe-S-deficient cells. We also observed intracellular lipid droplet accumulation in both acutely Fe-S-deficient cells and iron-starved cells. We conclude that deficient Fe-S biogenesis and acute iron deficiency rapidly increase cellular citrate concentrations, leading to fatty acid synthesis and cytosolic lipid droplet formation. Our findings uncover a potential cause of cellular steatosis in nonadipose tissues.
Collapse
Affiliation(s)
- Daniel R Crooks
- Urologic Oncology Branch, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20892
| | - Nunziata Maio
- Section on Human Iron Metabolism, National Institutes of Health, Bethesda, Maryland 20892
| | - Andrew N Lane
- Center for Environmental and Systems Biochemistry, Department of Toxicology and Cancer Biology, and Markey Cancer Center, University of Kentucky, Lexington, Kentucky 40536
| | - Michal Jarnik
- Section on Cell Biology and Metabolism, Eunice Kennedy Shriver NICHD, National Institutes of Health, Bethesda, Maryland 20892
| | - Richard M Higashi
- Center for Environmental and Systems Biochemistry, Department of Toxicology and Cancer Biology, and Markey Cancer Center, University of Kentucky, Lexington, Kentucky 40536
| | - Ronald G Haller
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, Texas 75390; Veterans Affairs North Texas Medical Center, Dallas, Texas 75216; Neuromuscular Center, Institute for Exercise and Environmental Medicine, Dallas, Texas 75231
| | - Ye Yang
- Urologic Oncology Branch, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20892
| | - Teresa W-M Fan
- Center for Environmental and Systems Biochemistry, Department of Toxicology and Cancer Biology, and Markey Cancer Center, University of Kentucky, Lexington, Kentucky 40536
| | - W Marston Linehan
- Urologic Oncology Branch, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20892
| | - Tracey A Rouault
- Section on Human Iron Metabolism, National Institutes of Health, Bethesda, Maryland 20892.
| |
Collapse
|
11
|
Hu Z, Chen M, Zhang P, Liu J, Abbott GW. Remote ischemic preconditioning differentially attenuates post-ischemic cardiac arrhythmia in streptozotocin-induced diabetic versus nondiabetic rats. Cardiovasc Diabetol 2017; 16:57. [PMID: 28446231 PMCID: PMC5406986 DOI: 10.1186/s12933-017-0537-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 04/19/2017] [Indexed: 02/05/2023] Open
Abstract
Background Sudden cardiac death (SCD), a leading cause of global mortality, most commonly arises from a substrate of cardiac ischemia, but requires an additional trigger. Diabetes mellitus (DM) predisposes to SCD even after adjusting for other DM-linked cardiovascular pathology such as coronary artery disease. We previously showed that remote liver ischemia preconditioning (RLIPC) is highly protective against cardiac ischemia reperfusion injury (IRI) linked ventricular arrhythmias and myocardial infarction, via induction of the cardioprotective RISK pathway, and specifically, inhibitory phosphorylation of GSK-3β (Ser 9). Methods We evaluated the impact of acute streptozotocin-induced DM on coronary artery ligation IRI-linked ventricular arrhythmogenesis and RLIPC therapy in rats. Results Post-IRI arrhythmia induction was similar in nondiabetic and DM rats, but, unexpectedly, DM rats exhibited lower incidence of SCD during reperfusion (41 vs. 100%), suggesting uncontrolled hyperglycemia does not acutely predispose to SCD. RLIPC was highly effective in both nondiabetic and DM rats at reducing incidence and duration of, and increasing latency to, all classes of ventricular tachyarrhythmias. In contrast, atrioventricular block (AVB) was highly responsive to RLIPC in nondiabetic rats (incidence reduced from 72 to 18%) but unresponsive in DM rats. RISK pathway induction was similar in nondiabetic and DM rats, thus not explaining the DM-specific resistance of AVB to therapy. Conclusions Our findings uncover important acute DM-specific differences in responsiveness to remote preconditioning for ventricular tachyarrhythmias versus AVB, which may have clinical significance given that AVB is a malignant arrhythmia twofold more common in human diabetics than nondiabetics, and correlated to plasma glucose levels >10 mmol/L.
Collapse
Affiliation(s)
- Zhaoyang Hu
- Laboratory of Anesthesiology & Critical Care Medicine, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Mou Chen
- Laboratory of Anesthesiology & Critical Care Medicine, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ping Zhang
- Laboratory of Anesthesiology & Critical Care Medicine, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jin Liu
- Laboratory of Anesthesiology & Critical Care Medicine, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Geoffrey W Abbott
- Bioelectricity Laboratory, Dept. of Pharmacology and Dept. of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, USA.
| |
Collapse
|
12
|
Regulation of human cardiac potassium channels by full-length KCNE3 and KCNE4. Sci Rep 2016; 6:38412. [PMID: 27922120 PMCID: PMC5138848 DOI: 10.1038/srep38412] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 11/09/2016] [Indexed: 12/23/2022] Open
Abstract
Voltage-gated potassium (Kv) channels comprise pore-forming α subunits and a multiplicity of regulatory proteins, including the cardiac-expressed and cardiac arrhythmia-linked transmembrane KCNE subunits. After recently uncovering novel, N-terminally extended (L) KCNE3 and KCNE4 isoforms and detecting their transcripts in human atrium, reported here are their functional effects on human cardiac Kv channel α subunits expressed in Xenopus laevis oocytes. As previously reported for short isoforms KCNE3S and KCNE4S, KCNE3L inhibited hERG; KCNE4L inhibited Kv1.1; neither form regulated the HCN1 pacemaker channel. Unlike KCNE4S, KCNE4L was a potent inhibitor of Kv4.2 and Kv4.3; co-expression of cytosolic β subunit KChIP2, which regulates Kv4 channels in cardiac myocytes, partially relieved Kv4.3 but not Kv4.2 inhibition. Inhibition of Kv4.2 and Kv4.3 by KCNE3L was weaker, and its inhibition of Kv4.2 abolished by KChIP2. KCNE3L and KCNE4L also exhibited subunit-specific effects on Kv4 channel complex inactivation kinetics, voltage dependence and recovery. Further supporting the potential physiological significance of the robust functional effects of KCNE4L on Kv4 channels, KCNE4L protein was detected in human atrium, where it co-localized with Kv4.3. The findings establish functional effects of novel human cardiac-expressed KCNE isoforms and further contribute to our understanding of the potential mechanisms influencing cardiomyocyte repolarization.
Collapse
|