1
|
Scott R, Lyburn I, Cornford E, Bouzy P, Stone N, Greenwood C, Bouybayoune I, Pinder S, Rogers K. Breast calcification micromorphology classification. Br J Radiol 2022; 95:20220485. [PMID: 35819921 PMCID: PMC9793474 DOI: 10.1259/bjr.20220485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
OBJECTIVES The importance of consistent terminology in describing the appearance of breast calcifications in mammography is well recognised. Imaging of calcifications using electron microscopy is a globally growing field of research. We therefore suggest that the time is ripe to develop a lexicon of terms for classifying the micromorphology of breast calcifications. METHODS Calcifications within a wide range of histological sections of breast tissue, both benign and malignant, were imaged by Scanning Electron Microscopy (SEM). These images were examined, and the micromorphology of calcifications present was grouped to create a classification system. RESULTS Based on the appearance of the calcifications observed, we propose five main categories for classification of the micromorphology of breast calcifications, namely, Dense Homogenous, Punctulate, Banded, Spongy and Aggregate. CONCLUSIONS Use of the descriptive categories outlined here will help to ensure consistency and comparability of published observations on the micromorphology of breast calcifications. ADVANCES IN KNOWLEDGE This is the first time a lexicon and classification system has been proposed for the micromorphology of breast calcifications, as observed by scanning electron microscopy of histological sections. This will facilitate comparability of observed relationships between micromorphology, mammographic appearance, chemistry and pathology.
Collapse
Affiliation(s)
- Robert Scott
- Cranfield Forensic Institute, Cranfield University, Swindon, United Kingdom
| | - Iain Lyburn
- Gloucestershire Hospitals NHS Foundation Trust, Cheltenham, United Kingdom
| | - Eleanor Cornford
- Gloucestershire Hospitals NHS Foundation Trust, Cheltenham, United Kingdom
| | - Pascaline Bouzy
- School of Physics and Astronomy, University of Exeter, Exeter, United Kingdom
| | - Nicholas Stone
- School of Physics and Astronomy, University of Exeter, Exeter, United Kingdom
| | - Charlene Greenwood
- School of Chemical and Physical Sciences, Keele University, Staffordshire, United Kingdom
| | - Ihsanne Bouybayoune
- School of Cancer and Pharmaceutical Sciences, King’s College London, London, United Kingdom
| | - Sarah Pinder
- School of Cancer and Pharmaceutical Sciences, King’s College London, London, United Kingdom
| | - Keith Rogers
- Cranfield Forensic Institute, Cranfield University, Swindon, United Kingdom
| |
Collapse
|
2
|
Bazin D, Bouderlique E, Daudon M, Frochot V, Haymann JP, Letavernier E, Tielens F, Weil R. Scanning electron microscopy—a powerful imaging technique for the clinician. CR CHIM 2022. [DOI: 10.5802/crchim.101] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
3
|
Tintut Y, Honda HM, Demer LL. Biomolecules Orchestrating Cardiovascular Calcification. Biomolecules 2021; 11:biom11101482. [PMID: 34680115 PMCID: PMC8533507 DOI: 10.3390/biom11101482] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/28/2021] [Accepted: 10/03/2021] [Indexed: 01/12/2023] Open
Abstract
Vascular calcification, once considered a degenerative, end-stage, and inevitable condition, is now recognized as a complex process regulated in a manner similar to skeletal bone at the molecular and cellular levels. Since the initial discovery of bone morphogenetic protein in calcified human atherosclerotic lesions, decades of research have now led to the recognition that the regulatory mechanisms and the biomolecules that control cardiovascular calcification overlap with those controlling skeletal mineralization. In this review, we focus on key biomolecules driving the ectopic calcification in the circulation and their regulation by metabolic, hormonal, and inflammatory stimuli. Although calcium deposits in the vessel wall introduce rupture stress at their edges facing applied tensile stress, they simultaneously reduce rupture stress at the orthogonal edges, leaving the net risk of plaque rupture and consequent cardiac events depending on local material strength. A clinically important consequence of the shared mechanisms between the vascular and bone tissues is that therapeutic agents designed to inhibit vascular calcification may adversely affect skeletal mineralization and vice versa. Thus, it is essential to consider both systems when developing therapeutic strategies.
Collapse
Affiliation(s)
- Yin Tintut
- Department of Medicine, University of California-Los Angeles, Los Angeles, CA 90095, USA; (Y.T.); (H.M.H.)
- Department of Physiology, University of California-Los Angeles, Los Angeles, CA 90095, USA
- Department of Orthopaedic Surgery, University of California-Los Angeles, Los Angeles, CA 90095, USA
- Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA
| | - Henry M. Honda
- Department of Medicine, University of California-Los Angeles, Los Angeles, CA 90095, USA; (Y.T.); (H.M.H.)
| | - Linda L. Demer
- Department of Medicine, University of California-Los Angeles, Los Angeles, CA 90095, USA; (Y.T.); (H.M.H.)
- Department of Physiology, University of California-Los Angeles, Los Angeles, CA 90095, USA
- Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA
- Department of Bioengineering, University of California-Los Angeles, Los Angeles, CA 90095, USA
- The David Geffen School of Medicine, University of California-Los Angeles, 10833 Le Conte Ave, Los Angeles, CA 90095, USA
- Correspondence: ; Tel.: +1-(310)-206-2677
| |
Collapse
|
4
|
Magnesium whitlockite - omnipresent in pathological mineralisation of soft tissues but not a significant inorganic constituent of bone. Acta Biomater 2021; 125:72-82. [PMID: 33610767 DOI: 10.1016/j.actbio.2021.02.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 01/26/2021] [Accepted: 02/12/2021] [Indexed: 01/03/2023]
Abstract
Whitlockite is a calcium phosphate that was first identified in minerals collected from the Palermo Quarry, New Hampshire. The terms magnesium whitlockite [Mg-whitlockite; Ca18Mg2(HPO4)2(PO4)12] and beta-tricalcium phosphate [β-TCP; β-Ca3(PO4)2] are often used interchangeably since Mg-whitlockite is not easily distinguished from β-Ca3(PO4)2 by powder X-ray diffraction although their crystalline structures differ significantly. Being both osteoconductive and bioresorbable, Mg-whitlockite is pursued as a synthetic bone graft substitute. In recent years, advances in development of synthetic Mg-whitlockite have been accompanied by claims that Mg-whitlockite is the second most abundant inorganic constituent of bone, occupying as much as 20-35 wt% of the inorganic fraction. To find evidence in support of this notion, this review presents an exhaustive summary of Mg-whitlockite identification in biological tissues. Mg-whitlockite is mainly found in association with pathological mineralisation of various soft tissues and dental calculus, and occasionally with enamel and dentine. With the exception of high-temperature treated tumoural calcified deposits around interphalangeal and metacarpal joints and rhomboidal Mg-whitlockite crystals in post-apoptotic osteocyte lacunae in human alveolar bone, this unusual mineral has never been detected in the extracellular matrix of mammalian bone. Characterisation techniques capable of unequivocally distinguishing between different calcium phosphate phases, such as high-resolution imaging, crystallography, and/or spectroscopy have exclusively identified bone mineral as poorly crystalline, ion-substituted, carbonated apatite. The idea that Mg-whitlockite is a significant constituent of bone mineral remains unsubstantiated. Contrary to claims that such biomaterials represent a bioinspired/biomimetic approach to bone repair, Mg-whitlockite remains, exclusively, a pathological biomineral. STATEMENT OF SIGNIFICANCE: Magnesium whitlockite (Mg-whitlockite) is a unique calcium phosphate that typically features in pathological calcification of soft tissues; however, an alarming trend emerging in the synthetic bioceramics community claims that Mg-whitlockite occupies 20-35 wt% of bone mineral and therefore synthetic Mg-whitlockite represents a biomimetic approach towards bone regeneration. By providing an overview of Mg-whitlockite detection in biological tissues and scrutinising a diverse cross-section of literature relevant to bone composition analysis, this review concludes that Mg-whitlockite is exclusively a pathological biomineral, and having never been reported in bone extracellular matrix, Mg-whitlockite does not constitute a biomimetic strategy for bone repair.
Collapse
|
5
|
Li Y, Wang C, Lu A, Li K, Cheng X, Yang C, Li Y, Li Y, Ding H. A Comparative Study of Pathological Nanomineral Aggregates with Distinct Morphology in Human Aortic Atherosclerotic Plaques. JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY 2021; 21:547-554. [PMID: 33213653 DOI: 10.1166/jnn.2021.18449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Calcification exists in atherosclerotic plaques in the form of nanomineral aggregates and is closely related to the development of atherosclerosis. Spheroidal and massive calcification are two major types of calcification found in atherosclerotic tissue. However, the exact difference between these two types of calcification is still not clear. Samples composed entirely of spheroidal calcifications and massive calcifications were isolated from aortic atherosclerotic plaques and tested using both bulk and microscopic analysis techniques. Scanning electron microscopy and transmission electron microscopy showed that spheroidal calcifications had a core-shell structure. Massive calcifications were composed of randomly arranged nanocrystals. Synchrotron radiation X-ray diffraction, Raman spectroscopy and selected area electron diffraction showed amorphous calcium phosphate, whitlockite and carbonate hydroxyapatite all existing in spheroidal calcification, while massive calcification only consisted of carbonate hydroxyapatite. We conclude that amorphous calcium phosphate may act as a precursor phase of spheroidal calcifications that eventually transforms into a crystalline phase, while whitlockite in lesions could aggravate the progression of atherosclerosis.
Collapse
Affiliation(s)
- Yuan Li
- The Key Laboratory of Orogenic Belts and Crustal Evolution, Beijing Key Laboratory of Mineral Environmental Function, School of Earth and Space Sciences, Peking University, Beijing 100871, PR China
| | - Changqiu Wang
- The Key Laboratory of Orogenic Belts and Crustal Evolution, Beijing Key Laboratory of Mineral Environmental Function, School of Earth and Space Sciences, Peking University, Beijing 100871, PR China
| | - Anhuai Lu
- The Key Laboratory of Orogenic Belts and Crustal Evolution, Beijing Key Laboratory of Mineral Environmental Function, School of Earth and Space Sciences, Peking University, Beijing 100871, PR China
| | - Kang Li
- Department of Cardiology, Beijing Hospital, Beijing 100730, China
| | - Xiao Cheng
- The Key Laboratory of Orogenic Belts and Crustal Evolution, Beijing Key Laboratory of Mineral Environmental Function, School of Earth and Space Sciences, Peking University, Beijing 100871, PR China
| | - Chongqing Yang
- Department of Pathology, Beijing Hospital, Beijing 100730, China
| | - Yanzhang Li
- The Key Laboratory of Orogenic Belts and Crustal Evolution, Beijing Key Laboratory of Mineral Environmental Function, School of Earth and Space Sciences, Peking University, Beijing 100871, PR China
| | - Yan Li
- The Key Laboratory of Orogenic Belts and Crustal Evolution, Beijing Key Laboratory of Mineral Environmental Function, School of Earth and Space Sciences, Peking University, Beijing 100871, PR China
| | - Hongrui Ding
- The Key Laboratory of Orogenic Belts and Crustal Evolution, Beijing Key Laboratory of Mineral Environmental Function, School of Earth and Space Sciences, Peking University, Beijing 100871, PR China
| |
Collapse
|
6
|
Thrivikraman G, Johnson SL, Syedain ZH, Hill RC, Hansen KC, Lee HS, Tranquillo RT. Biologically-engineered mechanical model of a calcified artery. Acta Biomater 2020; 110:164-174. [PMID: 32305446 DOI: 10.1016/j.actbio.2020.04.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 03/27/2020] [Accepted: 04/08/2020] [Indexed: 12/22/2022]
Abstract
Vascular calcification is a commonly occurring pathological process and is recognized as an independent prognostic marker for cardiovascular morbidity and mortality. Recent progress in developing novel therapies to modify vascular calcification is critically hampered due to the lack of reliable in vitro experimental models that recapitulate the structural and mechanical attributes of calcified arteries. In this study, we show the ability to model the behavior of diffuse vascular calcification in vitro using biologically-engineered grafts approximating the composition, structure, and mechanical properties of arteries. Transmural calcification was achieved by exposing the acellular grafts of collagenous ECM to complete medium containing elevated Calcium (Ca) and Phosphate (P) concentrations. It was found that increasing the serum concentration from 2% to 10% increased the extent and degree of calcification based on histochemical, ultrastructural, chemical and thermal analyses. The presence of variably-sized spherical calcific deposits within the matrix further confirmed its morphological similarity to pathologic calcification. Mechanical testing demonstrated up to a 16-fold decrease in compliance due to the calcification, consistent with prior reports for calcified arteries. The model developed thus has potential to improve the design and development of interventional devices and therapies for the diagnosis and treatment of arterial calcification. STATEMENT OF SIGNIFICANCE: The presence of extensive vascular calcification makes angiographic/interventional procedures difficult due to reduced arterial compliance. Current attempts to develop safe and effective non-surgical adjunctive techniques to treat calcified arteries are largely limited by the lack of a physiologically relevant testing platform that mimics the structural and mechanical features of vascular calcification. Herein, we developed an off-the-shelf calcified artery model, with the goal to accelerate the pre-clinical development of novel therapies for the management of arterial calcification. To the extent of our knowledge, this is the first report of an in vitro tissue-engineered model of diffuse arterial calcification.
Collapse
|
7
|
Anthis AHC, Tsolaki E, Didierlaurent L, Staubli S, Zboray R, Neels A, Dietrich D, Manser P, Desbiolles LM, Leschka S, Wildermuth S, Lehner S, Chavatte-Palmer P, Jochum W, Wick P, Dommann A, Bürki-Turnherr T, Fischer T, Hornung R, Bertazzo S, Herrmann IK. Nano-analytical characterization of endogenous minerals in healthy placental tissue: mineral distribution, composition and ultrastructure. Analyst 2020; 144:6850-6857. [PMID: 31591608 DOI: 10.1039/c9an01312a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Despite its crucial role, the placenta is the least understood human organ. Recent clinical studies indicate a direct association between placental calcification and maternal and offspring health. This study reveals distinct characteristics of minerals formed during gestational ageing using cutting-edge nano-analytical characterization and paves the way for investigations focused on the identification of potential markers for disease risks in a clinical setting based on atypical placental mineral fingerprints.
Collapse
Affiliation(s)
- Alexandre H C Anthis
- Laboratory for Particles Biology Interactions, Department Materials Meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, CH-9014, St Gallen, Switzerland.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Shah FA, Ruscsák K, Palmquist A. 50 years of scanning electron microscopy of bone-a comprehensive overview of the important discoveries made and insights gained into bone material properties in health, disease, and taphonomy. Bone Res 2019; 7:15. [PMID: 31123620 PMCID: PMC6531483 DOI: 10.1038/s41413-019-0053-z] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 04/09/2019] [Accepted: 04/11/2019] [Indexed: 02/06/2023] Open
Abstract
Bone is an architecturally complex system that constantly undergoes structural and functional optimisation through renewal and repair. The scanning electron microscope (SEM) is among the most frequently used instruments for examining bone. It offers the key advantage of very high spatial resolution coupled with a large depth of field and wide field of view. Interactions between incident electrons and atoms on the sample surface generate backscattered electrons, secondary electrons, and various other signals including X-rays that relay compositional and topographical information. Through selective removal or preservation of specific tissue components (organic, inorganic, cellular, vascular), their individual contribution(s) to the overall functional competence can be elucidated. With few restrictions on sample geometry and a variety of applicable sample-processing routes, a given sample may be conveniently adapted for multiple analytical methods. While a conventional SEM operates at high vacuum conditions that demand clean, dry, and electrically conductive samples, non-conductive materials (e.g., bone) can be imaged without significant modification from the natural state using an environmental scanning electron microscope. This review highlights important insights gained into bone microstructure and pathophysiology, bone response to implanted biomaterials, elemental analysis, SEM in paleoarchaeology, 3D imaging using focused ion beam techniques, correlative microscopy and in situ experiments. The capacity to image seamlessly across multiple length scales within the meso-micro-nano-continuum, the SEM lends itself to many unique and diverse applications, which attest to the versatility and user-friendly nature of this instrument for studying bone. Significant technological developments are anticipated for analysing bone using the SEM.
Collapse
Affiliation(s)
- Furqan A. Shah
- Department of Biomaterials, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Krisztina Ruscsák
- Department of Biomaterials, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anders Palmquist
- Department of Biomaterials, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
9
|
Biehler‐Gomez L, Maderna E, Brescia G, Caruso V, Rizzi A, Cattaneo C. Distinguishing Atherosclerotic Calcifications in Dry Bone: Implications for Forensic Identification. J Forensic Sci 2018; 64:839-844. [DOI: 10.1111/1556-4029.13948] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 10/09/2018] [Accepted: 10/15/2018] [Indexed: 11/26/2022]
Affiliation(s)
- Lucie Biehler‐Gomez
- LABANOF, Laboratorio Di Antropologia E Odontologia Forense Sezione Di Medicina Legale Dipartimento Di Scienze Biomediche per La Salute Università Degli Studi Di Milano 20133 Milan Italy
| | - Emanuela Maderna
- LABANOF, Laboratorio Di Antropologia E Odontologia Forense Sezione Di Medicina Legale Dipartimento Di Scienze Biomediche per La Salute Università Degli Studi Di Milano 20133 Milan Italy
| | - Gloria Brescia
- LABANOF, Laboratorio Di Antropologia E Odontologia Forense Sezione Di Medicina Legale Dipartimento Di Scienze Biomediche per La Salute Università Degli Studi Di Milano 20133 Milan Italy
| | - Valentina Caruso
- LABANOF, Laboratorio Di Antropologia E Odontologia Forense Sezione Di Medicina Legale Dipartimento Di Scienze Biomediche per La Salute Università Degli Studi Di Milano 20133 Milan Italy
| | - Agostino Rizzi
- Dipartimento di Geologia CNR Università degli Studi di Milano 20133 Milan Italy
| | - Cristina Cattaneo
- LABANOF, Laboratorio Di Antropologia E Odontologia Forense Sezione Di Medicina Legale Dipartimento Di Scienze Biomediche per La Salute Università Degli Studi Di Milano 20133 Milan Italy
| |
Collapse
|
10
|
Fialová D, Skoupý R, Drozdová E, Paták A, Piňos J, Šín L, Beňuš R, Klíma B. The Application of Scanning Electron Microscopy with Energy-Dispersive X-Ray Spectroscopy (SEM-EDX) in Ancient Dental Calculus for the Reconstruction of Human Habits. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2017; 23:1207-1213. [PMID: 29151368 DOI: 10.1017/s1431927617012661] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The great potential of scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDX) is in detection of unusual chemical elements included in ancient human dental calculus to verify hypotheses about life and burial habits of historic populations and individuals. Elemental spectra were performed from archeological samples of three chosen individuals from different time periods. The unusual presence of magnesium, aluminum, and silicon in the first sample could confirm the hypothesis of high degree of dental abrasion caused by particles from grinding stones in flour. In the second sample, presence of copper could confirm that bronze jewelery could lie near the buried body. The elemental composition of the third sample with the presence of lead and copper confirms the origin of individual to Napoleonic Wars because the damage to his teeth could be explained by the systematic utilization of the teeth for the opening of paper cartridges (a charge with a dose of gunpowder and a bullet), which were used during the 18th and the 19th century AD. All these results contribute to the reconstruction of life (first and third individual) and burial (second individual) habits of historic populations and individuals.
Collapse
Affiliation(s)
- Dana Fialová
- 1Department of Experimental Biology, Faculty of Science,Masaryk University,Kamenice 5,625 00 Brno,Czech Republic
| | - Radim Skoupý
- 2Institute of Scientific Instruments of the CAS,Královopolská 147,612 64 Brno,Czech Republic
| | - Eva Drozdová
- 1Department of Experimental Biology, Faculty of Science,Masaryk University,Kamenice 5,625 00 Brno,Czech Republic
| | - Aleš Paták
- 2Institute of Scientific Instruments of the CAS,Královopolská 147,612 64 Brno,Czech Republic
| | - Jakub Piňos
- 2Institute of Scientific Instruments of the CAS,Královopolská 147,612 64 Brno,Czech Republic
| | - Lukáš Šín
- 3Archaeological Centre Olomouc,U Hradiska 6,779 00 Olomouc,Czech Republic
| | - Radoslav Beňuš
- 4Department of Anthropology, Faculty of Natural Sciences,Comenius University,Ilkovičova 6,842 15 Bratislava 4,Slovak Republic
| | - Bohuslav Klíma
- 5Department of History, Faculty of Education,Masaryk University,Poříčí 9,603 00 Brno,Czech Republic
| |
Collapse
|
11
|
Wagner D, Vogt S, Jamal FI, Guha S, Wenger C, Wessel J, Kissinger D, Pitschmann K, Schumann U, Schmidt B, Detert M. Application of microwave sensor technology in cardiovascular disease for plaque detection. CURRENT DIRECTIONS IN BIOMEDICAL ENGINEERING 2016. [DOI: 10.1515/cdbme-2016-0061] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
Arteriosclerosis and associated cardiovascular disease remains the leading cause of mortality. Improved methods for vascular plaque detection allow early diagnose and better therapeutic options. Present diagnostic tools require intense technical expenditure and diminish value of modern screening methods. Our group developed an microwave sensor for on-site detection of plaque formation in arterial vessels. The sensor is an oscillator working around 27 GHz which is coupled to a microstrip stub line. The final flexible polyimid interposer has a length of 38 cm, a width of 1.2 mm and a thickness of 200 μm. Because of its minimal size the interposer completed a catheter with a diameter of 8F ready for further clinical use in cardiology and heart surgery.
Collapse
Affiliation(s)
| | | | | | - Subhajit Guha
- IHP GmbH Innovations for High Performance Microelectronics
| | | | - Jan Wessel
- IHP GmbH Innovations for High Performance Microelectronics
| | | | | | | | | | | |
Collapse
|