1
|
Lee SH, Wang CY, Li IJ, Abe G, Ota KG. Exploring the origin of a unique mutant allele in twin-tail goldfish using CRISPR/Cas9 mutants. Sci Rep 2024; 14:8716. [PMID: 38622170 PMCID: PMC11018756 DOI: 10.1038/s41598-024-58448-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 03/29/2024] [Indexed: 04/17/2024] Open
Abstract
Artificial selection has been widely applied to genetically fix rare phenotypic features in ornamental domesticated animals. For many of these animals, the mutated loci and alleles underlying rare phenotypes are known. However, few studies have explored whether these rare genetic mutations might have been fixed due to competition among related mutated alleles or if the fixation occurred due to contingent stochastic events. Here, we performed genetic crossing with twin-tail ornamental goldfish and CRISPR/Cas9-mutated goldfish to investigate why only a single mutated allele-chdS with a E127X stop codon (also called chdAE127X)-gives rise to the twin-tail phenotype in the modern domesticated goldfish population. Two closely related chdS mutants were generated with CRISPR/Cas9 and compared with the E127X allele in F2 and F3 generations. Both of the CRISPR/Cas9-generated alleles were equivalent to the E127X allele in terms of penetrance/expressivity of the twin-tail phenotype and viability of carriers. These findings indicate that multiple truncating mutations could have produced viable twin-tail goldfish. Therefore, the absence of polymorphic alleles for the twin-tail phenotype in modern goldfish likely stems from stochastic elimination or a lack of competing alleles in the common ancestor. Our study is the first experimental comparison of a singular domestication-derived allele with CRISPR/Cas9-generated alleles to understand how genetic fixation of a unique genotype and phenotype may have occurred. Thus, our work may provide a conceptual framework for future investigations of rare evolutionary events in domesticated animals.
Collapse
Affiliation(s)
- Shu-Hua Lee
- Laboratory of Aquatic Zoology, Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, Yilan, 26242, Taiwan
| | - Chen-Yi Wang
- Laboratory of Aquatic Zoology, Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, Yilan, 26242, Taiwan
| | - Ing-Jia Li
- Laboratory of Aquatic Zoology, Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, Yilan, 26242, Taiwan
| | - Gembu Abe
- Laboratory of Aquatic Zoology, Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, Yilan, 26242, Taiwan
- Division of Developmental Biology, Department of Functional Morphology, Faculty of Medicine, School of Life Science, Tottori University, Nishi-cho 86, Yonago, 683-8503, Japan
| | - Kinya G Ota
- Laboratory of Aquatic Zoology, Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, Yilan, 26242, Taiwan.
| |
Collapse
|
2
|
Li J, Wu S, Zhang K, Sun X, Lin W, Wang C, Lin S. Clustered Regularly Interspaced Short Palindromic Repeat/CRISPR-Associated Protein and Its Utility All at Sea: Status, Challenges, and Prospects. Microorganisms 2024; 12:118. [PMID: 38257946 PMCID: PMC10820777 DOI: 10.3390/microorganisms12010118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/02/2024] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
Initially discovered over 35 years ago in the bacterium Escherichia coli as a defense system against invasion of viral (or other exogenous) DNA into the genome, CRISPR/Cas has ushered in a new era of functional genetics and served as a versatile genetic tool in all branches of life science. CRISPR/Cas has revolutionized the methodology of gene knockout with simplicity and rapidity, but it is also powerful for gene knock-in and gene modification. In the field of marine biology and ecology, this tool has been instrumental in the functional characterization of 'dark' genes and the documentation of the functional differentiation of gene paralogs. Powerful as it is, challenges exist that have hindered the advances in functional genetics in some important lineages. This review examines the status of applications of CRISPR/Cas in marine research and assesses the prospect of quickly expanding the deployment of this powerful tool to address the myriad fundamental marine biology and biological oceanography questions.
Collapse
Affiliation(s)
- Jiashun Li
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361101, China
| | - Shuaishuai Wu
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361101, China
| | - Kaidian Zhang
- State Key Laboratory of Marine Resource Utilization in the South China Sea, School of Marine Biology and Fisheries, Hainan University, Haikou 570203, China
| | - Xueqiong Sun
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361101, China
| | - Wenwen Lin
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361101, China
| | - Cong Wang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361101, China
| | - Senjie Lin
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361101, China
- Department of Marine Sciences, University of Connecticut, Groton, CT 06340, USA
| |
Collapse
|
3
|
Liu J, Li W, Jin X, Lin F, Han J, Zhang Y. Optimal tagging strategies for illuminating expression profiles of genes with different abundance in zebrafish. Commun Biol 2023; 6:1300. [PMID: 38129658 PMCID: PMC10739737 DOI: 10.1038/s42003-023-05686-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 12/07/2023] [Indexed: 12/23/2023] Open
Abstract
CRISPR-mediated knock-in (KI) technology opens a new era of fluorescent-protein labeling in zebrafish, a preferred model organism for in vivo imaging. We described here an optimized zebrafish gene-tagging strategy, which enables easy and high-efficiency KI, ensures high odds of obtaining seamless KI germlines and is suitable for wide applications. Plasmid donors for 3'-labeling were optimized by shortening the microhomologous arms and by reducing the number and reversing the sequence of the consensus Cas9/sgRNA binding sites. To allow for scar-less KI across the genome, linearized dsDNA donors with 5'-chemical modifications were generated and successfully incorporated into our method. To refine the germline screen workflow and expedite the screen process, we combined fluorescence enrichment and caudal-fin junction-PCR. Furthermore, to trace proteins expressed at a low abundance, we developed a fluorescent signal amplifier using the transcriptional activation strategy. Together, our strategies enable efficient gene-tagging and sensitive expression detection for almost every gene in zebrafish.
Collapse
Affiliation(s)
- Jiannan Liu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, 361102, Xiamen, Fujian, China
| | - Wenyuan Li
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, 361102, Xiamen, Fujian, China
| | - Xuepu Jin
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, 361102, Xiamen, Fujian, China
| | - Fanjia Lin
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, 361102, Xiamen, Fujian, China
| | - Jiahuai Han
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, 361102, Xiamen, Fujian, China.
- Laboratory Animal Center, Xiamen University, 361102, Xiamen, Fujian, China.
- Research Unit of Cellular Stress of CAMS, Cancer Research Center of Xiamen University, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, 361102, Xiamen, Fujian, China.
| | - Yingying Zhang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, 361102, Xiamen, Fujian, China.
| |
Collapse
|
4
|
Wang H, He J, Han X, Wu X, Ye X, Lv W, Zu Y. hoxa1a-Null Zebrafish as a Model for Studying HOXA1-Associated Heart Malformation in Bosley-Salih-Alorainy Syndrome. BIOLOGY 2023; 12:899. [PMID: 37508332 PMCID: PMC10376578 DOI: 10.3390/biology12070899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/23/2023] [Accepted: 05/30/2023] [Indexed: 07/30/2023]
Abstract
Mutations in HOXA1 can lead to diseases such as Bosley-Salih-Alorainy syndrome, involving severe cardiovascular malformations. However, the role of HOXA1 in cardiac morphogenesis remains unclear. hoxa1a is a homologous gene to human HOXA1 in zebrafish. We used CRISPR to make hoxa1a-null zebrafish that exhibited multiple heart malformations. In situ hybridization and sections revealed the morphological changes in mutants: enlarged ventricle with thickened myocardium and increased trabeculae, intensified OFT and inadequate heart looping, with electrocardiography supporting these pathological changes. High-speed photography captured cardiac pumping and revealed a significant decrease in cardiac output. Furthermore, lacking hoxa1a led to posterior body abnormality that affected movement ability, corresponding with the motor development delay in patients. Upregulation of hox paralogues in hoxa1a-null fish implied a compensatory mechanism between hox genes. Accordingly, we successfully constructed a hoxa1a-null model with a cardiac disease pattern which occurred in human HOXA1-associated heart malformation. The study of hoxa1a in zebrafish can further promote the understanding of hox genes and related diseases.
Collapse
Affiliation(s)
- Hongjie Wang
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Jingwei He
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Xuemei Han
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Xiuzhi Wu
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Xuebin Ye
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
- Marine Biomedical Science and Technology Innovation Platform of Lin-gang Special Area, Shanghai 201306, China
| | - Wenchao Lv
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Yao Zu
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
- Marine Biomedical Science and Technology Innovation Platform of Lin-gang Special Area, Shanghai 201306, China
| |
Collapse
|
5
|
Song S, Du B, Chung-Davidson YW, Cui W, Li Y, Chen H, Huang R, Li W, Li F, Wang C, Ren J. Disruption of T-box transcription factor eomesa results in abnormal development of median fins in Oujiang color common carp Cyprinus carpio. PLoS One 2023; 18:e0281297. [PMID: 36862620 PMCID: PMC9980737 DOI: 10.1371/journal.pone.0281297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 01/19/2023] [Indexed: 03/03/2023] Open
Abstract
Median fins are thought to be ancestors of paired fins which in turn give rise to limbs in tetrapods. However, the developmental mechanisms of median fins remain largely unknown. Nonsense mutation of the T-box transcription factor eomesa in zebrafish results in a phenotype without dorsal fin. Compared to zebrafish, the common carp undergo an additional round of whole genome duplication, acquiring an extra copy of protein-coding genes. To verify the function of eomesa genes in common carp, we established a biallelic gene editing technology in this tetraploidy fish through simultaneous disruption of two homologous genes, eomesa1 and eomesa2. We targeted four sites located upstream or within the sequences encoding the T-box domain. Sanger sequencing data indicated the average knockout efficiency was around 40% at T1-T3 sites and 10% at T4 site in embryos at 24 hours post fertilization. The individual editing efficiency was high to about 80% at T1-T3 sites and low to 13.3% at T4 site in larvae at 7 days post fertilization. Among 145 mosaic F0 examined at four months old, three individuals (Mutant 1-3) showed varying degrees of maldevelopment in the dorsal fin and loss of anal fin. Genotyping showed the genomes of all three mutants were disrupted at T3 sites. The null mutation rates on the eomesa1 and eomesa2 loci were 0% and 60% in Mutant 1, 66.7% and 100% in Mutant 2, and 90% and 77.8% in Mutant 3, respectively. In conclusion, we demonstrated a role of eomesa in the formation and development of median fins in Oujiang color common carp and established an method that simultaneously disrupt two homologous genes with one gRNA, which would be useful in genome editing in other polyploidy fishes.
Collapse
Affiliation(s)
- Shiying Song
- Key Laboratory of Freshwater Aquatic Genetic Resources Certificated by the Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China
- Guizhou Key Laboratory of Agricultural Biotechnology, Guizhou Institute of Biotechnology, Guizhou Academy of Agricultural Sciences, Guiyang, China
| | - Bobo Du
- Key Laboratory of Freshwater Aquatic Genetic Resources Certificated by the Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China
| | - Yu-Wen Chung-Davidson
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI, United States of America
| | - Wenyao Cui
- Key Laboratory of Freshwater Aquatic Genetic Resources Certificated by the Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China
| | - Yaru Li
- Key Laboratory of Freshwater Aquatic Genetic Resources Certificated by the Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China
| | - Honglin Chen
- Key Laboratory of Freshwater Aquatic Genetic Resources Certificated by the Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China
| | - Rong Huang
- Guangdong Aquarium Association, Guangzhou, China
| | - Weiming Li
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI, United States of America
| | - Fei Li
- Key Laboratory of Freshwater Aquaculture Genetic and Breeding of Zhejiang Province, Zhejiang Institute of Freshwater Fisheries, Huzhou, China
| | - Chenghui Wang
- Key Laboratory of Freshwater Aquatic Genetic Resources Certificated by the Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China
| | - Jianfeng Ren
- Key Laboratory of Freshwater Aquatic Genetic Resources Certificated by the Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
6
|
Luo M, Wang J, Dong Z, Wang C, Lu G. CRISPR-Cas9 sgRNA design and outcome assessment: Bioinformatics tools and aquaculture applications. AQUACULTURE AND FISHERIES 2022. [DOI: 10.1016/j.aaf.2021.10.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
7
|
TALEN-Mediated Gene Editing of slc24a5 (Solute Carrier Family 24, Member 5) in Kawakawa, Euthynnus affinis. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2021. [DOI: 10.3390/jmse9121378] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Transcription activator-like effector (TALE) nucleases (TALENs) mediated gene editing methods are becoming popular and have revealed the staggering complexity of genome control during development. Here, we present a simple and efficient gene knockout using TALENs in kawakawa, Euthynnus affinis, using slc24a5. We examined slc24a5 gene expression and functional differences between two TALENs that hold the TALE scaffolds, +153/+47 and +136/+63 and target slc24a5. Developmental changes in slc24a5 transcripts were seen in early-stage embryos by real-time PCR; slc24a5 expression was first detected 48 h post fertilization (hpf), which increased dramatically at 72 hpf. Four TALENs, 47- and 63-type of two different target loci (A and B), respectively, were constructed using Platinum TALEN and evaluated in vitro by a single-strand annealing (SSA) assay. TALEN activities were further evaluated in vivo by injecting TALEN mRNAs in the two-cell stage of the zygote. Most of the TALEN-induced mutants showed mosaic patterns in the retinal pigment epithelium (RPE) and fewer melanin pigments on the body at 72 hpf and later when compared to the control, implying the gene’s association with melanin pigment formation. A heteroduplex mobility assay (HMA) and the genome sequence further confirmed the TALEN-induced mutations of substitution, insertion, and deletion at an endogenous locus.
Collapse
|
8
|
Generation of knock-in lampreys by CRISPR-Cas9-mediated genome engineering. Sci Rep 2021; 11:19836. [PMID: 34615907 PMCID: PMC8494898 DOI: 10.1038/s41598-021-99338-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 09/22/2021] [Indexed: 11/08/2022] Open
Abstract
The lamprey represents the oldest group of living vertebrates and has been a key organism in various research fields such as evolutionary developmental biology and neuroscience. However, no knock-in technique for this animal has been established yet, preventing application of advanced genetic techniques. Here, we report efficient generation of F0 knock-in lampreys by CRISPR-Cas9-mediated genome editing. A donor plasmid containing a heat-shock promoter was co-injected with a short guide RNA (sgRNA) for genome digestion, a sgRNA for donor plasmid digestion, and Cas9 mRNA. Targeting different genetic loci, we succeeded in generating knock-in lampreys expressing photoconvertible protein Dendra2 as well as those expressing EGFP. With its simplicity, design flexibility, and high efficiency, we propose that the present method has great versatility for various experimental uses in lamprey research and that it can also be applied to other “non-model” organisms.
Collapse
|
9
|
Chuang YF, Phipps AJ, Lin FL, Hecht V, Hewitt AW, Wang PY, Liu GS. Approach for in vivo delivery of CRISPR/Cas system: a recent update and future prospect. Cell Mol Life Sci 2021; 78:2683-2708. [PMID: 33388855 PMCID: PMC11072787 DOI: 10.1007/s00018-020-03725-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/19/2020] [Accepted: 11/26/2020] [Indexed: 12/14/2022]
Abstract
The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas) system provides a groundbreaking genetic technology that allows scientists to modify genes by targeting specific genomic sites. Due to the relative simplicity and versatility of the CRISPR/Cas system, it has been extensively applied in human genetic research as well as in agricultural applications, such as improving crops. Since the gene editing activity of the CRISPR/Cas system largely depends on the efficiency of introducing the system into cells or tissues, an efficient and specific delivery system is critical for applying CRISPR/Cas technology. However, there are still some hurdles remaining for the translatability of CRISPR/Cas system. In this review, we summarized the approaches used for the delivery of the CRISPR/Cas system in mammals, plants, and aquacultures. We further discussed the aspects of delivery that can be improved to elevate the potential for CRISPR/Cas translatability.
Collapse
Affiliation(s)
- Yu-Fan Chuang
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen University Town, Shenzhen, 518055, China
- Menzies Institute for Medical Research, University of Tasmania, 17 Liverpool Street, Hobart, TAS, 7000, Australia
| | - Andrew J Phipps
- Wicking Dementia Research and Education Centre, College of Health and Medicine, University of Tasmania, Hobart, TAS, Australia
| | - Fan-Li Lin
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen University Town, Shenzhen, 518055, China
- Menzies Institute for Medical Research, University of Tasmania, 17 Liverpool Street, Hobart, TAS, 7000, Australia
| | - Valerie Hecht
- School of Natural Sciences, University of Tasmania, Hobart, TAS, Australia
| | - Alex W Hewitt
- Menzies Institute for Medical Research, University of Tasmania, 17 Liverpool Street, Hobart, TAS, 7000, Australia
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC, Australia
- Ophthalmology, Department of Surgery, University of Melbourne, East Melbourne, VIC, Australia
| | - Peng-Yuan Wang
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen University Town, Shenzhen, 518055, China.
- Department of Chemistry and Biotechnology, Swinburne University of Technology, Hawthorn, VIC, Australia.
| | - Guei-Sheung Liu
- Menzies Institute for Medical Research, University of Tasmania, 17 Liverpool Street, Hobart, TAS, 7000, Australia.
- Ophthalmology, Department of Surgery, University of Melbourne, East Melbourne, VIC, Australia.
- Aier Eye Institute, Changsha, Hunan, China.
| |
Collapse
|
10
|
Generation of mouse conditional knockout alleles in one step using the i-GONAD method. Genome Res 2020; 31:121-130. [PMID: 33328166 PMCID: PMC7849380 DOI: 10.1101/gr.265439.120] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 11/16/2020] [Indexed: 12/12/2022]
Abstract
The Cre/loxP system is a powerful tool for gene function study in vivo. Regulated expression of Cre recombinase mediates precise deletion of genetic elements in a spatially– and temporally–controlled manner. Despite the robustness of this system, it requires a great amount of effort to create a conditional knockout model for each individual gene of interest where two loxP sites must be simultaneously inserted in cis. The current undertaking involves labor-intensive embryonic stem (ES) cell–based gene targeting and tedious micromanipulations of mouse embryos. The complexity of this workflow poses formidable technical challenges, thus limiting wider applications of conditional genetics. Here, we report an alternative approach to generate mouse loxP alleles by integrating a unique design of CRISPR donor with the new oviduct electroporation technique i-GONAD. Showing the potential and simplicity of this method, we created floxed alleles for five genes in one attempt with relatively low costs and a minimal equipment setup. In addition to the conditional alleles, constitutive knockout alleles were also obtained as byproducts of these experiments. Therefore, the wider applications of i-GONAD may promote gene function studies using novel murine models.
Collapse
|
11
|
Square TA, Jandzik D, Massey JL, Romášek M, Stein HP, Hansen AW, Purkayastha A, Cattell MV, Medeiros DM. Evolution of the endothelin pathway drove neural crest cell diversification. Nature 2020; 585:563-568. [PMID: 32939088 DOI: 10.1038/s41586-020-2720-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 06/24/2020] [Indexed: 12/13/2022]
Abstract
Neural crest cells (NCCs) are migratory, multipotent embryonic cells that are unique to vertebrates and form an array of clade-defining adult features. The evolution of NCCs has been linked to various genomic events, including the evolution of new gene-regulatory networks1,2, the de novo evolution of genes3 and the proliferation of paralogous genes during genome-wide duplication events4. However, conclusive functional evidence linking new and/or duplicated genes to NCC evolution is lacking. Endothelin ligands (Edns) and endothelin receptors (Ednrs) are unique to vertebrates3,5,6, and regulate multiple aspects of NCC development in jawed vertebrates7-10. Here, to test whether the evolution of Edn signalling was a driver of NCC evolution, we used CRISPR-Cas9 mutagenesis11 to disrupt edn, ednr and dlx genes in the sea lamprey, Petromyzon marinus. Lampreys are jawless fishes that last shared a common ancestor with modern jawed vertebrates around 500 million years ago12. Thus, comparisons between lampreys and gnathostomes can identify deeply conserved and evolutionarily flexible features of vertebrate development. Using the frog Xenopus laevis to expand gnathostome phylogenetic representation and facilitate side-by-side analyses, we identify ancient and lineage-specific roles for Edn signalling. These findings suggest that Edn signalling was activated in NCCs before duplication of the vertebrate genome. Then, after one or more genome-wide duplications in the vertebrate stem, paralogous Edn pathways functionally diverged, resulting in NCC subpopulations with different Edn signalling requirements. We posit that this new developmental modularity facilitated the independent evolution of NCC derivatives in stem vertebrates. Consistent with this, differences in Edn pathway targets are associated with differences in the oropharyngeal skeleton and autonomic nervous system of lampreys and modern gnathostomes. In summary, our work provides functional genetic evidence linking the origin and duplication of new vertebrate genes with the stepwise evolution of a defining vertebrate novelty.
Collapse
Affiliation(s)
- Tyler A Square
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA. .,Department of Molecular and Cellular Biology, University of California, Berkeley, CA, USA.
| | - David Jandzik
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA. .,Department of Zoology, Comenius University in Bratislava, Bratislava, Slovakia. .,Department of Zoology, Charles University in Prague, Prague, Czech Republic.
| | - James L Massey
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA
| | - Marek Romášek
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA.,Gymnázium Jiřího Wolkera, Prostějov, Czech Republic
| | - Haley P Stein
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA
| | - Andrew W Hansen
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA
| | - Amrita Purkayastha
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA
| | - Maria V Cattell
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA.,Department of Biology, Metropolitan State University, Denver, CO, USA
| | - Daniel M Medeiros
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA.
| |
Collapse
|
12
|
York JR, Yuan T, McCauley DW. Evolutionary and Developmental Associations of Neural Crest and Placodes in the Vertebrate Head: Insights From Jawless Vertebrates. Front Physiol 2020; 11:986. [PMID: 32903576 PMCID: PMC7438564 DOI: 10.3389/fphys.2020.00986] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 07/20/2020] [Indexed: 12/12/2022] Open
Abstract
Neural crest and placodes are key innovations of the vertebrate clade. These cells arise within the dorsal ectoderm of all vertebrate embryos and have the developmental potential to form many of the morphological novelties within the vertebrate head. Each cell population has its own distinct developmental features and generates unique cell types. However, it is essential that neural crest and placodes associate together throughout embryonic development to coordinate the emergence of several features in the head, including almost all of the cranial peripheral sensory nervous system and organs of special sense. Despite the significance of this developmental feat, its evolutionary origins have remained unclear, owing largely to the fact that there has been little comparative (evolutionary) work done on this topic between the jawed vertebrates and cyclostomes—the jawless lampreys and hagfishes. In this review, we briefly summarize the developmental mechanisms and genetics of neural crest and placodes in both jawed and jawless vertebrates. We then discuss recent studies on the role of neural crest and placodes—and their developmental association—in the head of lamprey embryos, and how comparisons with jawed vertebrates can provide insights into the causes and consequences of this event in early vertebrate evolution.
Collapse
Affiliation(s)
- Joshua R York
- Department of Biology, University of Oklahoma, Norman, OK, United States
| | - Tian Yuan
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - David W McCauley
- Department of Biology, University of Oklahoma, Norman, OK, United States
| |
Collapse
|
13
|
Yuan T, York JR, McCauley DW. Neural crest and placode roles in formation and patterning of cranial sensory ganglia in lamprey. Genesis 2020; 58:e23356. [PMID: 32049434 DOI: 10.1002/dvg.23356] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/30/2020] [Accepted: 01/31/2020] [Indexed: 11/07/2022]
Abstract
Vertebrates possess paired cranial sensory ganglia derived from two embryonic cell populations, neural crest and placodes. Cranial sensory ganglia arose prior to the divergence of jawed and jawless vertebrates, but the developmental mechanisms that facilitated their evolution are unknown. Using gene expression and cell lineage tracing experiments in embryos of the sea lamprey, Petromyzon marinus, we find that in the cranial ganglia we targeted, development consists of placode-derived neuron clusters in the core of ganglia, with neural crest cells mostly surrounding these neuronal clusters. To dissect functional roles of neural crest and placode cell associations in these developing cranial ganglia, we used CRISPR/Cas9 gene editing experiments to target genes critical for the development of each population. Genetic ablation of SoxE2 and FoxD-A in neural crest cells resulted in differentiated cranial sensory neurons with abnormal morphologies, whereas deletion of DlxB in cranial placodes resulted in near-total loss of cranial sensory neurons. Taken together, our cell-lineage, gene expression, and gene editing results suggest that cranial neural crest cells may not be required for cranial ganglia specification but are essential for shaping the morphology of these sensory structures. We propose that the association of neural crest and placodes in the head of early vertebrates was a key step in the organization of neurons and glia into paired sensory ganglia.
Collapse
Affiliation(s)
- Tian Yuan
- Department of Biology, University of Oklahoma, Norman, Oklahoma
| | - Joshua R York
- Department of Biology, University of Oklahoma, Norman, Oklahoma
| | | |
Collapse
|
14
|
York JR, McCauley DW. Functional genetic analysis in a jawless vertebrate, the sea lamprey: insights into the developmental evolution of early vertebrates. J Exp Biol 2020; 223:223/Suppl_1/jeb206433. [DOI: 10.1242/jeb.206433] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
ABSTRACT
Lampreys and hagfishes are the only surviving relicts of an ancient but ecologically dominant group of jawless fishes that evolved in the seas of the Cambrian era over half a billion years ago. Because of their phylogenetic position as the sister group to all other vertebrates (jawed vertebrates), comparisons of embryonic development between jawless and jawed vertebrates offers researchers in the field of evolutionary developmental biology the unique opportunity to address fundamental questions related to the nature of our earliest vertebrate ancestors. Here, we describe how genetic analysis of embryogenesis in the sea lamprey (Petromyzon marinus) has provided insight into the origin and evolution of developmental-genetic programs in vertebrates. We focus on recent work involving CRISPR/Cas9-mediated genome editing to study gene regulatory mechanisms involved in the development and evolution of neural crest cells and new cell types in the vertebrate nervous system, and transient transgenic assays that have been instrumental in dissecting the evolution of cis-regulatory control of gene expression in vertebrates. Finally, we discuss the broad potential for these functional genomic tools to address previously unanswerable questions related to the evolution of genomic regulatory mechanisms as well as issues related to invasive sea lamprey population control.
Collapse
Affiliation(s)
- Joshua R. York
- Department of Biology, University of Oklahoma, 730 Van Vleet Oval, Norman, OK 73019, USA
| | - David W. McCauley
- Department of Biology, University of Oklahoma, 730 Van Vleet Oval, Norman, OK 73019, USA
| |
Collapse
|
15
|
Li W, Zhang Y, Han B, Li L, Li M, Lu X, Chen C, Lu M, Zhang Y, Jia X, Zhu Z, Tong X, Zhang B. One-step efficient generation of dual-function conditional knockout and geno-tagging alleles in zebrafish. eLife 2019; 8:48081. [PMID: 31663848 PMCID: PMC6845224 DOI: 10.7554/elife.48081] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 10/30/2019] [Indexed: 12/14/2022] Open
Abstract
CRISPR/Cas systems are widely used to knock out genes by inducing indel mutations, which are prone to genetic compensation. Complex genome modifications such as knockin (KI) might bypass compensation, though difficult to practice due to low efficiency. Moreover, no ‘two-in-one’ KI strategy combining conditional knockout (CKO) with fluorescent gene-labeling or further allele-labeling has been reported. Here, we developed a dual-cassette-donor strategy and achieved one-step and efficient generation of dual-function KI alleles at tbx5a and kctd10 loci in zebrafish via targeted insertion. These alleles display fluorescent gene-tagging and CKO effects before and after Cre induction, respectively. By introducing a second fluorescent reporter, geno-tagging effects were achieved at tbx5a and sox10 loci, exhibiting CKO coupled with fluorescent reporter switch upon Cre induction, enabling tracing of three distinct genotypes. We found that LiCl purification of gRNA is critical for highly efficient KI, and preselection of founders allows the efficient germline recovery of KI events.
Collapse
Affiliation(s)
- Wenyuan Li
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, Peking University Genome Editing Research Center, College of Life Sciences, Peking University, Beijing, China
| | - Yage Zhang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, Peking University Genome Editing Research Center, College of Life Sciences, Peking University, Beijing, China
| | - Bingzhou Han
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, Peking University Genome Editing Research Center, College of Life Sciences, Peking University, Beijing, China
| | - Lianyan Li
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, Peking University Genome Editing Research Center, College of Life Sciences, Peking University, Beijing, China
| | - Muhang Li
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, Peking University Genome Editing Research Center, College of Life Sciences, Peking University, Beijing, China
| | - Xiaochan Lu
- Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Cheng Chen
- Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Mengjia Lu
- Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Yujie Zhang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, Peking University Genome Editing Research Center, College of Life Sciences, Peking University, Beijing, China
| | - Xuefeng Jia
- Gcrispr (Tianjin) Genetic Technology, Tianjin, China
| | - Zuoyan Zhu
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, Peking University Genome Editing Research Center, College of Life Sciences, Peking University, Beijing, China
| | - Xiangjun Tong
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, Peking University Genome Editing Research Center, College of Life Sciences, Peking University, Beijing, China
| | - Bo Zhang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, Peking University Genome Editing Research Center, College of Life Sciences, Peking University, Beijing, China
| |
Collapse
|
16
|
Li J, Cheng CHK. Evolution of gonadotropin signaling on gonad development: insights from gene knockout studies in zebrafish. Biol Reprod 2019; 99:686-694. [PMID: 29718109 DOI: 10.1093/biolre/ioy101] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 04/25/2018] [Indexed: 11/13/2022] Open
Abstract
Gonadal development is precisely regulated by the two gonadotropins luteinizing hormone (LH) and follicle-stimulating hormone (FSH). Much progress on understanding the functions of LH and FSH signaling on gonad development has been achieved in the past decades, mostly from studies in mammals, especially genetic studies in both mouse and human. The functions of both LH and FSH signaling in nonmammalian species are still largely unknown. In recent years, using zebrafish, a teleost phylogenetically distant from mammals, we and others have genetically analyzed the functions of gonadotropins and their receptors through gene knockout studies. In this review, we will summarize the pertinent findings and discuss how the actions of gonadotropin signaling on gonad development have evolved during evolution from fish to mammals.
Collapse
Affiliation(s)
- Jianzhen Li
- College of Life Sciences, Northwest Normal University, Lanzhou, China
| | - Christopher H K Cheng
- School of Biomedical Sciences, The Chinese University of Hong Kong-Shandong University Joint Laboratory on Reproductive Genetics, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| |
Collapse
|
17
|
Gratacap RL, Wargelius A, Edvardsen RB, Houston RD. Potential of Genome Editing to Improve Aquaculture Breeding and Production. Trends Genet 2019; 35:672-684. [PMID: 31331664 DOI: 10.1016/j.tig.2019.06.006] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 06/21/2019] [Accepted: 06/26/2019] [Indexed: 02/02/2023]
Abstract
Aquaculture is the fastest growing food production sector and is rapidly becoming the primary source of seafood for human diets. Selective breeding programs are enabling genetic improvement of production traits, such as disease resistance, but progress is limited by the heritability of the trait and generation interval of the species. New breeding technologies, such as genome editing using CRISPR/Cas9 have the potential to expedite sustainable genetic improvement in aquaculture. Genome editing can rapidly introduce favorable changes to the genome, such as fixing alleles at existing trait loci, creating de novo alleles, or introducing alleles from other strains or species. The high fecundity and external fertilization of most aquaculture species can facilitate genome editing for research and application at a scale that is not possible in farmed terrestrial animals.
Collapse
Affiliation(s)
- Remi L Gratacap
- The Roslin Institute, University of Edinburgh, Easter Bush Campus, Midlothian, EH25 9RG, UK
| | - Anna Wargelius
- Institute of Marine Research, PO Box 1870, Nordnes, NO-5817 Bergen, Norway
| | | | - Ross D Houston
- The Roslin Institute, University of Edinburgh, Easter Bush Campus, Midlothian, EH25 9RG, UK.
| |
Collapse
|
18
|
Dehler CE, Lester K, Della Pelle G, Jouneau L, Houel A, Collins C, Dovgan T, Machat R, Zou J, Boudinot P, Martin SAM, Collet B. Viral Resistance and IFN Signaling in STAT2 Knockout Fish Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2019; 203:465-475. [PMID: 31142600 PMCID: PMC6612602 DOI: 10.4049/jimmunol.1801376] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 04/30/2019] [Indexed: 01/17/2023]
Abstract
IFN belong to a group of cytokines specialized in the immunity to viruses. Upon viral infection, type I IFN is produced and alters the transcriptome of responding cells through induction of a set of IFN stimulated genes (ISGs) with regulatory or antiviral function, resulting in a cellular antiviral state. Fish genomes have both type I IFN and type II IFN (IFN-γ), but no type III (λ) IFN has been identified. Their receptors are not simple counterparts of the mammalian type I/II IFN receptors, because alternative chains are used in type I IFN receptors. The mechanisms of the downstream signaling remain partly undefined. In mammals, members of the signal transducer and activator of family of transcription factors are responsible for the transmission of the signal from cytokine receptors, and STAT2 is required for type I but not type II IFN signaling. In fish, its role in IFN signaling in fish remains unclear. We isolated a Chinook salmon (Oncorhynchus tshawytscha) cell line, GS2, with a stat2 gene knocked out by CRISPR/Cas9 genome editing. In this cell line, the induction of ISGs by stimulation with a recombinant type I IFN is completely obliterated as evidenced by comparative RNA-seq analysis of the transcriptome of GS2 and its parental counterpart, EC. Despite a complete absence of ISGs induction, the GS2 cell line has a remarkable ability to resist to viral infections. Therefore, other STAT2-independent pathways may be induced by the viral infection, illustrating the robustness and redundancy of the innate antiviral defenses in fish.
Collapse
Affiliation(s)
| | - Katherine Lester
- Marine Scotland, Marine Laboratory, AB11 9DB Aberdeen, United Kingdom; and
| | - Giulia Della Pelle
- Virologie et Immunologie Moléculaires, Institut National de la Recherche Agronomique, Université Paris-Saclay, 78352 Jouy-en-Josas cedex, France
| | - Luc Jouneau
- Virologie et Immunologie Moléculaires, Institut National de la Recherche Agronomique, Université Paris-Saclay, 78352 Jouy-en-Josas cedex, France
| | - Armel Houel
- Virologie et Immunologie Moléculaires, Institut National de la Recherche Agronomique, Université Paris-Saclay, 78352 Jouy-en-Josas cedex, France
| | - Catherine Collins
- Marine Scotland, Marine Laboratory, AB11 9DB Aberdeen, United Kingdom; and
| | - Tatiana Dovgan
- University of Aberdeen, AB24 2TZ Aberdeen, United Kingdom
- Marine Scotland, Marine Laboratory, AB11 9DB Aberdeen, United Kingdom; and
| | - Radek Machat
- Virologie et Immunologie Moléculaires, Institut National de la Recherche Agronomique, Université Paris-Saclay, 78352 Jouy-en-Josas cedex, France
| | - Jun Zou
- University of Aberdeen, AB24 2TZ Aberdeen, United Kingdom
| | - Pierre Boudinot
- Virologie et Immunologie Moléculaires, Institut National de la Recherche Agronomique, Université Paris-Saclay, 78352 Jouy-en-Josas cedex, France
| | | | - Bertrand Collet
- Marine Scotland, Marine Laboratory, AB11 9DB Aberdeen, United Kingdom; and
- Virologie et Immunologie Moléculaires, Institut National de la Recherche Agronomique, Université Paris-Saclay, 78352 Jouy-en-Josas cedex, France
| |
Collapse
|
19
|
Leung B, Shimeld SM. Evolution of vertebrate spinal cord patterning. Dev Dyn 2019; 248:1028-1043. [PMID: 31291046 DOI: 10.1002/dvdy.77] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 06/14/2019] [Accepted: 06/15/2019] [Indexed: 12/17/2022] Open
Abstract
The vertebrate spinal cord is organized across three developmental axes, anterior-posterior (AP), dorsal-ventral (DV), and medial-lateral (ML). Patterning of these axes is regulated by canonical intercellular signaling pathways: the AP axis by Wnt, fibroblast growth factor, and retinoic acid (RA), the DV axis by Hedgehog, Tgfβ, and Wnt, and the ML axis where proliferation is controlled by Notch. Developmental time plays an important role in which signal does what and when. Patterning across the three axes is not independent, but linked by interactions between signaling pathway components and their transcriptional targets. Combined this builds a sophisticated organ with many different types of cell in specific AP, DV, and ML positions. Two living lineages share phylum Chordata with vertebrates, amphioxus, and tunicates, while the jawless fish such as lampreys, survive as the most basally divergent vertebrate lineage. Genes and mechanisms shared between lampreys and other vertebrates tell us what predated vertebrates, while those also shared with other chordates tell us what evolved early in chordate evolution. Between these lie vertebrate innovations: genetic and developmental changes linked to evolution of new morphology. These include gene duplications, differences in how signals are received, and new regulatory connections between signaling pathways and their target genes.
Collapse
Affiliation(s)
- Brigid Leung
- Department of Zoology, University of Oxford, Oxford, UK
| | | |
Collapse
|
20
|
Scott AM, Zhang Z, Jia L, Li K, Zhang Q, Dexheimer T, Ellsworth E, Ren J, Chung-Davidson YW, Zu Y, Neubig RR, Li W. Spermine in semen of male sea lamprey acts as a sex pheromone. PLoS Biol 2019; 17:e3000332. [PMID: 31287811 PMCID: PMC6615597 DOI: 10.1371/journal.pbio.3000332] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 06/03/2019] [Indexed: 12/19/2022] Open
Abstract
Semen is fundamental for sexual reproduction. The non-sperm part of ejaculated semen, or seminal plasma, facilitates the delivery of sperm to the eggs. The seminal plasma of some species with internal fertilization contains anti-aphrodisiac molecules that deter promiscuity in post-copulatory females, conferring fitness benefits to the ejaculating male. By contrast, in some taxa with external fertilization such as fish, exposure to semen promotes spawning behaviors. However, no specific compounds in semen have been identified as aphrodisiac pheromones. We sought to identify a pheromone from the milt (fish semen) of sea lamprey (Petromyzon marinus), a jawless fish that spawns in lek-like aggregations in which each spermiating male defends a nest, and ovulatory females move from nest to nest to mate. We postulated that milt compounds signal to ovulatory females the presence of spawning spermiating males. We determined that spermine, an odorous polyamine initially identified from human semen, is indeed a milt pheromone. At concentrations as low as 10-14 molar, spermine stimulated the lamprey olfactory system and attracted ovulatory females but did not attract males or pre-ovulatory females. We found spermine activated a trace amine-associated receptor (TAAR)-like receptor in the lamprey olfactory epithelium. A novel antagonist to that receptor nullified the attraction of ovulatory females to spermine. Our results elucidate a mechanism whereby a seminal plasma pheromone attracts ready-to-mate females and implicates a possible conservation of the olfactory detection of semen from jawless vertebrates to humans. Milt pheromones may also have management implications for sea lamprey populations.
Collapse
Affiliation(s)
- Anne M. Scott
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, Michigan, United States of America
| | - Zhe Zhang
- College of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai, China
| | - Liang Jia
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, Michigan, United States of America
| | - Ke Li
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, Michigan, United States of America
| | - Qinghua Zhang
- College of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai, China
| | - Thomas Dexheimer
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan, United States of America
| | - Edmund Ellsworth
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan, United States of America
| | - Jianfeng Ren
- College of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai, China
| | - Yu-Wen Chung-Davidson
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, Michigan, United States of America
| | - Yao Zu
- College of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai, China
| | - Richard R. Neubig
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan, United States of America
- * E-mail: (RRN); (WL)
| | - Weiming Li
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, Michigan, United States of America
- * E-mail: (RRN); (WL)
| |
Collapse
|
21
|
Flajnik MF. A Convergent Immunological Holy Trinity of Adaptive Immunity in Lampreys: Discovery of the Variable Lymphocyte Receptors. THE JOURNAL OF IMMUNOLOGY 2019; 201:1331-1335. [PMID: 30127062 DOI: 10.4049/jimmunol.1800965] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Martin F Flajnik
- Department of Microbiology and Immunology, University of Maryland Baltimore, Baltimore, MD 21201
| |
Collapse
|
22
|
Evolution of Snail-mediated regulation of neural crest and placodes from an ancient role in bilaterian neurogenesis. Dev Biol 2019; 453:180-190. [PMID: 31211947 DOI: 10.1016/j.ydbio.2019.06.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 06/14/2019] [Accepted: 06/14/2019] [Indexed: 12/26/2022]
Abstract
A major challenge in vertebrate evolution is to identify the gene regulatory mechanisms that facilitated the origin of neural crest cells and placodes from ancestral precursors in invertebrates. Here, we show in lamprey, a primitively jawless vertebrate, that the transcription factor Snail is expressed simultaneously throughout the neural plate, neural plate border, and pre-placodal ectoderm in the early embryo and is then upregulated in the CNS throughout neurogenesis. Using CRISPR/Cas9-mediated genome editing, we demonstrate that Snail plays functional roles in all of these embryonic domains or their derivatives. We first show that Snail patterns the neural plate border by repressing lateral expansion of Pax3/7 and activating nMyc and ZicA. We also present evidence that Snail is essential for DlxB-mediated establishment of the pre-placodal ectoderm but is not required for SoxB1a expression during formation of the neural plate proper. At later stages, Snail regulates formation of neural crest-derived and placode-derived PNS neurons and controls CNS neural differentiation in part by promoting cell survival. Taken together with established functions of invertebrate Snail genes, we identify a pan-bilaterian mechanism that extends to jawless vertebrates for regulating neurogenesis that is dependent on Snail transcription factors. We propose that ancestral vertebrates deployed an evolutionarily conserved Snail expression domain in the CNS and PNS for neurogenesis and then acquired derived functions in neural crest and placode development by recruitment of regulatory genes downstream of neuroectodermal Snail activity. Our results suggest that Snail regulatory mechanisms in vertebrate novelties such as the neural crest and placodes may have emerged from neurogenic roles that originated early in bilaterian evolution.
Collapse
|
23
|
Production of a mutant of large-scale loach Paramisgurnus dabryanus with skin pigmentation loss by genome editing with CRISPR/Cas9 system. Transgenic Res 2019; 28:341-356. [PMID: 31183663 DOI: 10.1007/s11248-019-00125-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 03/23/2019] [Indexed: 02/06/2023]
Abstract
CRISPR/Cas9 system has been developed as a highly efficient genome editing technology to specifically induce mutations in a few aquaculture species. In this study, we described induction of targeted gene (namely tyrosinase, tyr) mutations in large-scale loach Paramisgurnus dabryanus, an important aquaculture fish species and a potential model organism for studies of intestinal air-breathing function, using the CRISPR/Cas9 system. Tyr gene in large-scale loach was firstly cloned and then its expressions were investigated. Two guide RNAs (gRNAs) were designed and separately transformed with Cas9 in the loach. 89.4% and 96.1% of injected loach juveniles respectively displayed a graded loss of pigmentation for the two gRNAs, in other words, for target 1 and target 2. We classified the injected loach juveniles into five groups according to their skin color phenotypes, including four albino groups and one wild-type-like group. And one of them was clear albino group, which was of high ornamental and commercial value. More than 50 clones for each albino transformant with a visible phenotype in each target were randomly selected and sequenced. Results obtained here showed that along with the increase of pigmentation, wild-type alleles appeared in the injected loach juveniles more often and insertion/deletion alleles less frequently. This study demonstrated that CRISPR/Cas9 system could be practically performed to modify large-scale loach tyr to produce an albino mutant of high ornamental and commercial value, and for the first time showed successful use of the CRISPR/Cas9 system for genome editing in a Cobitidae species.
Collapse
|
24
|
Bayramov AV, Ermakova GV, Kucheryavyy AV, Zaraisky AG. Lampreys, “Living Fossils,” in Research on Early Development and Regeneration in Vertebrates. Russ J Dev Biol 2019. [DOI: 10.1134/s1062360418080015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
25
|
Yuan T, York JR, McCauley DW. Gliogenesis in lampreys shares gene regulatory interactions with oligodendrocyte development in jawed vertebrates. Dev Biol 2018; 441:176-190. [DOI: 10.1016/j.ydbio.2018.07.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 07/02/2018] [Accepted: 07/02/2018] [Indexed: 01/09/2023]
|
26
|
Cleves PA, Strader ME, Bay LK, Pringle JR, Matz MV. CRISPR/Cas9-mediated genome editing in a reef-building coral. Proc Natl Acad Sci U S A 2018; 115:5235-5240. [PMID: 29695630 PMCID: PMC5960312 DOI: 10.1073/pnas.1722151115] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Reef-building corals are critically important species that are threatened by anthropogenic stresses including climate change. In attempts to understand corals' responses to stress and other aspects of their biology, numerous genomic and transcriptomic studies have been performed, generating a variety of hypotheses about the roles of particular genes and molecular pathways. However, it has not generally been possible to test these hypotheses rigorously because of the lack of genetic tools for corals. Here, we demonstrate efficient genome editing using the CRISPR/Cas9 system in the coral Acropora millepora We targeted the genes encoding fibroblast growth factor 1a (FGF1a), green fluorescent protein (GFP), and red fluorescent protein (RFP). After microinjecting CRISPR/Cas9 ribonucleoprotein complexes into fertilized eggs, we detected induced mutations in the targeted genes using changes in restriction-fragment length, Sanger sequencing, and high-throughput Illumina sequencing. We observed mutations in ∼50% of individuals screened, and the proportions of wild-type and various mutant gene copies in these individuals indicated that mutation induction continued for at least several cell cycles after injection. Although multiple paralogous genes encoding green fluorescent proteins are present in A. millepora, appropriate design of the guide RNA allowed us to induce mutations simultaneously in more than one paralog. Because A. millepora larvae can be induced to settle and begin colony formation in the laboratory, CRISPR/Cas9-based gene editing should allow rigorous tests of gene function in both larval and adult corals.
Collapse
Affiliation(s)
- Phillip A Cleves
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305
| | - Marie E Strader
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX 78712
| | - Line K Bay
- Australian Institute of Marine Science, Townsville, QLD 4810, Australia
| | - John R Pringle
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305;
| | - Mikhail V Matz
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX 78712;
| |
Collapse
|
27
|
Hu P, Zhao X, Zhang Q, Li W, Zu Y. Comparison of Various Nuclear Localization Signal-Fused Cas9 Proteins and Cas9 mRNA for Genome Editing in Zebrafish. G3 (BETHESDA, MD.) 2018; 8:823-831. [PMID: 29295818 PMCID: PMC5844304 DOI: 10.1534/g3.117.300359] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Accepted: 12/28/2017] [Indexed: 01/17/2023]
Abstract
The clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 system has been proven to be an efficient and precise genome editing technology in various organisms. However, the gene editing efficiencies of Cas9 proteins with a nuclear localization signal (NLS) fused to different termini and Cas9 mRNA have not been systematically compared. Here, we compared the ability of Cas9 proteins with NLS fused to the N-, C-, or both the N- and C-termini and N-NLS-Cas9-NLS-C mRNA to target two sites in the tyr gene and two sites in the gol gene related to pigmentation in zebrafish. Phenotypic analysis revealed that all types of Cas9 led to hypopigmentation in similar proportions of injected embryos. Genome analysis by T7 Endonuclease I (T7E1) assays demonstrated that all types of Cas9 similarly induced mutagenesis in four target sites. Sequencing results further confirmed that a high frequency of indels occurred in the target sites (tyr1 > 66%, tyr2 > 73%, gol1 > 50%, and gol2 > 35%), as well as various types (more than six) of indel mutations observed in all four types of Cas9-injected embryos. Furthermore, all types of Cas9 showed efficient targeted mutagenesis on multiplex genome editing, resulting in multiple phenotypes simultaneously. Collectively, we conclude that various NLS-fused Cas9 proteins and Cas9 mRNAs have similar genome editing efficiencies on targeting single or multiple genes, suggesting that the efficiency of CRISPR/Cas9 genome editing is highly dependent on guide RNAs (gRNAs) and gene loci. These findings may help to simplify the selection of Cas9 for gene editing using the CRISPR/Cas9 system.
Collapse
Affiliation(s)
- Peinan Hu
- International Research Center for Marine Biosciences, Ministry of Science and Technology, College of Fisheries and Life Sciences, Shanghai Ocean University, 201306, P.R. China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, College of Fisheries and Life Sciences, Shanghai Ocean University, 201306, P.R. China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, P.R. China
| | - Xueying Zhao
- International Research Center for Marine Biosciences, Ministry of Science and Technology, College of Fisheries and Life Sciences, Shanghai Ocean University, 201306, P.R. China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, College of Fisheries and Life Sciences, Shanghai Ocean University, 201306, P.R. China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, P.R. China
| | - Qinghua Zhang
- International Research Center for Marine Biosciences, Ministry of Science and Technology, College of Fisheries and Life Sciences, Shanghai Ocean University, 201306, P.R. China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, College of Fisheries and Life Sciences, Shanghai Ocean University, 201306, P.R. China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, P.R. China
| | - Weiming Li
- International Research Center for Marine Biosciences, Ministry of Science and Technology, College of Fisheries and Life Sciences, Shanghai Ocean University, 201306, P.R. China
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, Michigan 48824
| | - Yao Zu
- International Research Center for Marine Biosciences, Ministry of Science and Technology, College of Fisheries and Life Sciences, Shanghai Ocean University, 201306, P.R. China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, College of Fisheries and Life Sciences, Shanghai Ocean University, 201306, P.R. China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, P.R. China
| |
Collapse
|
28
|
Zhu B, Ge W. Genome editing in fishes and their applications. Gen Comp Endocrinol 2018; 257:3-12. [PMID: 28919449 DOI: 10.1016/j.ygcen.2017.09.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Revised: 08/15/2017] [Accepted: 09/13/2017] [Indexed: 12/18/2022]
Abstract
There have been revolutionary progresses in genome engineering in the past few years. The newly-emerged genome editing technologies including zinc-finger nuclease (ZFN), transcription activator-like effector nuclease (TALEN) and clustered regularly interspaced short palindromic repeats associated with Cas9 (CRISPR/Cas9) have enabled biological scientists to perform efficient and precise targeted genome editing in different species. Fish represent the largest group of vertebrates with many species having values for both scientific research and aquaculture industry. Genome editing technologies have found extensive applications in different fish species for basic functional studies as well asapplied research in such fields as disease modeling and aquaculture. This mini-review focuses on recent advancements and applications of the new generation of genome editing technologies in fish species, with particular emphasis on their applications in understanding reproductive functions because the reproductive axis has been most systematically and best studied among others and its function has been difficult to address with reverse genetics approach.
Collapse
Affiliation(s)
- Bo Zhu
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Wei Ge
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau, China.
| |
Collapse
|
29
|
Herman PE, Papatheodorou A, Bryant SA, Waterbury CKM, Herdy JR, Arcese AA, Buxbaum JD, Smith JJ, Morgan JR, Bloom O. Highly conserved molecular pathways, including Wnt signaling, promote functional recovery from spinal cord injury in lampreys. Sci Rep 2018; 8:742. [PMID: 29335507 PMCID: PMC5768751 DOI: 10.1038/s41598-017-18757-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 12/18/2017] [Indexed: 12/23/2022] Open
Abstract
In mammals, spinal cord injury (SCI) leads to dramatic losses in neurons and synaptic connections, and consequently function. Unlike mammals, lampreys are vertebrates that undergo spontaneous regeneration and achieve functional recovery after SCI. Therefore our goal was to determine the complete transcriptional responses that occur after SCI in lampreys and to identify deeply conserved pathways that promote regeneration. We performed RNA-Seq on lamprey spinal cord and brain throughout the course of functional recovery. We describe complex transcriptional responses in the injured spinal cord, and somewhat surprisingly, also in the brain. Transcriptional responses to SCI in lampreys included transcription factor networks that promote peripheral nerve regeneration in mammals such as Atf3 and Jun. Furthermore, a number of highly conserved axon guidance, extracellular matrix, and proliferation genes were also differentially expressed after SCI in lampreys. Strikingly, ~3% of differentially expressed transcripts belonged to the Wnt pathways. These included members of the Wnt and Frizzled gene families, and genes involved in downstream signaling. Pharmacological inhibition of Wnt signaling inhibited functional recovery, confirming a critical role for this pathway. These data indicate that molecular signals present in mammals are also involved in regeneration in lampreys, supporting translational relevance of the model.
Collapse
Affiliation(s)
- Paige E Herman
- The Feinstein Institute for Medical Research, Center for Autoimmune and Musculoskeletal Disease, Manhasset, NY, 11030, USA
| | - Angelos Papatheodorou
- The Feinstein Institute for Medical Research, Center for Autoimmune and Musculoskeletal Disease, Manhasset, NY, 11030, USA
| | - Stephanie A Bryant
- University of Kentucky, Department of Biology, Lexington, KY, 40506, USA
| | | | - Joseph R Herdy
- University of Kentucky, Department of Biology, Lexington, KY, 40506, USA
| | - Anthony A Arcese
- The Feinstein Institute for Medical Research, Center for Autoimmune and Musculoskeletal Disease, Manhasset, NY, 11030, USA
| | - Joseph D Buxbaum
- Icahn School of Medicine at Mount Sinai, Department of Psychiatry, New York, NY, 10029, USA
| | - Jeramiah J Smith
- University of Kentucky, Department of Biology, Lexington, KY, 40506, USA
| | - Jennifer R Morgan
- Marine Biological Laboratory, The Eugene Bell Center for Regenerative Biology and Tissue Engineering, Woods Hole, MA, 02543, USA.
| | - Ona Bloom
- The Feinstein Institute for Medical Research, Center for Autoimmune and Musculoskeletal Disease, Manhasset, NY, 11030, USA.
| |
Collapse
|
30
|
York JR, Yuan T, Zehnder K, McCauley DW. Lamprey neural crest migration is Snail-dependent and occurs without a differential shift in cadherin expression. Dev Biol 2017. [PMID: 28624345 DOI: 10.1016/j.ydbio.2017.06.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The acquisition of neural crest cells was a key step in the origin of the vertebrate body plan. An outstanding question is how neural crest cells acquired their ability to undergo an epithelial-mesenchymal transition (EMT) and migrate extensively throughout the vertebrate embryo. We tested if differential regulation of classical cadherins-a highly conserved feature of neural crest EMT and migration in jawed vertebrates-mediates these cellular behaviors in lamprey, a basal jawless vertebrate. Lamprey has single copies of the type I and type II classical cadherins (CadIA and CadIIA). CadIIA is expressed in premigratory neural crest, and requires the transcription factor Snail for proper expression, yet CadIA is never expressed in the neural tube during neural crest development, suggesting that differential regulation of classical cadherin expression is not required to initiate neural crest migration in basal vertebrates. We hypothesize that neural crest cells evolved by retention of regulatory programs linking distinct mesenchymal and multipotency properties, and emigrated from the neural tube without differentially regulating type I/type II cadherins. Our results point to the coupling of mesenchymal state and multipotency as a key event facilitating the origin of migratory neural crest cells.
Collapse
Affiliation(s)
- Joshua R York
- Department of Biology, University of Oklahoma, 730 Van Vleet Oval, Norman, OK 73019, USA
| | - Tian Yuan
- Department of Biology, University of Oklahoma, 730 Van Vleet Oval, Norman, OK 73019, USA
| | - Kevin Zehnder
- Department of Biology, University of Oklahoma, 730 Van Vleet Oval, Norman, OK 73019, USA
| | - David W McCauley
- Department of Biology, University of Oklahoma, 730 Van Vleet Oval, Norman, OK 73019, USA.
| |
Collapse
|
31
|
Doetschman T, Georgieva T. Gene Editing With CRISPR/Cas9 RNA-Directed Nuclease. Circ Res 2017; 120:876-894. [DOI: 10.1161/circresaha.116.309727] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 01/30/2017] [Accepted: 02/06/2017] [Indexed: 12/22/2022]
Abstract
Genetic engineering of model organisms and cultured cells has for decades provided important insights into the mechanisms underlying cardiovascular development and disease. In the past few years the development of several nuclease systems has broadened the range of model/cell systems that can be engineered. Of these, the CRISPR (clustered regularly interspersed short palindromic repeats)/Cas9 (CRISPR-associated protein 9) system has become the favorite for its ease of application. Here we will review this RNA-guided nuclease system for gene editing with respect to its usefulness for cardiovascular studies and with an eye toward potential therapy. Studies on its off-target activity, along with approaches to minimize this activity will be given. The advantages of gene editing versus gene targeting in embryonic stem cells, including the breadth of species and cell types to which it is applicable, will be discussed. We will also cover its use in iPSC for research and possible therapeutic purposes; and we will review its use in muscular dystrophy studies where considerable progress has been made toward dystrophin correction in mice. The CRISPR/Ca9s system is also being used for high-throughput screening of genes, gene regulatory regions, and long noncoding RNAs. In addition, the CRISPR system is being used for nongene-editing purposes such as activation and inhibition of gene expression, as well as for fluorescence tagging of chromosomal regions and individual mRNAs to track their cellular location. Finally, an approach to circumvent the inability of post-mitotic cells to support homologous recombination-based gene editing will be presented. In conclusion, applications of the CRISPR/Cas system are expanding at a breath-taking pace and are revolutionizing approaches to gain a better understanding of human diseases.
Collapse
Affiliation(s)
- Thomas Doetschman
- From the BIO5 Institute (T.D., T.G.) and Department of Cellular and Molecular Medicine (T.D.), University of Arizona, Tucson
| | - Teodora Georgieva
- From the BIO5 Institute (T.D., T.G.) and Department of Cellular and Molecular Medicine (T.D.), University of Arizona, Tucson
| |
Collapse
|
32
|
Siefkes MJ. Use of physiological knowledge to control the invasive sea lamprey ( Petromyzon marinus) in the Laurentian Great Lakes. CONSERVATION PHYSIOLOGY 2017; 5:cox031. [PMID: 28580146 PMCID: PMC5448140 DOI: 10.1093/conphys/cox031] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 04/21/2017] [Accepted: 05/17/2017] [Indexed: 05/14/2023]
Abstract
Sea lamprey (Petromyzon marinus) control in the Laurentian Great Lakes of North America is an example of using physiological knowledge to successfully control an invasive species and rehabilitate an ecosystem and valuable fishery. The parasitic sea lamprey contributed to the devastating collapse of native fish communities after invading the Great Lakes during the 1800s and early 1900s. Economic tragedy ensued with the loss of the fishery and severe impacts to property values and tourism resulting from sea lamprey-induced ecological changes. To control the sea lamprey and rehabilitate the once vibrant Great Lakes ecosystem and economy, the Great Lakes Fishery Commission (Commission) was formed by treaty between Canada and the United States in 1955. The Commission has developed a sea lamprey control programme based on their physiological vulnerabilities, which includes (i) the application of selective pesticides (lampricides), which successfully kill sedentary sea lamprey larvae in their natal streams; (ii) barriers to spawning migrations and associated traps to prevent infestations of upstream habitats and remove adult sea lamprey before they reproduce; and (iii) the release of sterilized males to reduce the reproductive potential of spawning populations in select streams. Since 1958, the application of the sea lamprey control programme has suppressed sea lamprey populations by ~90% from peak abundance. Great Lakes fish populations have rebounded and the economy is now thriving. In hopes of further enhancing the efficacy and selectivity of the sea lamprey control programme, the Commission is exploring the use of (i) sea lamprey chemosensory cues (pheromones and alarm cues) to manipulate behaviours and physiologies, and (ii) genetics to identify and manipulate genes associated with key physiological functions, for control purposes. Overall, the Commission capitalizes on the unique physiology of the sea lamprey and strives to develop a diverse integrated programme to successfully control a once devastating invasive species.
Collapse
Affiliation(s)
- Michael J. Siefkes
- Great Lakes Fishery Commission, 2100 Commonwealth Blvd., Suite 100, Ann Arbor, MI 48105, USA
- Corresponding author: Great Lakes Fishery Commission, 2100 Commonwealth Blvd., Suite 100, Ann Arbor, MI 48105, USA. Tel: +1 7346693013; Fax: +1 7347412010;
| |
Collapse
|