1
|
Liu Z, Ou Y, He X, Yuan T, Li M, Long Y, Li Y, Tan Y. Guardians of the Lung: The Multifaceted Roles of Macrophages in Cancer and Infectious Disease. DNA Cell Biol 2025. [PMID: 40106386 DOI: 10.1089/dna.2024.0211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025] Open
Abstract
The lung as an organ that is fully exposed to the external environment for extended periods, comes into contact with numerous inhaled microorganisms. Lung macrophages are crucial for maintaining lung immunity and operate primarily through signaling pathways such as toll-like receptor 4 and nuclear factor-κB pathways. These macrophages constitute a diverse population with significant plasticity, exhibiting different phenotypes and functions on the basis of their origin, tissue residence, and environmental factors. During lung homeostasis, they are involved in the clearance of inhaled particles, cellular remnants, and even participate in metabolic processes. In disease states, lung macrophages transition from the inflammatory M1 phenotype to the anti-inflammatory M2 phenotype. These distinct phenotypes have varying transcriptional profiles and serve different functions, from combating pathogens to repairing inflammation-induced damage. However, macrophages can also exacerbate lung injury during prolonged inflammation or exposure to antigens. In this review, we delve into the diverse roles of pulmonary macrophages the realms in homeostasis, pneumonia, tuberculosis, and lung tumors.
Collapse
Affiliation(s)
- Zhi Liu
- Department of Infectious Diseases, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, China
- Graduate Collaborative Training Base of Zhuzhou Central Hospital, Hengyang Medical School, University of South China, Zhuzhou, China
| | - Yangjing Ou
- Department of Infectious Diseases, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, China
| | - Xiaojin He
- Department of Infectious Diseases, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, China
| | - Ting Yuan
- Department of Infectious Diseases, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, China
| | - Miao Li
- Department of Infectious Diseases, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, China
| | - Yunzhu Long
- Department of Infectious Diseases, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, China
| | - Yukun Li
- Department of Assisted Reproductive Centre, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, China
| | - Yingzheng Tan
- Department of Infectious Diseases, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, China
| |
Collapse
|
2
|
Zhang X, Chen Y, Liu M, Long X, Guo C. Intervention strategies targeting virus and host factors against porcine reproductive and respiratory syndrome virus: A systematic review. Int J Biol Macromol 2024; 279:135403. [PMID: 39245101 DOI: 10.1016/j.ijbiomac.2024.135403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/31/2024] [Accepted: 09/05/2024] [Indexed: 09/10/2024]
Abstract
Porcine reproductive and respiratory syndrome (PRRS) caused by porcine reproductive and respiratory syndrome virus (PRRSV) causes considerable economic losses to the global swine industry every year and seriously hinders the healthy development of this industry. Although tremendous efforts have been made over the past 30 years toward the development of prevention and control strategies against PRRSV infection, to date, treatments with proven efficacy have yet to be available due to our incomplete understanding of the molecular basis and complexity of the infection machinery. This review systematically discusses recent advances in the research and development of anti-PRRSV therapies targeting different stages of the viral life cycle. Furthermore, this review puts forward novel intervention targets and research approaches based on our in-depth exploration of virus-host interactions and the latest biological technologies, which have the potential to complement or transform current anti-PRRSV strategies and become breakthrough points for the control of PRRS in the future.
Collapse
Affiliation(s)
- Xiaoxiao Zhang
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, PR China
| | - Yongjie Chen
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, PR China
| | - Min Liu
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, PR China
| | - Xiaoqin Long
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, PR China
| | - Chunhe Guo
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, PR China.
| |
Collapse
|
3
|
Liu Y, Zhang J, Yang G, Tang C, Li X, Lu L, Long K, Sun J, Ding Y, Li X, Li M, Ge L, Ma J. Effects of the commensal microbiota on spleen and mesenteric lymph node immune function: investigation in a germ-free piglet model. Front Microbiol 2024; 15:1398631. [PMID: 38933022 PMCID: PMC11201156 DOI: 10.3389/fmicb.2024.1398631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024] Open
Abstract
Commensal microbial-host interaction is crucial for host metabolism, growth, development, and immunity. However, research on microbial-host immunity in large animal models has been limited. This study was conducted to investigate the effects of the commensal microbiota on immune function in two model groups: germ-free (GF) and specific-pathogen-free (SPF) piglets. The weight and organ index of the spleen of the GF piglet were larger than those in the SPF piglet (P < 0.05). The histological structure of the red pulp area and mean area of germinal centers were larger in the SPF piglet than in the GF piglet (P < 0.05), whereas the areas of staining of B cells and T cells in the spleen and mesenteric lymph nodes (MLNs) were lower in the GF piglet (P < 0.05). We identified immune-related genes in the spleen and MLNs using RNA sequencing, and used real-time quantitative PCR to analyze the expression of core genes identified in gene set enrichment analysis. The expression levels of genes in the transforming growth factor-β/SMAD3 signaling pathway, Toll-like receptor 2/MyD88/nuclear factor-κB signaling pathway, and pro-inflammatory factor genes IL-6 and TNF-α in the spleen and MLNs were higher in the SPF piglet and in splenic lymphocytes compared with those in the GF and control group, respectively, under treatment with acetic acid, propionic acid, butyric acid, lipopolysaccharide (LPS), or concanavalin A (ConA). The abundances of plasma cells, CD8++ T cells, follicular helper T cells, and resting natural killer cells in the spleen and MLNs were significantly greater in the SPF piglet than in the GF piglet (P < 0.05). In conclusion, the commensal microbiota influenced the immune tissue structure, abundances of immune cells, and expression of immune-related pathways, indicating the importance of the commensal microbiota for spleen and MLNs development and function. In our study, GF piglet was used as the research model, eliminating the interference of microbiota in the experiment, and providing a suitable and efficient large animal research model for exploring the mechanism of "microbial-host" interactions.
Collapse
Affiliation(s)
- Yan Liu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- Chongqing Academy of Animal Sciences, Chongqing, China
| | - Jinwei Zhang
- Chongqing Academy of Animal Sciences, Chongqing, China
- National Center of Technology Innovation for Pigs, Chongqing, China
- Ministry of Agriculture Key Laboratory of Pig Industry Sciences, Chongqing Key Laboratory of Pig Industry Sciences, Chongqing, China
| | - Guitao Yang
- National Center of Technology Innovation for Pigs, Chongqing, China
- Ministry of Agriculture Key Laboratory of Pig Industry Sciences, Chongqing Key Laboratory of Pig Industry Sciences, Chongqing, China
| | - Chuang Tang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Xiaokai Li
- National Center of Technology Innovation for Pigs, Chongqing, China
- Ministry of Agriculture Key Laboratory of Pig Industry Sciences, Chongqing Key Laboratory of Pig Industry Sciences, Chongqing, China
| | - Lu Lu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- Chongqing Academy of Animal Sciences, Chongqing, China
| | - Keren Long
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- Chongqing Academy of Animal Sciences, Chongqing, China
| | - Jing Sun
- Chongqing Academy of Animal Sciences, Chongqing, China
- National Center of Technology Innovation for Pigs, Chongqing, China
- Ministry of Agriculture Key Laboratory of Pig Industry Sciences, Chongqing Key Laboratory of Pig Industry Sciences, Chongqing, China
| | - Yuchun Ding
- Chongqing Academy of Animal Sciences, Chongqing, China
- National Center of Technology Innovation for Pigs, Chongqing, China
- Ministry of Agriculture Key Laboratory of Pig Industry Sciences, Chongqing Key Laboratory of Pig Industry Sciences, Chongqing, China
| | - Xuewei Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Mingzhou Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Liangpeng Ge
- Chongqing Academy of Animal Sciences, Chongqing, China
- National Center of Technology Innovation for Pigs, Chongqing, China
- Ministry of Agriculture Key Laboratory of Pig Industry Sciences, Chongqing Key Laboratory of Pig Industry Sciences, Chongqing, China
| | - Jideng Ma
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- Chongqing Academy of Animal Sciences, Chongqing, China
| |
Collapse
|
4
|
Wu X, Chen L, Sui C, Hu Y, Jiang D, Yang F, Miller LC, Li J, Cong X, Hrabchenko N, Lee C, Du Y, Qi J. 3C pro of FMDV inhibits type II interferon-stimulated JAK-STAT signaling pathway by blocking STAT1 nuclear translocation. Virol Sin 2023; 38:387-397. [PMID: 36921803 PMCID: PMC10311264 DOI: 10.1016/j.virs.2023.03.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 03/08/2023] [Indexed: 03/16/2023] Open
Abstract
Foot-and-mouth disease virus (FMDV) has developed various strategies to antagonize the host innate immunity. FMDV Lpro and 3Cpro interfere with type I IFNs through different mechanisms. The structural protein VP3 of FMDV degrades Janus kinase 1 to suppress IFN-γ signaling transduction. Whether non-structural proteins of FMDV are involved in restraining type II IFN signaling pathways is unknown. In this study, it was shown that FMDV replication was resistant to IFN-γ treatment after the infection was established and FMDV inhibited type II IFN induced expression of IFN-γ-stimulated genes (ISGs). We also showed for the first time that FMDV non-structural protein 3C antagonized IFN-γ-stimulated JAK-STAT signaling pathway by blocking STAT1 nuclear translocation. 3Cpro expression significantly reduced the ISGs transcript levels and palindromic gamma-activated sequences (GAS) promoter activity, without affecting the protein level, tyrosine phosphorylation, and homodimerization of STAT1. Finally, we provided evidence that 3C protease activity played an essential role in degrading KPNA1 and thus inhibited ISGs mRNA and GAS promoter activities. Our results reveal a novel mechanism by which an FMDV non-structural protein antagonizes host type II IFN signaling.
Collapse
Affiliation(s)
- Xiangju Wu
- Shandong Key Laboratory of Animal Disease Control and Breeding/Key Laboratory of Livestock and Poultry Multi-omics of MARA, Institute of Animal Science and Veterinary Medicine, Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Lei Chen
- College of Life Science, Shandong Normal University, Jinan, 250358, China
| | - Chao Sui
- Shandong Key Laboratory of Animal Disease Control and Breeding/Key Laboratory of Livestock and Poultry Multi-omics of MARA, Institute of Animal Science and Veterinary Medicine, Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Yue Hu
- Shandong Key Laboratory of Animal Disease Control and Breeding/Key Laboratory of Livestock and Poultry Multi-omics of MARA, Institute of Animal Science and Veterinary Medicine, Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Dandan Jiang
- Shandong Key Laboratory of Animal Disease Control and Breeding/Key Laboratory of Livestock and Poultry Multi-omics of MARA, Institute of Animal Science and Veterinary Medicine, Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Fan Yang
- State Key Laboratory of Veterinary Etiological Biology/National Foot and Mouth Disease Reference Laboratory/Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
| | - Laura C Miller
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, 66506, USA
| | - Juntong Li
- Shandong Key Laboratory of Animal Disease Control and Breeding/Key Laboratory of Livestock and Poultry Multi-omics of MARA, Institute of Animal Science and Veterinary Medicine, Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Xiaoyan Cong
- Shandong Key Laboratory of Animal Disease Control and Breeding/Key Laboratory of Livestock and Poultry Multi-omics of MARA, Institute of Animal Science and Veterinary Medicine, Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Nataliia Hrabchenko
- Shandong Key Laboratory of Animal Disease Control and Breeding/Key Laboratory of Livestock and Poultry Multi-omics of MARA, Institute of Animal Science and Veterinary Medicine, Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Changhee Lee
- College of Veterinary Medicine and Virus Vaccine Research Center, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Yijun Du
- Shandong Key Laboratory of Animal Disease Control and Breeding/Key Laboratory of Livestock and Poultry Multi-omics of MARA, Institute of Animal Science and Veterinary Medicine, Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Jinan, 250100, China; College of Life Science, Shandong Normal University, Jinan, 250358, China.
| | - Jing Qi
- Shandong Key Laboratory of Animal Disease Control and Breeding/Key Laboratory of Livestock and Poultry Multi-omics of MARA, Institute of Animal Science and Veterinary Medicine, Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Jinan, 250100, China; College of Life Science, Shandong Normal University, Jinan, 250358, China.
| |
Collapse
|
5
|
Hirsiger JR, Tzankov A, Alborelli I, Recher M, Daikeler T, Parmentier S, Berger CT. Case Report: mRNA vaccination-mediated STAT3 overactivation with agranulocytosis and clonal T-LGL expansion. Front Immunol 2023; 14:1087502. [PMID: 36817454 PMCID: PMC9933345 DOI: 10.3389/fimmu.2023.1087502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/05/2023] [Indexed: 02/05/2023] Open
Abstract
Vaccines against SARS-CoV-2 are the most effective measure against the COVID-19 pandemic. The safety profile of mRNA vaccines in patients with rare diseases has not been assessed systematically in the clinical trials, as these patients were typically excluded. This report describes the occurrence of agranulocytosis within days following the first dose of an mRNA-1273 vaccination against COVID-19 in a previously healthy older adult. The patient was diagnosed with a suspected STAT3 wild-type T-cell large granular lymphocytic leukaemia (T-LGL). Neutropenia was successfully treated with IVIG, glucocorticoids, and G-CSF. In vitro experiments aimed at elucidating the pathways potentially causing the mRNA vaccine-associated neutropenia indicated that the mRNA, but not the adenoviral Ad26.COV2.S vector vaccine, triggered strong IL-6/STAT3 activation in vitro, resulting in excessive T-cell activation and neutrophil degranulation in the patient but not in controls. mRNA-1273 activated TLR-3 suggesting TLR mediated IL-6/STAT3 pathway activation. To complete the primary series of COVID-19 immunization, we used a single dose of Ad26.COV2.S vector vaccine without reoccurrence of neutropenia. The T-LGL clone remained stable during the follow-up of more than 12 months without ongoing therapy. Our data suggest that switching the immunization platform may be a reasonable approach in subjects with rare associated hematologic side effects due to excess STAT3-mediated stimulation following mRNA vaccination. Using in vitro testing before re-administration of a (COVID) vaccine also has relevance for other rare immune events after (mRNA) vaccination.
Collapse
Affiliation(s)
- Julia R Hirsiger
- Translational Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Alexandar Tzankov
- Institute for Pathology, University Hospital Basel, Basel, Switzerland.,University of Basel and ETH Zurich, Botnar Research Centre for Child Health, Basel, Switzerland
| | - Ilaria Alborelli
- Pathology, Institute of Medical Genetics and Pathology, University Hospital, Basel, Switzerland
| | - Mike Recher
- Primary Immunodeficiency, Department of Biomedicine, University of Basel, Basel, Switzerland.,University Center for Immunology, University Hospital Basel, Basel, Switzerland
| | - Thomas Daikeler
- University Center for Immunology, University Hospital Basel, Basel, Switzerland.,Rheumatology Clinic, University Hospital Basel, Basel, Switzerland
| | | | - Christoph T Berger
- Translational Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland.,University of Basel and ETH Zurich, Botnar Research Centre for Child Health, Basel, Switzerland.,University Center for Immunology, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
6
|
Zhang A, Li D, Song C, Jing H, Li H, Mi J, Zhang G, Jin S, Ren X, Huangfu H, Shi D, Chen R. Evaluation of different combination of pam2CSK4, poly (I:C) and imiquimod enhance immune responses to H9N2 avian influenza antigen in dendritic cells and duck. PLoS One 2022; 17:e0271746. [PMID: 35853030 PMCID: PMC9295992 DOI: 10.1371/journal.pone.0271746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 07/06/2022] [Indexed: 11/18/2022] Open
Abstract
Current commercial H9 avian influenza viruses (AIVs) vaccines cannot provide satisfactory antibody titers and protective immunity against AIVs in duck. Toll like receptors (TLR) ligand as AIVs adjuvants can activate dendritic cells to improve immune responses in multiple animals, while the studies were absent in duck. Therefore, we investigated TLR ligands pam2CSK4, poly (I:C) and/or imiquimod enhance immune responses to inactivated H9N2 avian influenza antigen (H9N2 IAIV) in peripheral blood monocyte-derived dendritic cells (MoDCs) and duck. In vitro, we observed that transcription factor NF-κB, Th1/Th2 type cytokines (IFN-γ, IL-2 and IL-6) and the ability of catching H9N2 IAIV antigen were significantly up-regulated when H9N2 IAIV along with TLR ligands (pam2CSK4, poly (I:C) and imiquimod, alone or combination) in duck MoDCs. Also, the best enhancement effects were showed in combination of pam2CSK4, poly (I:C) and imiquimod group, whereas IFN-α showed no significant enhancement in all experimental groups. In vivo, the results demonstrated that the percentages of CD4+/ CD8+ T lymphocytes, the levels of Th1/Th2 type cytokines and H9N2 HI titers were significant enhanced in combination of pam2CSK4, poly (I:C) and imiquimod group. However, pam2CSK4 alone or combining with imiquimod showed no enhancement or additive effects on Th1 cytokines (IFN-γ and IL-2), Th2 cytokines (IL-6) and HI titers in Muscovy duck, respectively. Taken together, our results concluded that not all TLR ligands showed enhancement of immune responses to H9N2 IAIV in duck. The combination of poly (I:C), imiquimod and pam2CSK4 that can be an effectively adjuvant candidate for H9N2 AIVs inactivated vaccine in duck, which provide novel insights in explore waterfowl vaccine.
Collapse
Affiliation(s)
- Aiguo Zhang
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan, China
- Huannong (Zhaoqing) Institute of Biotechnology Co. Ltd., Zhaoqing, Guangdong, China
- Henan Poultry Disease Prevention and Control Engineering Technology Research Center, Zhengzhou, Henan, China
- * E-mail: (RC); (AZ)
| | - Deyin Li
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan, China
| | - Chao Song
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan, China
| | - Huiyuan Jing
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan, China
| | - Hongfei Li
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan, China
| | - Junxian Mi
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan, China
| | - Guizhi Zhang
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan, China
| | - Shuangxing Jin
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan, China
- Henan Poultry Disease Prevention and Control Engineering Technology Research Center, Zhengzhou, Henan, China
| | - Xiaoli Ren
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan, China
| | - Heping Huangfu
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan, China
| | - Dongmei Shi
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan, China
| | - Ruiai Chen
- Huannong (Zhaoqing) Institute of Biotechnology Co. Ltd., Zhaoqing, Guangdong, China
- College of Veterinary Medicine, South China Agricultural University, Tianhe District, Guangzhou, Guangdong, China
- Zhaoqing Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Zhaoqing, Guangdong, China
- * E-mail: (RC); (AZ)
| |
Collapse
|
7
|
Zhang BD, Wu JJ, Li WH, Hu HG, Zhao L, He PY, Zhao YF, Li YM. STING and TLR7/8 agonists-based nanovaccines for synergistic antitumor immune activation. NANO RESEARCH 2022; 15:6328-6339. [PMID: 35464625 PMCID: PMC9014842 DOI: 10.1007/s12274-022-4282-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/28/2022] [Accepted: 03/01/2022] [Indexed: 05/07/2023]
Abstract
UNLABELLED Immunostimulatory therapies based on pattern recognition receptors (PRRs) have emerged as an effective approach in the fight against cancer, with the ability to recruit tumor-specific lymphocytes in a low-immunogenicity tumor environment. The agonist cyclic dinucleotides (CDNs) of the stimulator of interferon gene (STING) are a group of very promising anticancer molecules that increase tumor immunogenicity by activating innate immunity. However, the tumor immune efficacy of CDNs is limited by several factors, including relatively narrow cytokine production, inefficient delivery to STING, and rapid clearance. In addition, a single adjuvant molecule is unable to elicit a broad cytokine response and thus cannot further amplify the anticancer effect. To address this problem, two or more agonist molecules are often used together to synergistically enhance immune efficacy. In this work, we found that a combination of the STING agonist CDGSF and the Toll-like receptor 7/8 (TLR7/8) agonist 522 produced a broader cytokine response. Subsequently, we developed multicomponent nanovaccines (MCNVs) consisting of a PC7A polymer as a nanocarrier encapsulating the antigen OVA and adjuvant molecules. These MCNVs activate bone marrow-derived dendritic cells (BMDCs) to produce multiple proinflammatory factors that promote antigen cross-presentation to stimulate specific antitumor T-cell responses. In in vivo experiments, we observed that MCNVs triggered a strong T-cell response in tumor-infiltrating lymphocytes, resulting in significant tumor regression and, notably, a 100% survival rate in mice through 25 days without other partnering therapies. These data suggest that our nanovaccines have great potential to advance cancer immunotherapy with increased durability and potency. ELECTRONIC SUPPLEMENTARY MATERIAL Supplementary material (synthesis of CDGSF, 522, PC7A and OVA; preparation of MCNVs; representative gating strategies for flow cytometry) is available in the online version of this article at 10.1007/s12274-022-4282-x.
Collapse
Affiliation(s)
- Bo-Dou Zhang
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Center for Synthetic and Systems Biology, Tsinghua University, Beijing, 100084 China
| | - Jun-Jun Wu
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Center for Synthetic and Systems Biology, Tsinghua University, Beijing, 100084 China
| | - Wen-Hao Li
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Center for Synthetic and Systems Biology, Tsinghua University, Beijing, 100084 China
| | - Hong-Guo Hu
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Center for Synthetic and Systems Biology, Tsinghua University, Beijing, 100084 China
| | - Lang Zhao
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Center for Synthetic and Systems Biology, Tsinghua University, Beijing, 100084 China
| | - Pei-Yang He
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Center for Synthetic and Systems Biology, Tsinghua University, Beijing, 100084 China
| | - Yu-Fen Zhao
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Center for Synthetic and Systems Biology, Tsinghua University, Beijing, 100084 China
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, 315201 China
| | - Yan-Mei Li
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Center for Synthetic and Systems Biology, Tsinghua University, Beijing, 100084 China
- Beijing Institute for Brain Disorders, Beijing, 100069 China
| |
Collapse
|
8
|
Zhu Y, Wu Z, Yan W, Shao F, Ke B, Jiang X, Gao J, Guo W, Lai Y, Ma H, Chen D, Xu Q, Sun Y. Allosteric inhibition of SHP2 uncovers aberrant TLR7 trafficking in aggravating psoriasis. EMBO Mol Med 2021; 14:e14455. [PMID: 34936223 PMCID: PMC8899919 DOI: 10.15252/emmm.202114455] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 12/08/2021] [Accepted: 12/08/2021] [Indexed: 02/05/2023] Open
Abstract
Psoriasis is a complex chronic inflammatory skin disease with unclear molecular mechanisms. We found that the Src homology‐2 domain‐containing protein tyrosine phosphatase‐2 (SHP2) was highly expressed in both psoriatic patients and imiquimod (IMQ)‐induced psoriasis‐like mice. Also, the SHP2 allosteric inhibitor SHP099 reduced pro‐inflammatory cytokine expression in PBMCs taken from psoriatic patients. Consistently, SHP099 significantly ameliorated IMQ‐triggered skin inflammation in mice. Single‐cell RNA sequencing of murine skin demonstrated that SHP2 inhibition impaired skin inflammation in myeloid cells, especially macrophages. Furthermore, IMQ‐induced psoriasis‐like skin inflammation was significantly alleviated in myeloid cells (monocytes, mature macrophages, and granulocytes)—but not dendritic cells conditional SHP2 knockout mice. Mechanistically, SHP2 promoted the trafficking of toll‐like receptor 7 (TLR7) from the Golgi to the endosome in macrophages by dephosphorylating TLR7 at Tyr1024, boosting the ubiquitination of TLR7 and NF‐κB‐mediated skin inflammation. Importantly, Tlr7 point‐mutant knock‐in mice showed an attenuated psoriasis‐like phenotype compared to wild‐type littermates following IMQ treatment. Collectively, our findings identify SHP2 as a novel regulator of psoriasis and suggest that SHP2 inhibition may be a promising therapeutic approach for psoriatic patients.
Collapse
Affiliation(s)
- Yuyu Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biotechnology and Pharmaceutical Sciences, School of Life Sciences, Nanjing University, Nanjing, China.,College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhigui Wu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biotechnology and Pharmaceutical Sciences, School of Life Sciences, Nanjing University, Nanjing, China
| | - Wei Yan
- Department of Dermatology and Venereology, West China Hospital, Sichuan University, Chengdu, China
| | - Fenli Shao
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biotechnology and Pharmaceutical Sciences, School of Life Sciences, Nanjing University, Nanjing, China
| | - Bowen Ke
- Laboratory of Anesthesia and Critical Care Medicine, Department of Anesthesiology, Translational Neuroscience Center, West China Hospital and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan, China
| | - Xian Jiang
- Department of Dermatology and Venereology, West China Hospital, Sichuan University, Chengdu, China
| | - Jian Gao
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biotechnology and Pharmaceutical Sciences, School of Life Sciences, Nanjing University, Nanjing, China
| | - Wenjie Guo
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biotechnology and Pharmaceutical Sciences, School of Life Sciences, Nanjing University, Nanjing, China
| | - Yuping Lai
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Hongyue Ma
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Dijun Chen
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biotechnology and Pharmaceutical Sciences, School of Life Sciences, Nanjing University, Nanjing, China
| | - Qiang Xu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biotechnology and Pharmaceutical Sciences, School of Life Sciences, Nanjing University, Nanjing, China
| | - Yang Sun
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biotechnology and Pharmaceutical Sciences, School of Life Sciences, Nanjing University, Nanjing, China.,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, China
| |
Collapse
|
9
|
Hernández J, Li Y, Mateu E. Swine Dendritic Cell Response to Porcine Reproductive and Respiratory Syndrome Virus: An Update. Front Immunol 2021; 12:712109. [PMID: 34394113 PMCID: PMC8355811 DOI: 10.3389/fimmu.2021.712109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 07/07/2021] [Indexed: 11/17/2022] Open
Abstract
Dendritic cells (DCs) are the most potent antigen-presenting cells, unique to initiate and coordinate the adaptive immune response. In pigs, conventional DCs (cDCs), plasmacytoid DCs (pDCs), and monocyte-derived DCs (moDCs) have been described in blood and tissues. Different pathogens, such as viruses, could infect these cells, and in some cases, compromise their response. The understanding of the interaction between DCs and viruses is critical to comprehend viral immunopathological responses. Porcine reproductive and respiratory syndrome virus (PRRSV) is the most important respiratory pathogen in the global pig population. Different reports support the notion that PRRSV modulates pig immune response in addition to their genetic and antigenic variability. The interaction of PRRSV with DCs is a mostly unexplored area with conflicting results and lots of uncertainties. Among the scarce certainties, cDCs and pDCs are refractory to PRRSV infection in contrast to moDCs. Additionally, response of DCs to PRRSV can be different depending on the type of DCs and maybe is related to the virulence of the viral isolate. The precise impact of this virus-DC interaction upon the development of the specific immune response is not fully elucidated. The present review briefly summarizes and discusses the previous studies on the interaction of in vitro derived bone marrow (bm)- and moDCs, and in vivo isolated cDCs, pDCs, and moDCs with PRRSV1 and 2.
Collapse
Affiliation(s)
- Jesús Hernández
- Laboratorio de Inmunología, Centro de Investigación en Alimentación y Desarrollo, Hermosillo, Mexico
| | - Yanli Li
- Departament de Sanitat i Anatomia Animals, Facultat de Veterinària, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Enric Mateu
- Departament de Sanitat i Anatomia Animals, Facultat de Veterinària, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain.,IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Cerdanyola del Vallès, Spain
| |
Collapse
|
10
|
Herrera-Uribe J, Liu H, Byrne KA, Bond ZF, Loving CL, Tuggle CK. Changes in H3K27ac at Gene Regulatory Regions in Porcine Alveolar Macrophages Following LPS or PolyIC Exposure. Front Genet 2020; 11:817. [PMID: 32973863 PMCID: PMC7468443 DOI: 10.3389/fgene.2020.00817] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 07/08/2020] [Indexed: 12/17/2022] Open
Abstract
Changes in chromatin structure, especially in histone modifications (HMs), linked with chromatin accessibility for transcription machinery, are considered to play significant roles in transcriptional regulation. Alveolar macrophages (AM) are important immune cells for protection against pulmonary pathogens, and must readily respond to bacteria and viruses that enter the airways. Mechanism(s) controlling AM innate response to different pathogen-associated molecular patterns (PAMPs) are not well defined in pigs. By combining RNA sequencing (RNA-seq) with chromatin immunoprecipitation and sequencing (ChIP-seq) for four histone marks (H3K4me3, H3K4me1, H3K27ac and H3K27me3), we established a chromatin state map for AM stimulated with two different PAMPs, lipopolysaccharide (LPS) and Poly(I:C), and investigated the potential effect of identified histone modifications on transcription factor binding motif (TFBM) prediction and RNA abundance changes in these AM. The integrative analysis suggests that the differential gene expression between non-stimulated and stimulated AM is significantly associated with changes in the H3K27ac level at active regulatory regions. Although global changes in chromatin states were minor after stimulation, we detected chromatin state changes for differentially expressed genes involved in the TLR4, TLR3 and RIG-I signaling pathways. We found that regions marked by H3K27ac genome-wide were enriched for TFBMs of TF that are involved in the inflammatory response. We further documented that TF whose expression was induced by these stimuli had TFBMs enriched within H3K27ac-marked regions whose chromatin state changed by these same stimuli. Given that the dramatic transcriptomic changes and minor chromatin state changes occurred in response to both stimuli, we conclude that regulatory elements (i.e. active promoters) that contain transcription factor binding motifs were already active/poised in AM for immediate inflammatory response to PAMPs. In summary, our data provides the first chromatin state map of porcine AM in response to bacterial and viral PAMPs, contributing to the Functional Annotation of Animal Genomes (FAANG) project, and demonstrates the role of HMs, especially H3K27ac, in regulating transcription in AM in response to LPS and Poly(I:C).
Collapse
Affiliation(s)
- Juber Herrera-Uribe
- Department of Animal Science, Iowa State University, Ames, IA, United States
| | - Haibo Liu
- Department of Animal Science, Iowa State University, Ames, IA, United States
| | - Kristen A Byrne
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, USDA-Agriculture Research Service, Ames, IA, United States
| | - Zahra F Bond
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, USDA-Agriculture Research Service, Ames, IA, United States
| | - Crystal L Loving
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, USDA-Agriculture Research Service, Ames, IA, United States
| | | |
Collapse
|
11
|
TLR3-Dependent Activation of TLR2 Endogenous Ligands via the MyD88 Signaling Pathway Augments the Innate Immune Response. Cells 2020; 9:cells9081910. [PMID: 32824595 PMCID: PMC7464415 DOI: 10.3390/cells9081910] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/12/2020] [Accepted: 08/12/2020] [Indexed: 12/26/2022] Open
Abstract
The role of the adaptor molecule MyD88 is thought to be independent of Toll-like receptor 3 (TLR3) signaling. In this report, we demonstrate a previously unknown role of MyD88 in TLR3 signaling in inducing endogenous ligands of TLR2 to elicit innate immune responses. Of the various TLR ligands examined, the TLR3-specific ligand polyinosinic:polycytidylic acid (poly I:C), significantly induced TNF production and the upregulation of other TLR transcripts, in particular, TLR2. Accordingly, TLR3 stimulation also led to a significant upregulation of endogenous TLR2 ligands mainly, HMGB1 and Hsp60. By contrast, the silencing of TLR3 significantly downregulated MyD88 and TLR2 gene expression and pro-inflammatory IL1β, TNF, and IL8 secretion. The silencing of MyD88 similarly led to the downregulation of TLR2, IL1β, TNF and IL8, thus suggesting MyD88 to somehow act downstream of TLR3. Corroborating in vitro data, Myd88−/− knockout mice downregulated TNF, CXCL1; and phospho-p65 and phospho-IRF3 nuclear localization, upon poly I:C treatment in a mouse model of skin infection. Taken together, we identified a previously unknown role for MyD88 in the TLR3 signaling pathway, underlying the importance of TLRs and adapter protein interplay in modulating endogenous TLR ligands culminating in pro-inflammatory cytokine regulation.
Collapse
|
12
|
Gestal MC, Johnson HM, Harvill ET. Immunomodulation as a Novel Strategy for Prevention and Treatment of Bordetella spp. Infections. Front Immunol 2019; 10:2869. [PMID: 31921136 PMCID: PMC6923730 DOI: 10.3389/fimmu.2019.02869] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 11/22/2019] [Indexed: 12/13/2022] Open
Abstract
Well-adapted pathogens have evolved to survive the many challenges of a robust immune response. Defending against all host antimicrobials simultaneously would be exceedingly difficult, if not impossible, so many co-evolved organisms utilize immunomodulatory tools to subvert, distract, and/or evade the host immune response. Bordetella spp. present many examples of the diversity of immunomodulators and an exceptional experimental system in which to study them. Recent advances in this experimental system suggest strategies for interventions that tweak immunity to disrupt bacterial immunomodulation, engaging more effective host immunity to better prevent and treat infections. Here we review advances in the understanding of respiratory pathogens, with special focus on Bordetella spp., and prospects for the use of immune-stimulatory interventions in the prevention and treatment of infection.
Collapse
Affiliation(s)
- Monica C Gestal
- Department of Infectious Diseases, College of Veterinary Sciences, University of Georgia, Athens, GA, United States
| | - Hannah M Johnson
- Department of Infectious Diseases, College of Veterinary Sciences, University of Georgia, Athens, GA, United States
| | - Eric T Harvill
- Department of Infectious Diseases, College of Veterinary Sciences, University of Georgia, Athens, GA, United States
| |
Collapse
|
13
|
Su F, Xu L, Xue Y, Li J, Fu Y, Yu B, Wang S, Yuan X. Th1-biased immunoadjuvant effect of the recombinant B subunit of an Escherichia coli heat-labile enterotoxin on an inactivated porcine reproductive and respiratory syndrome virus antigen via intranasal immunization in mice. J Vet Med Sci 2019; 81:1475-1484. [PMID: 31527353 PMCID: PMC6863725 DOI: 10.1292/jvms.19-0057] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is one of the major swine diseases
responsible for a significant challenge in the global swine industry. The current PRRS
inactivated vaccine only confers limited protection against PRRSV. Thus, using an
appropriate adjuvant via a suitable administration route may help improve vaccine
efficacy. In this study, the recombinant B subunit of the Escherichia
coli heat-labile enterotoxin rLTB, was highly expressed in Pichia
pastoris, through high-density fermentation. rLTB intranasal adjuvant
properties were evaluated on an inactivated PRRS antigen in mice. Compared to the group
immunized with solely PRRS antigen, a dose of 50 µg rLTB remarkably
raised antigen-specific IgA antibodies at mucosal sites, and increased serum IgG
antibodies, preferentially the IgG2a and IgG2b subclasses. Further, rLTB induced increases
in Th1- (IFN-γ and IL-12) and Th17 (IL-6) cytokine profiles, but had little effect on Th2
cytokine profiles (IL-4 and IL-10). Moreover, there were no overt toxicities associated
with intranasal rLTB administration. Our data provide evidence that the rLTB produced by
P. pastoris fermentation portrays low toxicity, and its intranasal
adjuvant effect involves immune system modulation to a Th1 profile.
Collapse
Affiliation(s)
- Fei Su
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310002, China
| | - Lihua Xu
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310002, China
| | - Yin Xue
- Zhejiang Center of Animal Disease Control, Hangzhou, Zhejiang 310020, China
| | - Junxing Li
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310002, China
| | - Yuan Fu
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310002, China
| | - Bin Yu
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310002, China
| | - Sai Wang
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310002, China
| | - Xiufang Yuan
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310002, China
| |
Collapse
|
14
|
Hu Y, Wu X, Feng W, Li F, Wang Z, Qi J, Du Y. Cellular protein profiles altered by PRRSV infection of porcine monocytes-derived dendritic cells. Vet Microbiol 2019; 228:134-142. [DOI: 10.1016/j.vetmic.2018.11.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 11/14/2018] [Accepted: 11/16/2018] [Indexed: 01/24/2023]
|
15
|
Li J, Wang J, Liu Y, Yang J, Guo L, Ren S, Chen Z, Liu Z, Zhang Y, Qiu W, Li Y, Zhang S, Yu J, Wu J. Porcine reproductive and respiratory syndrome virus NADC30-like strain accelerates Streptococcus suis serotype 2 infection in vivo and in vitro. Transbound Emerg Dis 2018; 66:729-742. [PMID: 30427126 DOI: 10.1111/tbed.13072] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 10/24/2018] [Accepted: 11/03/2018] [Indexed: 12/27/2022]
Abstract
Porcine reproductive and respiratory syndrome (PRRS), an economically significant pandemic disease, commonly results in increased impact of bacterial infections, including those by Streptococcus suis (S. suis). In recent years, PRRS virus (PRRSV) NADC30-like strain has emerged in different regions of China, and coinfected with S. suis and PRRSV has also gradually increased in clinical performance. However, the mechanisms involved in host innate responses towards S. suis and their implications of coinfection with NADC30-like strain remain unknown. Therefore, the pathogenicity of NADC30-like strain and S. suis serotype 2 (SS2) coinfection in vivo and in vitro was investigated in this study. The results showed that NADC30-like increased the invasion and proliferation of SS2 in blood and tissues, resulting in more severe pneumonia, myocarditis, and peritonitisas well as higher mortality rate in pigs. In vitro, NADC30-like strain increased the invasion and survival of SS2 in porcine alveolar macrophages (PAM) cells, causing more drastic expression of inflammatory cytokines and activation of NF-ĸB signalling. These results pave the way for understanding the interaction of S. suis with the swine immune system and their modulation in a viral coinfection.
Collapse
Affiliation(s)
- Jianda Li
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Jinbao Wang
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China.,School of Life Sciences, Shandong Normal University, Jinan, China.,School of Life Sciences, Shandong University, Jinan, China
| | - Yueyue Liu
- School of Life Sciences, Shandong University, Jinan, China
| | - Jie Yang
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Lihui Guo
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Sufang Ren
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Zhi Chen
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Zhaoshan Liu
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China.,School of Life Sciences, Shandong University, Jinan, China
| | - Yuyu Zhang
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Wenbin Qiu
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China.,School of Life Sciences, Shandong Normal University, Jinan, China
| | - Yubao Li
- School of Life Sciences, Liaocheng University, Liaocheng, China
| | - Shujin Zhang
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China.,School of Life Sciences, Liaocheng University, Liaocheng, China
| | - Jiang Yu
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Jiaqiang Wu
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China.,School of Life Sciences, Shandong Normal University, Jinan, China.,School of Life Sciences, Shandong University, Jinan, China.,School of Life Sciences, Liaocheng University, Liaocheng, China
| |
Collapse
|
16
|
|
17
|
Cao XX, Li YH, Ye QL, Hu X, Wang TF, Fan MW. Self-assembling anticaries mucosal vaccine containing ferritin cage nanostructure and glucan-binding region of S. mutans glucosyltransferase effectively prevents caries formation in rodents. Hum Vaccin Immunother 2018; 13:2332-2340. [PMID: 28759297 DOI: 10.1080/21645515.2017.1349046] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Anticaries protein vaccines that induce a mucosal immune response are not effective. Therefore, development of effective and convenient anticaries vaccines is a priority of dental research. Here we generated self-assembling nanoparticles by linking the glucan-binding region of Streptococcus mutans glucosyltransferase (GLU) to the N-terminal domain of ferritin to determine whether these novel nanoparticles enhanced the immunogenicity of an anticaries protein vaccine against GLU in rodents. We constructed the expression plasmid pET28a-GLU-FTH and purified the proteins from bacteria using size-exclusion chromatography. BALB/c mice were used to evaluate the ability of GLU-ferritin (GLU-FTH) nanoparticles to induce GLU-specific mucosal and systemic responses. The protective efficiency of GLU-FTH nanoparticles was compared with that of GLU alone or a mixture of GLU and poly(I:C) after administering an intranasal infusion to Wistar rats. The phagocytosis and maturation of dendritic cells (DCs) exposed in vitro to the nanoparticles were assessed using flow cytometry. The GLU-FTH nanoparticle vaccine elicited significantly higher levels of GLU-specific antibodies compared with GLU or a mixture of GLU and poly(I:C). Immunization with GLU-FTH achieved lower caries scores compared with those of the other vaccines. Administration of GLU-FTH nanoparticles enhanced phagocytosis by DCs and their maturation. Thus, self-assembling GLU-FTH is a highly effective anticaries mucosal vaccine that enhanced antibody production and inhibited S. mutans infection in rodents.
Collapse
Affiliation(s)
- Xi-Xi Cao
- a The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine of Ministry of Education (KLOBM) , School & Hospital of Stomatology, Wuhan University , Wuhan , China
| | - Yu-Hong Li
- a The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine of Ministry of Education (KLOBM) , School & Hospital of Stomatology, Wuhan University , Wuhan , China.,b Department of Endodontics , School and Hospital of Stomatology, Wuhan University , Wuhan , China
| | - Qian-Lin Ye
- a The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine of Ministry of Education (KLOBM) , School & Hospital of Stomatology, Wuhan University , Wuhan , China
| | - Xuan Hu
- a The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine of Ministry of Education (KLOBM) , School & Hospital of Stomatology, Wuhan University , Wuhan , China
| | - Tian-Feng Wang
- c Department of Oral Radiology , Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam , Amsterdam , The Netherlands
| | - Ming-Wen Fan
- a The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine of Ministry of Education (KLOBM) , School & Hospital of Stomatology, Wuhan University , Wuhan , China
| |
Collapse
|
18
|
Bocanegra Gondan AI, Ruiz-de-Angulo A, Zabaleta A, Gómez Blanco N, Cobaleda-Siles BM, García-Granda MJ, Padro D, Llop J, Arnaiz B, Gato M, Escors D, Mareque-Rivas JC. Effective cancer immunotherapy in mice by polyIC-imiquimod complexes and engineered magnetic nanoparticles. Biomaterials 2018; 170:95-115. [PMID: 29656235 DOI: 10.1016/j.biomaterials.2018.04.003] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 03/21/2018] [Accepted: 04/01/2018] [Indexed: 02/07/2023]
Abstract
Encouraging results are emerging from systems that exploit Toll like receptor (TLR) signaling, nanotechnology, checkpoint inhibition and molecular imaging for cancer immunotherapy. A major remaining challenge is developing effective, durable and tumour-specific immune responses without systemic toxicity. Here, we report a simple and versatile system based on synergistic activation of immune responses and direct cancer cell killing by combined TLR ligation using polyIC as TLR3 and imiquimod (R837) as TLR7 agonist, in combination with the model antigen ovalbumin (OVA) and phospholipid micelles loaded with zinc-doped iron oxide magnetic nanoparticles (MNPs). The combination of TLR agonists triggered a strong innate immune response in the lymph nodes (LNs) without systemic release of pro-inflammatory cytokines. The vaccines showed excellent efficacy against aggressive B16-F10 melanoma cells expressing OVA, which was improved with immune checkpoint abrogation of the immunosuppressive programmed death-ligand 1 (PD-L1) at the level of the cancer cells. By magnetic resonance (MR) and nuclear imaging we could track the vaccine migration from the site of injection to LNs and tumour. Overall, we show this synergistic TLR agonists and their combination with MNPs and immune checkpoint blockade to have considerable potential for preclinical and clinical development of vaccines for cancer immunotherapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Daniel Padro
- CIC biomaGUNE, Paseo Miramón 182, 20014 San Sebastián, Spain
| | - Jordi Llop
- IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain
| | - Blanca Arnaiz
- IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain
| | - María Gato
- Department of Oncology, Navarrabiomed-Biomedical Research Centre, Fundación Miguel Servet, Complejo Hospitalario de Navarra, Pamplona, Spain
| | - David Escors
- Department of Oncology, Navarrabiomed-Biomedical Research Centre, Fundación Miguel Servet, Complejo Hospitalario de Navarra, Pamplona, Spain
| | - Juan C Mareque-Rivas
- CIC biomaGUNE, Paseo Miramón 182, 20014 San Sebastián, Spain; IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain; Department of Chemistry and Centre for NanoHealth, Swansea University, Singleton Park, Swansea, SA2 8PP, UK.
| |
Collapse
|
19
|
Antiviral Strategies against PRRSV Infection. Trends Microbiol 2017; 25:968-979. [DOI: 10.1016/j.tim.2017.06.001] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 05/25/2017] [Accepted: 06/01/2017] [Indexed: 01/03/2023]
|
20
|
Patchett AL, Tovar C, Corcoran LM, Lyons AB, Woods GM. The toll-like receptor ligands Hiltonol ® (polyICLC) and imiquimod effectively activate antigen-specific immune responses in Tasmanian devils (Sarcophilus harrisii). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 76:352-360. [PMID: 28689773 DOI: 10.1016/j.dci.2017.07.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 06/28/2017] [Accepted: 07/05/2017] [Indexed: 06/07/2023]
Abstract
Devil facial tumour disease (DFTD) describes two genetically distinct transmissible tumours that pose a significant threat to the survival of the Tasmanian devil. A prophylactic vaccine could protect devils from DFTD transmission. For this vaccine to be effective, potent immune adjuvants will be required. Toll-like receptors (TLRs) promote robust immune responses in human cancer studies and are highly conserved across mammalian species. In this study, we investigated the proficiency of TLR ligands for immune activation in the Tasmanian devil using in vitro mononuclear cell stimulations and in vivo immunisation trials with a model antigen. We identified two such TLR ligands, polyICLC (Hiltonol®) (TLR3) and imiquimod (TLR7), that in combination induced significant IFNγ production from Tasmanian devil lymphocytes in vitro. Immunisation with these ligands and the model antigen keyhole limpet haemocyanin activated robust antigen-specific primary, secondary and long-term memory IgG responses. Our results support the conserved nature of TLR signaling across mammalian species. PolyICLC and imiquimod will be trialed as immune adjuvants in future DFTD vaccine formulations.
Collapse
Affiliation(s)
- Amanda L Patchett
- Menzies Institute for Medical Research, University of Tasmania, Hobart 7000, Tasmania, Australia.
| | - Cesar Tovar
- Menzies Institute for Medical Research, University of Tasmania, Hobart 7000, Tasmania, Australia
| | - Lynn M Corcoran
- The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Victoria, Australia; Department of Medical Biology, The University of Melbourne, Parkville 3052, Victoria, Australia
| | - A Bruce Lyons
- School of Medicine, University of Tasmania, Hobart 7000, Tasmania, Australia
| | - Gregory M Woods
- Menzies Institute for Medical Research, University of Tasmania, Hobart 7000, Tasmania, Australia; School of Medicine, University of Tasmania, Hobart 7000, Tasmania, Australia
| |
Collapse
|
21
|
Ohno Y, Toyoshima Y, Yurino H, Monma N, Xiang H, Sumida K, Kaneumi S, Terada S, Hashimoto S, Ikeo K, Homma S, Kawamura H, Takahashi N, Taketomi A, Kitamura H. Lack of interleukin-6 in the tumor microenvironment augments type-1 immunity and increases the efficacy of cancer immunotherapy. Cancer Sci 2017; 108:1959-1966. [PMID: 28746799 PMCID: PMC5623732 DOI: 10.1111/cas.13330] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 07/21/2017] [Accepted: 07/24/2017] [Indexed: 12/21/2022] Open
Abstract
Conquering immunosuppression in tumor microenvironments is crucial for effective cancer immunotherapy. It is well known that interleukin (IL)‐6, a pleiotropic cytokine, is produced in the tumor‐bearing state. In the present study, we investigated the precise effects of IL‐6 on antitumor immunity and the subsequent tumorigenesis in tumor‐bearing hosts. CT26 cells, a murine colon cancer cell line, were intradermally injected into wild‐type and IL‐6‐deficient mice. As a result, we found that tumor growth was decreased significantly in IL‐6‐deficient mice compared with wild‐type mice and the reduction was abrogated by depletion of CD8+ T cells. We further evaluated the immune status of tumor microenvironments and confirmed that mature dendritic cells, helper T cells and cytotoxic T cells were highly accumulated in tumor sites under the IL‐6‐deficient condition. In addition, higher numbers of interferon (IFN)‐γ‐producing T cells were present in the tumor tissues of IL‐6‐deficient mice compared with wild‐type mice. Surface expression levels of programmed death‐ligand 1 (PD‐L1) and MHC class I on CT26 cells were enhanced under the IL‐6‐deficient condition in vivo and by IFN‐γ stimulation in vitro. Finally, we confirmed that in vivo injection of an anti‐PD‐L1 antibody or a Toll‐like receptor 3 ligand, polyinosinic‐polycytidylic acid, effectively inhibited tumorigenesis under the IL‐6‐deficient condition. Based on these findings, we speculate that a lack of IL‐6 produced in tumor‐bearing host augments induction of antitumor effector T cells and inhibits tumorigenesis in vivo, suggesting that IL‐6 signaling may be a promising target for the development of effective cancer immunotherapies.
Collapse
Affiliation(s)
- Yosuke Ohno
- Division of Functional Immunology, Section of Disease Control, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan.,Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Yujiro Toyoshima
- Division of Functional Immunology, Section of Disease Control, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan.,Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Hideaki Yurino
- Department of Integrative Medicine for Longevity, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Norikazu Monma
- DNA Data Analysis Laboratory, National Institute of Genetics, Mishima, Japan
| | - Huihui Xiang
- Division of Functional Immunology, Section of Disease Control, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Kentaro Sumida
- Division of Functional Immunology, Section of Disease Control, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Shun Kaneumi
- Division of Functional Immunology, Section of Disease Control, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Satoshi Terada
- Division of Functional Immunology, Section of Disease Control, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Shinichi Hashimoto
- Department of Integrative Medicine for Longevity, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Kazuho Ikeo
- DNA Data Analysis Laboratory, National Institute of Genetics, Mishima, Japan
| | - Shigenori Homma
- Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Hideki Kawamura
- Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Norihiko Takahashi
- Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Akinobu Taketomi
- Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Hidemitsu Kitamura
- Division of Functional Immunology, Section of Disease Control, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
22
|
Kitamura H, Ohno Y, Toyoshima Y, Ohtake J, Homma S, Kawamura H, Takahashi N, Taketomi A. Interleukin-6/STAT3 signaling as a promising target to improve the efficacy of cancer immunotherapy. Cancer Sci 2017; 108:1947-1952. [PMID: 28749573 PMCID: PMC5623748 DOI: 10.1111/cas.13332] [Citation(s) in RCA: 197] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 07/18/2017] [Accepted: 07/24/2017] [Indexed: 12/20/2022] Open
Abstract
Overcoming the immunosuppressive state in tumor microenvironments is a critical issue for improving the efficacy of cancer immunotherapy. Interleukin (IL)‐6, a pleiotropic cytokine, is highly produced in the tumor‐bearing host. Previous studies have indicated that IL‐6 suppresses the antigen presentation ability of dendritic cells (DC) through activation of signal transducer and activator of transcription 3 (STAT3). Thus, we focused on the precise effect of the IL‐6/STAT3 signaling cascade on human DC and the subsequent induction of antitumor T cell immune responses. Tumor‐infiltrating CD11b+CD11c+ cells isolated from colorectal cancer tissues showed strong induction of the IL‐6 gene, downregulated surface expression of human leukocyte antigen (HLA)‐DR, and an attenuated T cell‐stimulating ability compared with those from peripheral blood mononuclear cells, suggesting that the tumor microenvironment suppresses antitumor effector cells. In vitro experiments revealed that IL‐6‐mediated STAT3 activation reduced surface expression of HLA‐DR on CD14+ monocyte‐derived DC. Moreover, we confirmed that cyclooxygenase 2, lysosome protease and arginase activities were involved in the IL‐6‐mediated downregulation of the surface expression levels of HLA class II on human DC. These findings suggest that IL‐6‐mediated STAT3 activation in the tumor microenvironment inhibits functional maturation of DC to activate effector T cells, blocking introduction of antitumor immunity in cancers. Therefore, we propose in this review that blockade of the IL‐6/STAT3 signaling pathway and target molecules in DC may be a promising strategy to improve the efficacy of immunotherapies for cancer patients.
Collapse
Affiliation(s)
- Hidemitsu Kitamura
- Division of Functional Immunology, Section of Disease Control, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Yosuke Ohno
- Division of Functional Immunology, Section of Disease Control, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan.,Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Yujiro Toyoshima
- Division of Functional Immunology, Section of Disease Control, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan.,Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Junya Ohtake
- Division of Functional Immunology, Section of Disease Control, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Shigenori Homma
- Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Hideki Kawamura
- Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Norihiko Takahashi
- Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Akinobu Taketomi
- Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| |
Collapse
|
23
|
Gutjahr A, Papagno L, Nicoli F, Lamoureux A, Vernejoul F, Lioux T, Gostick E, Price DA, Tiraby G, Perouzel E, Appay V, Verrier B, Paul S. Cutting Edge: A Dual TLR2 and TLR7 Ligand Induces Highly Potent Humoral and Cell-Mediated Immune Responses. THE JOURNAL OF IMMUNOLOGY 2017; 198:4205-4209. [PMID: 28432147 DOI: 10.4049/jimmunol.1602131] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 03/28/2017] [Indexed: 12/22/2022]
Abstract
TLR agonists are currently being developed and tested as adjuvants in various formulations to optimize the immunogenicity and efficacy of vaccines. The aim of this study was to evaluate the immunostimulatory properties of a novel compound incorporating covalently linked moieties designed to stimulate both TLR2 and TLR7. This dual TLR2/TLR7 agonist induced the maturation of dendritic cells and primed substantial populations of cytolytic and highly polyfunctional effector CD8+ T cells in vitro, and safely potentiated the immunogenic properties of a nanoparticulate Ag in vivo, eliciting humoral responses with a balanced TH1/TH2 profile in mice. Collectively, these data reveal the potential utility of chimeric adjuvants with synergistic activities mediated via TLRs.
Collapse
Affiliation(s)
- Alice Gutjahr
- InvivoGen, 31400 Toulouse, France.,Laboratoire de Biologie Tissulaire et d'Ingénierie Thérapeutique, UMR5305, Université Lyon 1, CNRS, 69007 Lyon, France.,Groupe Immunité des Muqueuses et Agents Pathogènes, Faculté de Médecine de Saint-Etienne, INSERM Centre d'Investigation Clinique en Vaccinologie 1408, 42023 Saint-Etienne, France
| | - Laura Papagno
- Sorbonne Universités, Université Pierre et Marie Curie - Université Paris VI, Departement Hospitalo-Universitaire "Vieillissement Immunitaire et Stress," Centre d'Immunologie et des Maladies Infectieuses, 75252 Paris, France.,INSERM U1135, Centre d'Immunologie et des Maladies Infectieuses, 75252 Paris, France
| | - Francesco Nicoli
- Sorbonne Universités, Université Pierre et Marie Curie - Université Paris VI, Departement Hospitalo-Universitaire "Vieillissement Immunitaire et Stress," Centre d'Immunologie et des Maladies Infectieuses, 75252 Paris, France.,INSERM U1135, Centre d'Immunologie et des Maladies Infectieuses, 75252 Paris, France
| | | | | | | | - Emma Gostick
- Institute of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, United Kingdom; and
| | - David A Price
- Institute of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, United Kingdom; and
| | | | | | - Victor Appay
- Sorbonne Universités, Université Pierre et Marie Curie - Université Paris VI, Departement Hospitalo-Universitaire "Vieillissement Immunitaire et Stress," Centre d'Immunologie et des Maladies Infectieuses, 75252 Paris, France.,INSERM U1135, Centre d'Immunologie et des Maladies Infectieuses, 75252 Paris, France.,International Research Center of Medical Sciences, Kumamoto University, Kumamoto 860-0811, Japan
| | - Bernard Verrier
- Laboratoire de Biologie Tissulaire et d'Ingénierie Thérapeutique, UMR5305, Université Lyon 1, CNRS, 69007 Lyon, France
| | - Stéphane Paul
- Groupe Immunité des Muqueuses et Agents Pathogènes, Faculté de Médecine de Saint-Etienne, INSERM Centre d'Investigation Clinique en Vaccinologie 1408, 42023 Saint-Etienne, France;
| |
Collapse
|
24
|
Porcine Dendritic Cells as an In Vitro Model to Assess the Immunological Behaviour of Streptococcus suis Subunit Vaccine Formulations and the Polarizing Effect of Adjuvants. Pathogens 2017; 6:pathogens6010013. [PMID: 28327531 PMCID: PMC5371901 DOI: 10.3390/pathogens6010013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 03/10/2017] [Accepted: 03/18/2017] [Indexed: 01/03/2023] Open
Abstract
An in vitro porcine bone marrow-derived dendritic cell (DC) culture was developed as a model for evaluating immune polarization induced by adjuvants when administered with immunogens that may become vaccine candidates if appropriately formulated. The swine pathogen Streptococcus suis was chosen as a prototype to evaluate proposed S. suis vaccine candidates in combination with the adjuvants Poly I:C, Quil A ®, Alhydrogel ®, TiterMax Gold ® and Stimune ®. The toll-like receptor ligand Poly I:C and the saponin Quil A ® polarized swine DC cytokines towards a type 1 phenotype, with preferential production of IL-12 and TNF-α. The water-in-oil adjuvants TiterMax Gold ® and Stimune ® favoured a type 2 profile as suggested by a marked IL-6 release. In contrast, Alhydrogel ® induced a type 1/type 2 mixed cytokine profile. The antigen type differently modified the magnitude of the adjuvant effect, but overall polarization was preserved. This is the first comparative report on swine DC immune activation by different adjuvants. Although further swine immunization studies would be required to better characterize the induced responses, the herein proposed in vitro model is a promising approach that helps assessing behaviour of the vaccine formulation rapidly at the pre-screening stage and will certainly reduce numbers of animals used while advancing vaccinology science.
Collapse
|
25
|
Hu J, Yang D, Wang H, Li C, Zeng Y, Chen W. CpG Oligodeoxynucleotides Induce Differential Cytokine and Chemokine Gene Expression Profiles in Dapulian and Landrace Pigs. Front Microbiol 2016; 7:1992. [PMID: 28018321 PMCID: PMC5156958 DOI: 10.3389/fmicb.2016.01992] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Accepted: 11/28/2016] [Indexed: 12/16/2022] Open
Abstract
Oligodeoxynucleotides containing unmethylated CpG motifs (CpG ODN) mimic the immunostimulatory activity of microbial DNA by interacting with Toll-like receptor 9 (TLR9) to activate both the innate and adaptive immune responses in different species. However, few studies have been published to compare the effects of CpG ODN on different pig breeds. Therefore, in this study, whole blood gene expression profiles of DPL and Landrace pigs treated with CpG ODN were studied using RNA-seq technology. Five Hundred differentially expressed genes (DEGs) were identified between the two breeds. DPL pigs had significantly higher number of immune-relevant DEGs than the Landrace pigs after CpG ODN treatment. Pathway analysis showed that cytokine-cytokine receptor interaction and chemokine signaling pathway were the major enriched pathways of the immune-relevant DEGs. Further in vitro experiments showed that PBMCs of the DPL pigs had significantly higher levels of TLR9 mRNA than those of the Landrace pigs, both before and after CpG ODN stimulation. Cytokine and chemokine induction in the PBMCs of both breeds were also measured after CpG ODN stimulation. Our data showed that mRNA levels of cytokines (IFNα, IL8, IL12 p40) and chemokines (CXCL9, CXCL13) were significantly higher in the PBMCs of the DPL pigs than those of the Landrace pigs. Taken together, our data provide new information regarding the pig breed difference in response to CpG ODN stimulation and that higher levels of TLR9 mRNA in DPL pigs may be a major contributor for disease resistance.
Collapse
Affiliation(s)
| | | | | | | | - Yongqing Zeng
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, Shandong Agricultural UniversityTai'an, China
| | - Wei Chen
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, Shandong Agricultural UniversityTai'an, China
| |
Collapse
|
26
|
Gutjahr A, Tiraby G, Perouzel E, Verrier B, Paul S. Triggering Intracellular Receptors for Vaccine Adjuvantation. Trends Immunol 2016; 37:573-587. [PMID: 27474233 DOI: 10.1016/j.it.2016.07.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 06/16/2016] [Accepted: 07/06/2016] [Indexed: 12/15/2022]
Abstract
Immune adjuvants are components that stimulate, potentiate, or modulate the immune response to an antigen. They are key elements of vaccines in both the prophylactic and therapeutic domains. In the past decade substantial progress in our understanding of innate immunity has paved the way for the design of next-generation adjuvants that stimulate a wide range of receptors. Within the framework of vaccine adjuvant design, this review outlines the interest of targeting endosomal and intracellular receptors to enhance and guide the immune response. We present and compare the molecules as well as potential combinations which are currently in the spotlight. We emphasize how targeting the appropriate receptor can direct immunity towards the appropriate response, such as a cytotoxic or mucosal response.
Collapse
Affiliation(s)
- Alice Gutjahr
- Laboratoire de Biologie Tissulaire et d'Ingénierie Thérapeutique, Unité Mixte de Recherche 5305, Université Lyon 1, Centre National de la Recherche Scientifique (CNRS), Institut de Biologie et Chimie des Protéines (IBCP)-Lyon, France; InvivoGen, Toulouse, France; Groupe Immunité des Muqueuses et Agents Pathogènes, Institut National de la Santé et de la Recherche Médicale (INSERM) Centre d'Investigation Clinique 1408 Vaccinologie, Faculté de Médecine de Saint-Etienne-Saint-Etienne, France
| | | | | | - Bernard Verrier
- Laboratoire de Biologie Tissulaire et d'Ingénierie Thérapeutique, Unité Mixte de Recherche 5305, Université Lyon 1, Centre National de la Recherche Scientifique (CNRS), Institut de Biologie et Chimie des Protéines (IBCP)-Lyon, France
| | - Stéphane Paul
- Groupe Immunité des Muqueuses et Agents Pathogènes, Institut National de la Santé et de la Recherche Médicale (INSERM) Centre d'Investigation Clinique 1408 Vaccinologie, Faculté de Médecine de Saint-Etienne-Saint-Etienne, France.
| |
Collapse
|