1
|
Gulotta M, Perricone U, Rubino P, Bonura A, Feo S, Giallongo A, Perconti G. ENO1/Hsp70 Interaction Domains: In Silico and In Vitro Insight for a Putative Therapeutic Target in Cancer. ACS OMEGA 2025; 10:5036-5046. [PMID: 39959117 PMCID: PMC11822713 DOI: 10.1021/acsomega.4c10808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/14/2025] [Accepted: 01/22/2025] [Indexed: 02/18/2025]
Abstract
Alpha-enolase (ENO1) is a multifunctional protein with oncogenic roles. First described as a glycolytic enzyme, the protein performs different functions according to its cellular localization, post-translational modifications, and binding partners. Cell surface-localized ENO1 serves as a plasminogen-binding receptor, and it has been detected in several cell types, including various tumor cells. The plasminogen system plays a crucial role in pathological events, such as tumor cell invasion and metastasis. We have previously demonstrated that the interaction of ENO1 with the multifunctional chaperone Hsp70 increases its surface localization and the migratory and invasive capacity of breast cancer cells, thus representing a novel potential target to counteract the metastatic potential of tumors. Here, we have used computational approaches to map the putative binding region of ENO1 to Hsp70 and predict the key anchoring amino acids, also called hot spots. In vitro coimmunoprecipitation experiments were then used to validate the in silico prediction of the protein-protein interaction. This work outcome will be further used as a guide for the design of potential ENO1/HSP70 inhibitors.
Collapse
Affiliation(s)
- Maria
Rita Gulotta
- Molecular
Informatics Group, Fondazione Ri.MED, Corso Calatafimi 414, Palermo 90129, Italy
| | - Ugo Perricone
- Molecular
Informatics Group, Fondazione Ri.MED, Corso Calatafimi 414, Palermo 90129, Italy
| | - Patrizia Rubino
- Institute
of Translational Pharmacology (IFT), National
Research Council (CNR), Via Ugo la Malfa 153, Palermo 90146, Italy
| | - Angela Bonura
- Institute
of Translational Pharmacology (IFT), National
Research Council (CNR), Via Ugo la Malfa 153, Palermo 90146, Italy
| | - Salvatore Feo
- Department
of Biological Chemical and Pharmaceutical Sciences and Technologies
(STEBICEF), University of Palermo, Viale delle Scienze, Palermo 90128, Italy
| | - Agata Giallongo
- Institute
of Biomedical Research and Innovation (IRIB), National Research Council (CNR), Via Ugo la Malfa 153, Palermo 90146, Italy
| | - Giovanni Perconti
- Institute
of Translational Pharmacology (IFT), National
Research Council (CNR), Via Ugo la Malfa 153, Palermo 90146, Italy
- Institute
of Biomedical Research and Innovation (IRIB), National Research Council (CNR), Via Ugo la Malfa 153, Palermo 90146, Italy
| |
Collapse
|
2
|
Hadpech S, Chaiyarit S, Phuangkham S, Sukphan S, Thongboonkerd V. The modulatory effects of large and small extracellular vesicles from normal human urine on calcium oxalate crystallization, growth, aggregation, adhesion on renal cells, and invasion through extracellular matrix: An in vitro study. Biomed Pharmacother 2024; 173:116393. [PMID: 38461684 DOI: 10.1016/j.biopha.2024.116393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/04/2024] [Accepted: 03/06/2024] [Indexed: 03/12/2024] Open
Abstract
Urinary extracellular vesicles (uEVs) play important roles in physiologic condition and various renal/urological disorders. However, their roles in kidney stone disease remain unclear. This study aimed to examine modulatory effects of large and small uEVs derived from normal human urine on calcium oxalate (CaOx) crystals (the main component in kidney stones). After isolation, large uEVs, small uEVs and total urinary proteins (TUPs) with equal (protein equivalent) concentration were added into various crystal assays to compare with the control (without uEVs or TUPs). TUPs strongly inhibited CaOx crystallization, growth, aggregation and crystal-cell adhesion. Large uEVs had lesser degree of inhibition against crystallization, growth and crystal-cell adhesion, and comparable degree of aggregation inhibition compared with TUPs. Small uEVs had comparable inhibitory effects as of TUPs for all these crystal assays. However, TUPs and large uEVs slightly promoted CaOx invasion through extracellular matrix, whereas small uEVs did not affect this. Matching of the proteins reported in six uEVs datasets with those in the kidney stone modulator (StoneMod) database revealed that uEVs contained 18 known CaOx stone modulators (mainly inhibitors). These findings suggest that uEVs derived from normal human urine serve as CaOx stone inhibitors to prevent healthy individuals from kidney stone formation.
Collapse
Affiliation(s)
- Sudarat Hadpech
- Medical Proteomics Unit, Research Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Sakdithep Chaiyarit
- Medical Proteomics Unit, Research Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Somsakul Phuangkham
- Medical Proteomics Unit, Research Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Sirirat Sukphan
- Medical Proteomics Unit, Research Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Visith Thongboonkerd
- Medical Proteomics Unit, Research Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
3
|
Kanlaya R, Kuljiratansiri R, Peerapen P, Thongboonkerd V. The inhibitory effects of epigallocatechin-3-gallate on calcium oxalate monohydrate crystal growth, aggregation and crystal-cell adhesion. Biomed Pharmacother 2024; 170:115988. [PMID: 38061137 DOI: 10.1016/j.biopha.2023.115988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/29/2023] [Accepted: 12/04/2023] [Indexed: 01/10/2024] Open
Abstract
Epigallocatechin-3-gallate (EGCG), a predominant phytochemical in tea plant, has been reported to prevent kidney stone formation but with vague mechanism. We investigated modulatory effects of EGCG (at 0.1-100 µM) on calcium oxalate monohydrate (COM) crystals at various stages of kidney stone development. EGCG significantly increased crystal size (at 1-100 µM), but decreased crystal number (at 10-100 µM), resulting in unchanged crystal mass and volume. Interestingly, EGCG at 10-100 µM caused morphological change of the crystals from typical monoclinic prismatic to coffee-bean-like shape, which represented atypical/aberrant form of COM as confirmed by attenuated total reflection - Fourier transform infrared (ATR-FTIR) spectroscopy. EGCG at all concentrations significantly inhibited crystal growth in a concentration-dependent manner. However, only 100 µM and 10-100 µM of EGCG significantly inhibited crystal aggregation and crystal-cell adhesion, respectively. Immunofluorescence staining (without permeabilization) revealed that surface expression of heat shock protein 90 (HSP90) (a COM crystal receptor) on MDCK renal cells was significantly decreased by 10 µM EGCG, whereas other surface COM receptors (annexin A1, annexin A2, enolase 1 and ezrin) remained unchanged. Immunoblotting showed that 10 µM EGCG did not alter total level of HSP90 in MDCK cells, implicating that its decreased surface expression was due to translocation. Our data provide a piece of evidence explaining mechanism underlying the anti-lithiatic property of EGCG by inhibition of COM crystal growth, aggregation and crystal-cell adhesion via reduced surface expression of HSP90, which is an important COM crystal receptor.
Collapse
Affiliation(s)
- Rattiyaporn Kanlaya
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | | | - Paleerath Peerapen
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Visith Thongboonkerd
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand.
| |
Collapse
|
4
|
Chaiyarit S, Phuangkham S, Thongboonkerd V. Quercetin inhibits calcium oxalate crystallization and growth but promotes crystal aggregation and invasion. Curr Res Food Sci 2023; 8:100650. [PMID: 38145155 PMCID: PMC10733680 DOI: 10.1016/j.crfs.2023.100650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/30/2023] [Accepted: 11/30/2023] [Indexed: 12/26/2023] Open
Abstract
Recent evidence has shown an association between kidney stone pathogenesis and oxidative stress. Many anti-oxidants have been studied with an aim for stone prevention. Quercetin, a natural flavonol, is one among those eminent anti-oxidants with satisfactory anti-inflammatory property to cope with renal tissue injury in kidney stone disease. Nevertheless, its direct effect (if any) on calcium oxalate (CaOx) crystals and the stone formation mechanism had not been previously explored. This study has addressed the ability of quercetin at various concentrations (2.5, 5, 10, 20, 40, 80 and 160 μM) to directly modulate CaOx crystallization, growth, aggregation, adhesion on kidney cells, and invasion through the matrix. The data have shown that quercetin significantly inhibits CaOx crystallization and crystal growth but promotes crystal aggregation in concentration-dependent manner. However, quercetin at all these concentrations do not affect CaOx adhesion on kidney cells. For the invasion, quercetin at all concentrations constantly promotes CaOx invasion through the matrix without concentration-dependent pattern. These discoveries have demonstrated for the first time that quercetin has direct but dual modulatory effects on CaOx crystals. While quercetin inhibits CaOx crystallization and growth, on the other hand, it promotes CaOx crystal aggregation and invasion through the matrix. These data highlight the role for quercetin in direct modulation of the CaOx crystals that may intervene the stone pathogenesis.
Collapse
Affiliation(s)
- Sakdithep Chaiyarit
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Somsakul Phuangkham
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Visith Thongboonkerd
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
5
|
Xu Z, Yao X, Duan C, Liu H, Xu H. Metabolic changes in kidney stone disease. Front Immunol 2023; 14:1142207. [PMID: 37228601 PMCID: PMC10203412 DOI: 10.3389/fimmu.2023.1142207] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/06/2023] [Indexed: 05/27/2023] Open
Abstract
Kidney stone disease (KSD) is one of the earliest medical diseases known, but the mechanism of its formation and metabolic changes remain unclear. The formation of kidney stones is a extensive and complicated process, which is regulated by metabolic changes in various substances. In this manuscript, we summarized the progress of research on metabolic changes in kidney stone disease and discuss the valuable role of some new potential targets. We reviewed the influence of metabolism of some common substances on stone formation, such as the regulation of oxalate, the release of reactive oxygen species (ROS), macrophage polarization, the levels of hormones, and the alternation of other substances. New insights into changes in substance metabolism changes in kidney stone disease, as well as emerging research techniques, will provide new directions in the treatment of stones. Reviewing the great progress that has been made in this field will help to improve the understanding by urologists, nephrologists, and health care providers of the metabolic changes in kidney stone disease, and contribute to explore new metabolic targets for clinical therapy.
Collapse
Affiliation(s)
- Zhenzhen Xu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xiangyang Yao
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Chen Duan
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Haoran Liu
- Stanford Bio-X, Stanford University, San Francisco, CA, United States
| | - Hua Xu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China
- Cancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
6
|
Noonin C, Itsaranawet T, Thongboonkerd V. Calcium oxalate crystal-induced secretome derived from proximal tubular cells, not that from distal tubular cells, induces renal fibroblast activation. Eur J Med Res 2023; 28:150. [PMID: 37031165 PMCID: PMC10082508 DOI: 10.1186/s40001-023-01109-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 03/24/2023] [Indexed: 04/10/2023] Open
Abstract
BACKGROUND Kidney stone disease (KSD) is commonly accompanied with renal fibrosis, characterized by accumulation and reorganization of extracellular matrix (ECM). During fibrogenesis, resident renal fibroblasts are activated to become myofibroblasts that actively produce ECM. However, such fibroblast-myofibroblast differentiation in KSD remained unclear. Our present study thus examined effects of secreted products (secretome) derived from proximal (HK-2) vs. distal (MDCK) renal tubular cells exposed to calcium oxalate monohydrate (COM) crystals on activation of renal fibroblasts (BHK-21). METHODS HK-2 and MDCK cells were treated with 100 µg/ml COM crystals under serum-free condition for 16 h. In parallel, the cells maintained in serum-free medium without COM treatment served as the control. Secretome derived from culture supernatant of each sample was mixed (1:1) with fresh serum-free medium and then used for BHK-21 culture for another 24 h. RESULTS Analyses revealed that COM-treated-HK-2 secretome significantly induced proliferation, caused morphological changes, increased spindle index, and upregulated fibroblast-activation markers (F-actin, α-SMA and fibronectin) in BHK-21 cells. However, COM-treated-MDCK secretome had no significant effects on these BHK-21 parameters. Moreover, level of transforming growth factor-β1 (TGF-β1), a profibrotic factor, significantly increased in the COM-treated-HK-2 secretome but not in the COM-treated-MDCK secretome. CONCLUSIONS These data indicate, for the first time, that proximal and distal tubular epithelial cells exposed to COM crystals send different messages to resident renal fibroblasts. Only the secretome derived from proximal tubular cells, not that from the distal cells, induces renal fibroblast activation after their exposure to COM crystals. Such differential effects are partly due to TGF-β1 secretion, which is induced by COM crystals only in proximal tubular cells.
Collapse
Affiliation(s)
- Chadanat Noonin
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, 6th Floor - SiMR Building, 2 Wanglang Road, Bangkoknoi, 10700, Bangkok, Thailand
| | - Tanakorn Itsaranawet
- Biological Sciences Program, Mahidol University International College, Nakhon Pathom, 73170, Thailand
| | - Visith Thongboonkerd
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, 6th Floor - SiMR Building, 2 Wanglang Road, Bangkoknoi, 10700, Bangkok, Thailand.
| |
Collapse
|
7
|
Peerapen P, Chanthick C, Thongboonkerd V. Quantitative proteomics reveals common and unique molecular mechanisms underlying beneficial effects of caffeine and trigonelline on human hepatocytes. Biomed Pharmacother 2023; 158:114124. [PMID: 36521247 DOI: 10.1016/j.biopha.2022.114124] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 11/26/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
Caffeine and trigonelline are the major bioactive compounds in coffee. Caffeine alone or combined with other coffee compounds shows hepatoprotective effects. However, molecular mechanisms underlying such hepatoprotective effects remain unclear. We therefore addressed molecular effects of caffeine and trigonelline on human hepatocytes using quantitative proteomics followed by bioinformatic analyses to obtain topological and functional significance. HepG2 cells were treated with 100 μM caffeine or trigonelline for 24-h and evaluated by quantitative proteomics using nanoLC-ESI-LTQ-Orbitrap MS/MS. A total of 26 and 25 significantly altered proteins were identified in caffeine-treated and trigonelline-treated cells, respectively, compared with control cells. Topological analyses revealed that ribosomal and translation regulatory proteins predominantly served as the hub proteins associated with protein clusters. Functional analyses also revealed that these two bioactive compounds shared some molecular mechanisms via induction of translational processes. There were also other unique molecular functions and biological processes triggered or suppressed by either caffeine or trigonelline. These data highlight common and unique molecular mechanisms underlying the hepatoprotective effects of caffeine and trigonelline that may be useful for future clinical applications.
Collapse
Affiliation(s)
- Paleerath Peerapen
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Chanettee Chanthick
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Visith Thongboonkerd
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
8
|
Yoodee S, Peerapen P, Plumworasawat S, Thongboonkerd V. Roles of heat-shock protein 90 and its four domains (N, LR, M and C) in calcium oxalate stone-forming processes. Cell Mol Life Sci 2022; 79:454. [PMID: 35900595 PMCID: PMC9330963 DOI: 10.1007/s00018-022-04483-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 07/04/2022] [Accepted: 07/11/2022] [Indexed: 11/17/2022]
Abstract
Human heat-shock protein 90 (HSP90) has four functional domains, including NH2-terminal (N), charged linker region (LR), middle (M) and COOH-terminal (C) domains. In kidney stone disease (or nephrolithiasis/urolithiasis), HSP90 serves as a receptor for calcium oxalate monohydrate (COM), which is the most common crystal to form kidney stones. Nevertheless, roles of HSP90 and its four domains in kidney stone formation remained unclear and under-investigated. We thus examined and compared their effects on COM crystals during physical (crystallization, growth and aggregation) and biological (crystal–cell adhesion and crystal invasion through extracellular matrix (ECM)) pathogenic processes of kidney stone formation. The analyses revealed that full-length (FL) HSP90 obviously increased COM crystal size and abundance during crystallization and markedly promoted crystal growth, aggregation, adhesion onto renal cells and ECM invasion. Comparing among four individual domains, N and C domains exhibited the strongest promoting effects, whereas LR domain had the weakest promoting effects on COM crystals. In summary, our findings indicate that FL-HSP90 and its four domains (N, LR, M and C) promote COM crystallization, crystal growth, aggregation, adhesion onto renal cells and invasion through the ECM, all of which are the important physical and biological pathogenic processes of kidney stone formation.
Collapse
Affiliation(s)
- Sunisa Yoodee
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, 6th Floor-SiMR Building, 2 Wanglang Road, Bangkoknoi, Bangkok, 10700, Thailand
| | - Paleerath Peerapen
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, 6th Floor-SiMR Building, 2 Wanglang Road, Bangkoknoi, Bangkok, 10700, Thailand
| | - Sirikanya Plumworasawat
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, 6th Floor-SiMR Building, 2 Wanglang Road, Bangkoknoi, Bangkok, 10700, Thailand
| | - Visith Thongboonkerd
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, 6th Floor-SiMR Building, 2 Wanglang Road, Bangkoknoi, Bangkok, 10700, Thailand.
| |
Collapse
|
9
|
Noonin C, Peerapen P, Yoodee S, Kapincharanon C, Kanlaya R, Thongboonkerd V. Systematic analysis of modulating activities of native human urinary Tamm-Horsfall protein on calcium oxalate crystallization, growth, aggregation, crystal-cell adhesion and invasion through extracellular matrix. Chem Biol Interact 2022; 357:109879. [PMID: 35263610 DOI: 10.1016/j.cbi.2022.109879] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/21/2022] [Accepted: 03/04/2022] [Indexed: 11/03/2022]
Abstract
Functions of Tamm-Horsfall protein (THP), the most abundant human urinary protein, have been studied for decades. However, its precise roles in kidney stone formation remain controversial. In this study, we aimed to clarify the roles of native human urinary THP in calcium oxalate monohydrate (COM) kidney stone formation. THP was purified from the human urine by adsorption method using diatomaceous earth (DE). Its effects on stone formation processes, including COM crystallization, crystal growth, aggregation, crystal-cell adhesion and invasion through extracellular matrix (ECM), were examined. SDS-PAGE and Western blotting confirmed that DE adsorption yielded 84.9% purity of the native THP isolated from the human urine. Systematic analyses revealed that THP (at 0.4-40 μg/ml) concentration-dependently reduced COM crystal size but did not affect the crystal mass during initial crystallization. At later steps, THP concentration-dependently inhibited COM crystal growth and aggregation, and prevented crystal-cell adhesion only at 40 μg/ml. However, THP did not affect crystal invasion through the ECM. Sequence analysis revealed two large calcium-binding domains (residues 65-107 and 108-149) and three small oxalate-binding domains (residues 199-207, 361-368 and 601-609) in human THP. Immunofluorescence study confirmed the binding of THP to COM crystals. Analyses for calcium-affinity and/or oxalate-affinity demonstrated that THP exerted a high affinity with only calcium, not oxalate. Functional validation revealed that saturation of THP with calcium, not with oxalate, could abolish the inhibitory effects of THP on COM crystal growth, aggregation and crystal-cell adhesion. These data highlight the inhibitory roles of the native human urinary THP in COM crystal growth, aggregation and crystal-cell adhesion, which are the important processes for kidney stone formation. Such inhibitory effects of THP are most likely mediated via its high affinity with calcium ions.
Collapse
Affiliation(s)
- Chadanat Noonin
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Paleerath Peerapen
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Sunisa Yoodee
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Chompunoot Kapincharanon
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Rattiyaporn Kanlaya
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Visith Thongboonkerd
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand.
| |
Collapse
|
10
|
Chanthick C, Thongboonkerd V. Hyaluronic acid promotes calcium oxalate crystal growth, crystal-cell adhesion, and crystal invasion through extracellular matrix. Toxicol In Vitro 2022; 80:105320. [DOI: 10.1016/j.tiv.2022.105320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/31/2021] [Accepted: 01/19/2022] [Indexed: 11/29/2022]
|
11
|
Yoodee S, Noonin C, Sueksakit K, Kanlaya R, Chaiyarit S, Peerapen P, Thongboonkerd V. Effects of secretome derived from macrophages exposed to calcium oxalate crystals on renal fibroblast activation. Commun Biol 2021; 4:959. [PMID: 34381146 PMCID: PMC8358035 DOI: 10.1038/s42003-021-02479-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 07/23/2021] [Indexed: 12/19/2022] Open
Abstract
The association between kidney stone disease and renal fibrosis has been widely explored in recent years but its underlying mechanisms remain far from complete understanding. Using label-free quantitative proteomics (nanoLC-ESI-LTQ-Orbitrap MS/MS), this study identified 23 significantly altered secreted proteins from calcium oxalate monohydrate (COM)-exposed macrophages (COM-MP) compared with control macrophages (Ctrl-MP) secretome. Functional annotation and protein-protein interactions network analysis revealed that these altered secreted proteins were involved mainly in inflammatory response and fibroblast activation. BHK-21 renal fibroblasts treated with COM-MP secretome had more spindle-shaped morphology with greater spindle index. Immunofluorescence study and gelatin zymography revealed increased levels of fibroblast activation markers (α-smooth muscle actin and F-actin) and fibrotic factors (fibronectin and matrix metalloproteinase-9 and -2) in the COM-MP secretome-treated fibroblasts. Our findings indicate that proteins secreted from macrophages exposed to COM crystals induce renal fibroblast activation and may play important roles in renal fibrogenesis in kidney stone disease.
Collapse
Affiliation(s)
- Sunisa Yoodee
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Chadanat Noonin
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Kanyarat Sueksakit
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Rattiyaporn Kanlaya
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Sakdithep Chaiyarit
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Paleerath Peerapen
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Visith Thongboonkerd
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
12
|
Peerapen P, Thongboonkerd V. Kidney stone proteomics: an update and perspectives. Expert Rev Proteomics 2021; 18:557-569. [PMID: 34320328 DOI: 10.1080/14789450.2021.1962301] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
INTRODUCTION Main problems of kidney stone disease are its increasing prevalence and high recurrence rate after calculi removal in almost all areas around the globe. Despite enormous efforts in the past, its pathogenic mechanisms remain unclear and need further elucidations. Proteomics has thus become an essential tool to unravel such sophisticated disease mechanisms at cellular, subcellular, molecular, tissue, and whole organism levels. AREAS COVERED This review provides abrief overview of kidney stone disease followed by updates on proteomics for investigating urinary stone modulators, matrix proteins, cellular responses to different types/doses of calcium oxalate (CaOx) crystals, sex hormones and other stimuli, crystal-cell interactions, crystal receptors, secretome, and extracellular vesicles (EVs), all of which lead to better understanding of the disease mechanisms. Finally, the future challenges and translation of these obtained data to the clinic are discussed. EXPERT OPINION Knowledge from urinary proteomics for exploring the important stone modulators (either inhibitors or promoters) will be helpful for early detection of asymptomatic cases for prompt prevention of symptoms, complications, and new stone formation. Moreover, these modulators may serve as the new therapeutic targets in the future for successful treatment and prevention of kidney stone disease by medications or other means of intervention.
Collapse
Affiliation(s)
- Paleerath Peerapen
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Visith Thongboonkerd
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
13
|
Khamchun S, Yoodee S, Thongboonkerd V. Dual modulatory effects of diosmin on calcium oxalate kidney stone formation processes: Crystallization, growth, aggregation, crystal-cell adhesion, internalization into renal tubular cells, and invasion through extracellular matrix. Biomed Pharmacother 2021; 141:111903. [PMID: 34328112 DOI: 10.1016/j.biopha.2021.111903] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/25/2021] [Accepted: 07/06/2021] [Indexed: 01/26/2023] Open
Abstract
Diosmin is a natural flavone glycoside (bioflavonoid) found in fruits and plants with several pharmacological activities. It has been widely used as a dietary supplement or therapeutic agent in various diseases/disorders. Although recommended, evidence of its protective mechanisms against kidney stone disease (nephrolithiasis/urolithiasis), especially calcium oxalate (CaOx) monohydrate (COM) that is the most common type, remained unclear. In this study, we thus systematically evaluated the effects of diosmin (at 2.5-160 nM) on various stages of kidney stone formation processes, including COM crystallization, crystal growth, aggregation, crystal-cell adhesion, internalization into renal tubular cells and invasion through extracellular matrix (ECM). The results showed that diosmin had dose-dependent modulatory effects on all the mentioned COM kidney stone processes. Diosmin significantly increased COM crystal number and mass during crystallization, but reduced crystal size and growth. While diosmin promoted crystal aggregation, it inhibited crystal-cell adhesion and internalization into renal tubular cells. Finally, diosmin promoted crystal invasion through the ECM. Our data provide evidence demonstrating both inhibiting and promoting effects of diosmin on COM kidney stone formation processes. Based on these dual modulatory activities of diosmin, its anti-urolithiasis role is doubtful and cautions should be made for its use in kidney stone disease.
Collapse
Affiliation(s)
- Supaporn Khamchun
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; Department of Medical Technology, School of Allied Health Sciences, University of Phayao, Phayao 56000, Thailand; Unit of Excellence in Integrative Molecular Biomedicine, School of Allied Health Sciences, University of Phayao, Phayao 56000, Thailand
| | - Sunisa Yoodee
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Visith Thongboonkerd
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand.
| |
Collapse
|
14
|
Taguchi K, Okada A, Unno R, Hamamoto S, Yasui T. Macrophage Function in Calcium Oxalate Kidney Stone Formation: A Systematic Review of Literature. Front Immunol 2021; 12:673690. [PMID: 34108970 PMCID: PMC8182056 DOI: 10.3389/fimmu.2021.673690] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 05/06/2021] [Indexed: 01/04/2023] Open
Abstract
Background The global prevalence and recurrence rate of kidney stones is very high. Recent studies of Randall plaques and urinary components in vivo, and in vitro including gene manipulation, have attempted to reveal the pathogenesis of kidney stones. However, the evidence remains insufficient to facilitate the development of novel curative therapies. The involvement of renal and peripheral macrophages in inflammatory processes offers promise that might lead to the development of therapeutic targets. The present systematic literature review aimed to determine current consensus about the functions of macrophages in renal crystal development and suppression, and to synthesize evidence to provide a basis for future immunotherapy. Methods We systematically reviewed the literature during February 2021 according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Articles investigating the relationship between macrophages and urolithiasis, particularly calcium oxalate (CaOx) stones, were extracted from PubMed, MEDLINE, Embase, and Scopus. Study subjects, languages, and publication dates were unrestricted. Two authors searched and screened the publications. Results Although several studies have applied mixed modalities, we selected 10, 12, and seven (total, n = 29) of 380 articles that respectively described cultured cells, animal models, and human samples. The investigative trend has shifted to macrophage phenotypes and signaling pathways, including micro (m)-RNAs since the discovery of macrophage involvement in kidney stones in 1999. Earlier studies of mice-associated macrophages with the acceleration and suppression of renal crystal formation. Later studies found that pro-inflammatory M1- and anti-inflammatory M2-macrophages are involved. Studies of human-derived and other macrophages in vitro and ex vivo showed that M2-macrophages (stimulated by CSF-1, IL-4, and IL-13) can phagocytose CaOx crystals, which suppresses stone development. The signaling mechanisms that promote M2-like macrophage polarization toward CaOx nephrocalcinosis, include the NLRP3, PPARγ-miR-23-Irf1/Pknox1, miR-93-TLR4/IRF1, and miR-185-5p/CSF1 pathways. Proteomic findings have indicated that patients who form kidney stones mainly express M1-like macrophage-related proteins, which might be due to CaOx stimulation of the macrophage exosomal pathway. Conclusions This systematic review provides an update regarding the current status of macrophage involvement in CaOx nephrolithiasis. Targeting M2-like macrophage function might offer a therapeutic strategy with which to prevent stones via crystal phagocytosis.
Collapse
Affiliation(s)
- Kazumi Taguchi
- Department of Nephro-urology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Atsushi Okada
- Department of Nephro-urology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Rei Unno
- Department of Nephro-urology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Shuzo Hamamoto
- Department of Nephro-urology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Takahiro Yasui
- Department of Nephro-urology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| |
Collapse
|
15
|
Albert A, Paul E, Rajakumar S, Saso L. Oxidative stress and endoplasmic stress in calcium oxalate stone disease: the chicken or the egg? Free Radic Res 2020; 54:244-253. [PMID: 32292073 DOI: 10.1080/10715762.2020.1751835] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Crystal modulators play a significant role in the formation of calcium oxalate stone disease. When renal cells are subjected to oxalate stress, the loss in cell integrity leads to exposure of multiple proteins that assist and/or inhibit crystal attachment and retention. Contact between oxalate and calcium oxalate with urothelium proves fatal to cells as a result of reactive oxygen species generation and onset of oxidative stress. Hence, as a therapeutic strategy it was hypothesised that supplementation of antioxidants would suffice. On the contrary to popular belief, the detection of oxalate induced endoplasmic reticulum mediated apoptosis proved the ineffectiveness of antioxidant therapy alone. Thus, the inadequacy of antioxidant supplementation in oxalate stress invoked the presence of an alternative pathway for the induction of kidney fibrosis in hyperoxaluric rats. In addition to settling this query, the link between oxidative stress and ER stress is not well understood, especially in urolithiasis.
Collapse
Affiliation(s)
| | - Eldho Paul
- Department of Biochemistry, Centre for Excellence in Genomics Science, School of Biological Sciences, Madurai Kamaraj University, Madurai, India
| | - Selvaraj Rajakumar
- Department of Pediatrics, Group of Molecular Cell Biology of Lipids, 315, Heritage Medical Research Center, University of Alberta, Edmonton, Canada
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy
| |
Collapse
|
16
|
Thongboonkerd V. Roles for Exosome in Various Kidney Diseases and Disorders. Front Pharmacol 2020; 10:1655. [PMID: 32082158 PMCID: PMC7005210 DOI: 10.3389/fphar.2019.01655] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 12/17/2019] [Indexed: 12/13/2022] Open
Abstract
Exosome is a nanoscale vesicle with a size range of 30–100 nm. It is secreted from cell to extracellular space by exocytosis after fusion of multivesicular body (MVB) (formed by endocytic vesicles) with plasma membrane. Exosome plays several important roles in cellular homeostasis and intercellular communications. During the last two decades, exosome has acquired a wide attention to explore its additional roles in various aspects of cell biology and function in several organ systems. For the kidney, several lines of evidence have demonstrated 1that exosome is involved in the renal physiology and pathogenic mechanisms of various kidney diseases/disorders. This article summarizes roles of the exosome as the potential source of biomarkers, pathogenic molecules, and therapeutic biologics that have been extensively investigated in many kidney diseases/disorders, including lupus nephritis (LN), other glomerular diseases, acute kidney injury (AKI), diabetic nephropathy (DN), as well as in the process of renal fibrosis and chronic kidney disease (CKD) progression, in addition to polycystic kidney disease (PKD), kidney transplantation, and renal cell carcinoma (RCC). Moreover, the most recent evidence has shown its emerging role in kidney stone disease (or nephrolithiasis), involving inflammasome activation and inflammatory cascade frequently found in kidney stone pathogenesis.
Collapse
Affiliation(s)
- Visith Thongboonkerd
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
17
|
Thongboonkerd V. Proteomics of Crystal-Cell Interactions: A Model for Kidney Stone Research. Cells 2019; 8:cells8091076. [PMID: 31547429 PMCID: PMC6769877 DOI: 10.3390/cells8091076] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 08/30/2019] [Accepted: 09/05/2019] [Indexed: 01/27/2023] Open
Abstract
Nephrolithiasis/urolithiasis (i.e., kidney stone disease) remains a global public health problem with increasing incidence/prevalence. The most common chemical composition of kidney stones is calcium oxalate that initiates stone formation by crystallization, crystal growth, crystal aggregation, crystal–cell adhesion, and crystal invasion through extracellular matrix in renal interstitium. Among these processes, crystal–cell interactions (defined as “the phenomena in which the cell is altered by any means of effects from the crystal that adheres onto cellular surface or is internalized into the cell, accompanying with changes of the crystal, e.g., growth, adhesive capability, degradation, etc., induced by the cell”) are very important for crystal retention in the kidney. During the past 12 years, proteomics has been extensively applied to kidney stone research aiming for better understanding of the pathogenic mechanisms of kidney stone formation. This article provides an overview of the current knowledge in this field and summarizes the data obtained from all the studies that applied proteomics to the investigations of crystal–cell interactions that subsequently led to functional studies to address the significant impact or functional roles of the expression proteomics data in the pathogenesis of kidney stone disease.
Collapse
Affiliation(s)
- Visith Thongboonkerd
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand.
| |
Collapse
|
18
|
Sueksakit K, Thongboonkerd V. Protective effects of finasteride against testosterone-induced calcium oxalate crystallization and crystal-cell adhesion. J Biol Inorg Chem 2019; 24:973-983. [DOI: 10.1007/s00775-019-01692-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 07/12/2019] [Indexed: 12/18/2022]
|
19
|
Didiasova M, Schaefer L, Wygrecka M. When Place Matters: Shuttling of Enolase-1 Across Cellular Compartments. Front Cell Dev Biol 2019; 7:61. [PMID: 31106201 PMCID: PMC6498095 DOI: 10.3389/fcell.2019.00061] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 04/05/2019] [Indexed: 12/22/2022] Open
Abstract
Enolase is a glycolytic enzyme, which catalyzes the inter-conversion of 2-phosphoglycerate to phosphoenolpyruvate. Altered expression of this enzyme is frequently observed in cancer and accounts for the Warburg effect, an adaptive response of tumor cells to hypoxia. In addition to its catalytic function, ENO-1 exhibits other activities, which strongly depend on its cellular and extracellular localization. For example, the association of ENO-1 with mitochondria membrane was found to be important for the stability of the mitochondrial membrane, and ENO-1 sequestration on the cell surface was crucial for plasmin-mediated pericellular proteolysis. The latter activity of ENO-1 enables many pathogens but also immune and cancer cells to invade the tissue, leading further to infection, inflammation or metastasis formation. The ability of ENO-1 to conduct so many diverse processes is reflected by its contribution to a high number of pathologies, including type 2 diabetes, cardiovascular hypertrophy, fungal and bacterial infections, cancer, systemic lupus erythematosus, hepatic fibrosis, Alzheimer's disease, rheumatoid arthritis, and systemic sclerosis. These unexpected non-catalytic functions of ENO-1 and their contributions to diseases are the subjects of this review.
Collapse
Affiliation(s)
- Miroslava Didiasova
- Department of Biochemistry, Faculty of Medicine, Universities of Giessen and Marburg Lung Center, Giessen, Germany
| | - Liliana Schaefer
- Institute of Pharmacology and Toxicology, Goethe University Frankfurt, Frankfurt, Germany
| | - Malgorzata Wygrecka
- Department of Biochemistry, Faculty of Medicine, Universities of Giessen and Marburg Lung Center, Giessen, Germany.,Member of the German Center for Lung Research, Giessen, Germany
| |
Collapse
|
20
|
Modulatory effects of fibronectin on calcium oxalate crystallization, growth, aggregation, adhesion on renal tubular cells, and invasion through extracellular matrix. J Biol Inorg Chem 2019; 24:235-246. [PMID: 30701361 DOI: 10.1007/s00775-019-01641-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 12/09/2018] [Indexed: 12/29/2022]
Abstract
Fibronectin, an extracellular matrix (ECM) protein, has been thought to be involved in pathogenic mechanisms of kidney stone disease, especially calcium oxalate (CaOx) type. Nevertheless, its precise roles in modulation of CaOx crystal remained unclear. We thus performed a systematic evaluation of effects of fibronectin on CaOx monohydrate (COM) crystal (the major causative chemical crystal in kidney stone formation) in various stages of kidney stone pathogenesis, including crystallization, crystal growth, aggregation, adhesion onto renal tubular cells, and invasion through ECM in renal interstitium. The data showed that fibronectin significantly decreased crystallization, growth and adhesive capability of COM crystals in a dose-dependent manner. In contrast, COM crystal aggregation and invasion through ECM migration chamber were significantly enhanced by fibronectin in a dose-dependent fashion. Sequence analysis revealed three calcium-binding and six oxalate-binding domains in fibronectin. Immunofluorescence study confirmed binding of fibronectin to COM crystals. Additionally, calcium- and oxalate-affinity assays confirmed depletion of both calcium and oxalate ions after incubation with fibronectin. Moreover, calcium-saturated and oxalate-saturated forms of fibronectin markedly reduced the modulatory activities of fibronectin on COM crystallization, crystal growth, aggregation, and adhesion onto the cells. These data strongly indicate the dual functions of fibronectin, which serves as an inhibitor for COM crystallization, crystal growth and adhesion onto renal tubular cells, but on the other hand, acts as a promoter for COM crystal aggregation and invasion through ECM. Finally, its COM crystal modulatory activities are most likely mediated through binding with calcium and oxalate ions on the crystals and in their environment.
Collapse
|
21
|
Vinaiphat A, Charngkaew K, Thongboonkerd V. More complete polarization of renal tubular epithelial cells by artificial urine. Cell Death Discov 2018; 4:47. [PMID: 30323952 PMCID: PMC6180081 DOI: 10.1038/s41420-018-0112-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 08/30/2018] [Accepted: 09/26/2018] [Indexed: 02/06/2023] Open
Abstract
Cell polarization using Transwell is a common method employed to study renal tubular epithelial cells. However, this conventional protocol does not precisely recapitulate renal tubular epithelial cell phenotypes. In this study, we simulated renal physiological microenvironment by replacing serum-containing culture medium in upper chamber of the Transwell with physiologic artificial urine (AU) (to mimic renal tubular fluid), whereas the lower chamber still contained serum-containing medium (to mimic plasma-enriched renal interstitium). Comparing to the conventional protocol (control), the AU-assisted protocol offered more complete polarization of MDCK renal tubular cells as indicated by higher transepithelial electrical resistance (TER) and greater levels of tight junction (TJ) proteins (ZO-1 and occludin). Transmission electron microscopy (TEM) showed greater densities of TJ and desmosome, narrower intercellular spaces, greater cell height, and longer microvilli in the AU-treated cells. Secretome analysis revealed that the AU-treated cells secreted greater proportion of the proteins matched to normal human urinary proteome via both classical and non-classical secretory pathways. Finally, modifying/omitting each component of AU (one at a time) followed by validation revealed that urea was responsible for such property of AU to improve cell polarization. These data indicate that replacing AU on the upper chamber of Transwell can improve or optimize renal cell polarization for more precise investigations of renal physiology and cell biology in vitro.
Collapse
Affiliation(s)
- Arada Vinaiphat
- 1Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.,2Graduate Program in Immunology, Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Komgrid Charngkaew
- 3Department of Pathology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Visith Thongboonkerd
- 1Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.,4Center for Research in Complex Systems Science, Mahidol University, Bangkok, Thailand
| |
Collapse
|
22
|
Singhto N, Thongboonkerd V. Exosomes derived from calcium oxalate-exposed macrophages enhance IL-8 production from renal cells, neutrophil migration and crystal invasion through extracellular matrix. J Proteomics 2018; 185:64-76. [DOI: 10.1016/j.jprot.2018.06.015] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 06/06/2018] [Accepted: 06/18/2018] [Indexed: 12/11/2022]
|
23
|
Peerapen P, Chaiyarit S, Thongboonkerd V. Protein Network Analysis and Functional Studies of Calcium Oxalate Crystal-Induced Cytotoxicity in Renal Tubular Epithelial Cells. Proteomics 2018; 18:e1800008. [PMID: 29464862 DOI: 10.1002/pmic.201800008] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 02/02/2018] [Indexed: 12/20/2022]
Abstract
Our previous expression study has reported a set of proteins with altered levels in renal tubular cells after exposure to calcium oxalate monohydrate (COM) crystals, which are the main composition of kidney stones. However, their functional significance remained largely unknown. In this study, protein network analysis revealed that the significantly altered proteins induced by COM crystals were involved mainly in three main functional networks, including i) cell proliferation and wound healing; ii) oxidative stress and mitochondrial function; and iii) cellular junction complex and integrity. Cell proliferation and wound healing assays showed that the COM-treated cells had defective proliferation and tissue healing capability, respectively. Oxyblot analysis demonstrated accumulation of the oxidized proteins, whereas intracellular ATP level was significantly increased in the COM-treated cells. Additionally, level of zonula occludens-1 (ZO-1), a tight junction protein, was significantly decreased, consistent with the significant declines in transepithelial resistance (TER) and level of RhoA signaling molecule in the COM-treated cells. These findings indicate significant perturbations in mitochondrial and oxidative stress axis that cause defective cell proliferation, tissue healing capability, junctional protein complex, and cellular integrity of renal tubular epithelial cells exposed to COM crystals that may play important roles in kidney stone pathogenesis.
Collapse
Affiliation(s)
- Paleerath Peerapen
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Sakdithep Chaiyarit
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Visith Thongboonkerd
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
24
|
Albert A, Tiwari V, Paul E, Ponnusamy S, Ganesan D, Prabhakaran R, Mariaraj Sivakumar S, Govindan Sadasivam S. Oral administration of oxalate-enriched spinach extract as an improved methodology for the induction of dietary hyperoxaluric nephrocalcinosis in experimental rats. Toxicol Mech Methods 2017; 28:195-204. [DOI: 10.1080/15376516.2017.1388459] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Abhishek Albert
- Department of Biochemistry, Centre for Excellence in Genomics Science, School of Biological Sciences, Madurai Kamaraj University, Madurai, India
| | - Vidhi Tiwari
- Department of Biochemistry, Centre for Excellence in Genomics Science, School of Biological Sciences, Madurai Kamaraj University, Madurai, India
| | - Eldho Paul
- Department of Biochemistry, Centre for Excellence in Genomics Science, School of Biological Sciences, Madurai Kamaraj University, Madurai, India
| | - Sasikumar Ponnusamy
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, Buffalo, NY, USA
| | - Divya Ganesan
- Department of Biochemistry, Centre for Excellence in Genomics Science, School of Biological Sciences, Madurai Kamaraj University, Madurai, India
| | - Rajkumar Prabhakaran
- Department of Biochemistry, Centre for Excellence in Genomics Science, School of Biological Sciences, Madurai Kamaraj University, Madurai, India
| | - Selvi Mariaraj Sivakumar
- Department of Biochemistry, Centre for Excellence in Genomics Science, School of Biological Sciences, Madurai Kamaraj University, Madurai, India
| | - Selvam Govindan Sadasivam
- Department of Biochemistry, Centre for Excellence in Genomics Science, School of Biological Sciences, Madurai Kamaraj University, Madurai, India
| |
Collapse
|
25
|
Abhishek A, Benita S, Kumari M, Ganesan D, Paul E, Sasikumar P, Mahesh A, Yuvaraj S, Ramprasath T, Selvam GS. Molecular analysis of oxalate-induced endoplasmic reticulum stress mediated apoptosis in the pathogenesis of kidney stone disease. J Physiol Biochem 2017; 73:561-573. [PMID: 28875258 DOI: 10.1007/s13105-017-0587-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 08/25/2017] [Indexed: 12/21/2022]
Abstract
Oxalate, a non-essential end product of metabolism, causes hyperoxaluria and eventually calcium oxalate (CaOx) stone disease. Kidney cells exposed to oxalate stress results in generation of reactive oxygen species (ROS) and progression of stone formation. Perturbations in endoplasmic reticulum (ER) result in accumulation of misfolded proteins and Ca2+ ions homeostasis imbalance and serve as a common pathway for various diseases, including kidney disorders. ER stress induces up-regulation of pro-survival protein glucose-regulated protein 78 (GRP78) and pro-apoptotic signaling protein C/EBP homologous protein (CHOP). Since the association of oxalate toxicity and ER stress on renal cell damage is uncertain, the present study is an attempt to elucidate the interaction of GRP78 with oxalate by computational analysis and study the role of ER stress in oxalate-mediated apoptosis in vitro and in vivo. Molecular docking results showed that GRP78-oxalate/CaOx interaction takes place. Oxalate stress significantly up-regulated expression of ER stress markers GRP78 and CHOP both in vitro and in vivo. Exposure of oxalate increased ROS generation and altered antioxidant enzyme activities. N-Acetyl cysteine treatment significantly ameliorated oxalate-mediated oxidative stress and moderately attenuated ER stress marker expression. The result indicates oxalate toxicity initiated oxidative stress-induced ER stress and also activating ER stress mediated apoptosis directly. In addition, the up-regulation of transforming growth factor β-1 revealed oxalate may induce kidney fibrosis through ER stress-mediated mechanisms. The present study provide insights into the pathogenic role of oxidative and ER stress by oxalate exposure in the formation of calcium oxalate stone.
Collapse
Affiliation(s)
- Albert Abhishek
- Department of Biochemistry, Centre for Excellence in Genomics Science, School of Biological Sciences, Madurai Kamaraj University, Madurai, 625 021, India
| | - Shaly Benita
- Department of Biochemistry, Centre for Excellence in Genomics Science, School of Biological Sciences, Madurai Kamaraj University, Madurai, 625 021, India
| | - Monika Kumari
- Department of Biochemistry, Centre for Excellence in Genomics Science, School of Biological Sciences, Madurai Kamaraj University, Madurai, 625 021, India
| | - Divya Ganesan
- Department of Biochemistry, Centre for Excellence in Genomics Science, School of Biological Sciences, Madurai Kamaraj University, Madurai, 625 021, India
| | - Eldho Paul
- Department of Biochemistry, Centre for Excellence in Genomics Science, School of Biological Sciences, Madurai Kamaraj University, Madurai, 625 021, India
| | - Ponnusamy Sasikumar
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, Buffalo, NY, USA
| | - Ayyavu Mahesh
- DBT-IPLS Programme, School of Biological Sciences, Madurai Kamaraj University, Madurai, 625 021, India
| | - Subramani Yuvaraj
- Department of Biochemistry, Centre for Excellence in Genomics Science, School of Biological Sciences, Madurai Kamaraj University, Madurai, 625 021, India
| | - Tharmarajan Ramprasath
- Center for Molecular and Translational Medicine, Georgia State University, Atlanta, GA, USA
| | - Govindan Sadasivam Selvam
- Department of Biochemistry, Centre for Excellence in Genomics Science, School of Biological Sciences, Madurai Kamaraj University, Madurai, 625 021, India.
- Department of Biochemistry, Centre for Advanced Studies in Functional Genomics, School of Biological Sciences, Madurai Kamaraj University, Madurai, 625 021, India.
| |
Collapse
|
26
|
Vinaiphat A, Thongboonkerd V. Prospects for proteomics in kidney stone disease. Expert Rev Proteomics 2017; 14:185-187. [DOI: 10.1080/14789450.2017.1283222] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Arada Vinaiphat
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital
- Center for Research in Complex Systems Science, Mahidol University, Bangkok, Thailand
| | - Visith Thongboonkerd
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital
- Center for Research in Complex Systems Science, Mahidol University, Bangkok, Thailand
| |
Collapse
|
27
|
Fong-Ngern K, Thongboonkerd V. Alpha-enolase on apical surface of renal tubular epithelial cells serves as a calcium oxalate crystal receptor. Sci Rep 2016; 6:36103. [PMID: 27796334 PMCID: PMC5086859 DOI: 10.1038/srep36103] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 10/10/2016] [Indexed: 12/16/2022] Open
Abstract
To search for a strategy to prevent kidney stone formation/recurrence, this study addressed the role of α-enolase on apical membrane of renal tubular cells in mediating calcium oxalate monohydrate (COM) crystal adhesion. Its presence on apical membrane and in COM crystal-bound fraction was confirmed by Western blotting and immunofluorescence staining. Pretreating MDCK cells with anti-α-enolase antibody, not isotype-controlled IgG, dramatically reduced cell-crystal adhesion. Immunofluorescence staining also confirmed the direct binding of purified α-enolase to COM crystals at {121} > {100} > {010} crystal faces. Coating COM crystals with urinary proteins diminished the crystal binding capacity to cells and purified α-enolase. Moreover, α-enolase selectively bound to COM, not other crystals. Chemico-protein interactions analysis revealed that α-enolase interacted directly with Ca2+ and Mg2+. Incubating the cells with Mg2+ prior to cell-crystal adhesion assay significantly reduced crystal binding on the cell surface, whereas preincubation with EDTA, a divalent cation chelator, completely abolished Mg2+ effect, indicating that COM and Mg2+ competitively bind to α-enolase. Taken together, we successfully confirmed the role of α-enolase as a COM crystal receptor to mediate COM crystal adhesion at apical membrane of renal tubular cells. It may also serve as a target for stone prevention by blocking cell-crystal adhesion and stone nidus formation.
Collapse
Affiliation(s)
- Kedsarin Fong-Ngern
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, and Center for Research in Complex Systems Science, Mahidol University, Bangkok, Thailand
| | - Visith Thongboonkerd
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, and Center for Research in Complex Systems Science, Mahidol University, Bangkok, Thailand
| |
Collapse
|