1
|
Sun M, Yu Y, Zhang W, Ding Y, Li A, Li Y. Extracellular vesicles derived from dental follicle stem cells regulate tooth eruption by inhibiting osteoclast differentiation. Front Cell Dev Biol 2024; 12:1503481. [PMID: 39834384 PMCID: PMC11744031 DOI: 10.3389/fcell.2024.1503481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 12/03/2024] [Indexed: 01/22/2025] Open
Abstract
Tooth eruption as a crucial part in tooth development and regeneration is accompanied by ongoing osteogenesis and osteoclast activity. The dental follicle (DF) surrounding the developing tooth harbors dental follicle stem cells (DFSCs) which play a crucial role in maintaining bone remodeling. However, the mechanisms through which they regulate the balance between osteogenesis and osteoclast activity during tooth eruption remain poorly understood. Notably, extracellular vesicles (EVs) in bone homeostasis are considered essential. Our study revealed that the DFSCs could modulate tooth eruption by inhibiting osteoclast differentiation via EVs. Further investigation showed that EVs from DFSCs could inhibit osteoclast differentiation through the ANXA1-PPARγ-CEBPα pathway. Animal experiments indicated that EVs from DFSCs and the cargo ANXA1 affected tooth eruption. In summary, this study suggests the critical role of the dental follicle in tooth eruption through EVs, which may provide therapeutic targets for abnormal tooth eruption and effective approaches for the eruption of regenerated teeth.
Collapse
Affiliation(s)
- Meng Sun
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an, China
- Department of Periodontology, College of Stomatology, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Yiru Yu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an, China
- Department of Periodontology, College of Stomatology, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Weixing Zhang
- Department of Periodontology, College of Stomatology, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Yi Ding
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an, China
- Department of Periodontology, College of Stomatology, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Ang Li
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an, China
- Department of Periodontology, College of Stomatology, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Ye Li
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
2
|
Rao P, Jing J, Fan Y, Zhou C. Spatiotemporal cellular dynamics and molecular regulation of tooth root ontogeny. Int J Oral Sci 2023; 15:50. [PMID: 38001110 PMCID: PMC10673972 DOI: 10.1038/s41368-023-00258-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/25/2023] [Accepted: 11/03/2023] [Indexed: 11/26/2023] Open
Abstract
Tooth root development involves intricate spatiotemporal cellular dynamics and molecular regulation. The initiation of Hertwig's epithelial root sheath (HERS) induces odontoblast differentiation and the subsequent radicular dentin deposition. Precisely controlled signaling pathways modulate the behaviors of HERS and the fates of dental mesenchymal stem cells (DMSCs). Disruptions in these pathways lead to defects in root development, such as shortened roots and furcation abnormalities. Advances in dental stem cells, biomaterials, and bioprinting show immense promise for bioengineered tooth root regeneration. However, replicating the developmental intricacies of odontogenesis has not been resolved in clinical treatment and remains a major challenge in this field. Ongoing research focusing on the mechanisms of root development, advanced biomaterials, and manufacturing techniques will enable next-generation biological root regeneration that restores the physiological structure and function of the tooth root. This review summarizes recent discoveries in the underlying mechanisms governing root ontogeny and discusses some recent key findings in developing of new biologically based dental therapies.
Collapse
Affiliation(s)
- Pengcheng Rao
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Junjun Jing
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yi Fan
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chenchen Zhou
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China.
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
3
|
Zeng L, He H, Sun M, Gong X, Zhou M, Hong Y, Wu Y, Chen X, Chen Q. Runx2 and Nell-1 in dental follicle progenitor cells regulate bone remodeling and tooth eruption. Stem Cell Res Ther 2022; 13:486. [PMID: 36175952 PMCID: PMC9524038 DOI: 10.1186/s13287-022-03140-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 08/15/2022] [Indexed: 11/10/2022] Open
Abstract
Dental follicles are necessary for tooth eruption, surround the enamel organ and dental papilla, and regulate both the formation and resorption of alveolar bone. Dental follicle progenitor cells (DFPCs), which are stem cells found in dental follicles, differentiate into different kinds of cells that are necessary for tooth formation and eruption. Runt‐related transcription factor 2 (Runx2) is a transcription factor that is essential for osteoblasts and osteoclasts differentiation, as well as bone remodeling. Mutation of Runx2 causing cleidocranial dysplasia negatively affects osteogenesis and the osteoclastic ability of dental follicles, resulting in tooth eruption difficulties. Among a variety of cells and molecules, Nel-like molecule type 1 (Nell-1) plays an important role in neural crest-derived tissues and is strongly expressed in dental follicles. Nell-1 was originally identified in pathologically fused and fusing sutures of patients with unilateral coronal synostosis, and it plays indispensable roles in bone remodeling, including roles in osteoblast differentiation, bone formation and regeneration, craniofacial skeleton development, and the differentiation of many kinds of stem cells. Runx2 was proven to directly target the Nell-1 gene and regulate its expression. These studies suggested that Runx2/Nell-1 axis may play an important role in the process of tooth eruption by affecting DFPCs. Studies on short and long regulatory noncoding RNAs have revealed the complexity of RNA-mediated regulation of gene expression at the posttranscriptional level. This ceRNA network participates in the regulation of Runx2 and Nell-1 gene expression in a complex way. However, non-study indicated the potential connection between Runx2 and Nell-1, and further researches are still needed.
Collapse
Affiliation(s)
- Li Zeng
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang, China
| | - Hong He
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang, China. .,Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, China.
| | - Mingjie Sun
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang, China
| | - Xinyi Gong
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang, China
| | - Mengqi Zhou
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang, China
| | - Yaya Hong
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang, China
| | - Yongjia Wu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang, China
| | - Xuepeng Chen
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang, China. .,Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, China.
| | - Qianming Chen
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang, China. .,Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, China.
| |
Collapse
|
4
|
Aoki H, Suzuki E, Nakamura T, Onodera S, Saito A, Ohtaka M, Nakanishi M, Nishimura K, Saito A, Azuma T. Induced pluripotent stem cells from homozygous Runx2-deficient mice show poor response to vitamin D during osteoblastic differentiation. Med Mol Morphol 2022; 55:174-186. [DOI: 10.1007/s00795-022-00317-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/15/2022] [Indexed: 11/29/2022]
|
5
|
Evaluation of Vitamin D (25OHD), Bone Alkaline Phosphatase (BALP), Serum Calcium, Serum Phosphorus, Ionized Calcium in Patients with Mandibular Third Molar Impaction. An Observational Study. Nutrients 2021; 13:nu13061938. [PMID: 34200107 PMCID: PMC8228145 DOI: 10.3390/nu13061938] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/27/2021] [Accepted: 05/29/2021] [Indexed: 01/17/2023] Open
Abstract
The aim of this study was to evaluate the levels of vitamin D (25OHD) and other bone biomarkers in patients with third molar impaction (TMI). Thirty males and 30 females with unilateral or bilateral impacted mandibular third molar, and 15 males and 15 females as a control group (CG) were recruited. Rx-OPT was used to evaluate dental position and Pederson index to measure the difficulty of the intervention. Bone biomarkers were measured through blood venous sample in TMI group and CG. Mann-Whitney test, Pearson’s correlation coefficient, linear regression model were used to compare the different parameters in the two groups. 25OHD showed lower values in TMI group than in CG (p < 0.05) with values significantly lower in bilateral impaction (p < 0.05). Pearson’s coefficient for 25OHD presented a negative correlation with the Pederson index (ρ = −0.75). Bone alkaline phosphatase (BALP) showed significantly lower dosage in TMI group than CG (p = 0.02), Pearson’s coefficient for BALP presented a negative correlation with the Pederson index. Serum calcium, serum phosphorus, ionized calcium levels in TMI and CG groups were similar and Mann-Whitney test did not significantly differ between TMI and CG. TMI could be a sign of vitamin D deficiency and of low BALP levels that should be investigated.
Collapse
|
6
|
Yoon H, Kim HJ, Shin HR, Kim BS, Kim WJ, Cho YD, Ryoo HM. Nicotinamide Improves Delayed Tooth Eruption in Runx2+/- Mice. J Dent Res 2020; 100:423-431. [PMID: 33143523 DOI: 10.1177/0022034520970471] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Patients with cleidocranial dysplasia (CCD) caused by mutations in RUNX2 have severe dental anomalies, including delayed or absent eruption of permanent teeth. This requires painful and expensive surgical/orthodontic intervention because of the absence of medicine for this condition. Here, we demonstrate that nicotinamide, a vitamin B3 and class III histone deacetylase inhibitor, significantly improves delayed tooth eruption in Runx2+/- mice, a well-known CCD animal model, through the restoration of decreased osteoclastogenesis. We also found that Csf1 mRNA and protein levels were significantly reduced in Runx2+/- osteoblasts as compared with wild type whereas RANKL and OPG levels had no significant difference between wild type and Runx2+/- osteoblasts. The nicotinamide-induced restoration of osteoclastogenesis of bone marrow-derived macrophages in Runx2+/- mice was due to the increased expression of RUNX2 and CSF1 and increased RANKL/OPG ratio. RUNX2 directly regulated Csf1 mRNA expression via binding to the promoter region of the Csf1 gene. In addition, nicotinamide enhanced the RUNX2 protein level and transacting activity posttranslationally with Sirt2 inhibition. Taken together, our study shows the potential and underlying molecular mechanism of nicotinamide for the treatment of delayed tooth eruption by using the Runx2+/- murine model, suggesting nicotinamide as a candidate therapeutic drug for dental abnormalities in patients with CCD.
Collapse
Affiliation(s)
- H Yoon
- Department of Molecular Genetics and Pharmacology, School of Dentistry and Dental Research Institute, BK21 Program, Seoul National University, Seoul, Republic of Korea
| | - H J Kim
- Department of Molecular Genetics and Pharmacology, School of Dentistry and Dental Research Institute, BK21 Program, Seoul National University, Seoul, Republic of Korea
| | - H R Shin
- Department of Molecular Genetics and Pharmacology, School of Dentistry and Dental Research Institute, BK21 Program, Seoul National University, Seoul, Republic of Korea
| | - B S Kim
- Department of Molecular Genetics and Pharmacology, School of Dentistry and Dental Research Institute, BK21 Program, Seoul National University, Seoul, Republic of Korea
| | - W J Kim
- Department of Molecular Genetics and Pharmacology, School of Dentistry and Dental Research Institute, BK21 Program, Seoul National University, Seoul, Republic of Korea
| | - Y D Cho
- Department of Periodontology, School of Dentistry and Dental Research Institute, BK21 Program, Seoul National University, Seoul, Republic of Korea
| | - H M Ryoo
- Department of Molecular Genetics and Pharmacology, School of Dentistry and Dental Research Institute, BK21 Program, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
7
|
Andrukhov O, Blufstein A, Behm C, Moritz A, Rausch-Fan X. Vitamin D3 and Dental Mesenchymal Stromal Cells. APPLIED SCIENCES 2020; 10:4527. [DOI: 10.3390/app10134527] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
Abstract
Vitamin D3 is a hormone involved in the regulation of bone metabolism, mineral homeostasis, and immune response. Almost all dental tissues contain resident mesenchymal stromal cells (MSCs), which are largely similar to bone marrow-derived MSCs. In this narrative review, we summarized the current findings concerning the physiological effects of vitamin D3 on dental MSCs. The existing literature suggests that dental MSCs possess the ability to convert vitamin D3 into 25(OH)D3 and subsequently to the biologically active 1,25(OH)2D3. The vitamin D3 metabolites 25(OH)D3 and 1,25(OH)2D3 stimulate osteogenic differentiation and diminish the inflammatory response of dental MSCs. In addition, 1,25(OH)2D3 influences the immunomodulatory properties of MSCs in different dental tissues. Thus, dental MSCs are both producers and targets of 1,25(OH)2D3 and might regulate the local vitamin D3-dependent processes in an autocrine/paracrine manner. The local vitamin D3 metabolism is assumed to play an essential role in the local physiological processes, but the mechanisms of its regulation in dental MSCs are mostly unknown. The alteration of the local vitamin D3 metabolism may unravel novel therapeutic modalities for the treatment of periodontitis as well as new strategies for dental tissue regeneration.
Collapse
Affiliation(s)
- Oleh Andrukhov
- Division of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria
| | - Alice Blufstein
- Division of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria
| | - Christian Behm
- Division of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria
- Division of Orthodontics, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria
| | - Andreas Moritz
- Division of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria
| | - Xiaohui Rausch-Fan
- Division of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria
- Division of Orthodontics, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
8
|
Ji L, Gao J, Kong R, Gao Y, Ji X, Zhao D. Autophagy exerts pivotal roles in regulatory effects of 1α,25-(OH)2D3 on the osteoclastogenesis. Biochem Biophys Res Commun 2019; 511:869-874. [DOI: 10.1016/j.bbrc.2019.02.114] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 02/21/2019] [Indexed: 01/24/2023]
|
9
|
Liu Y, Sun X, Zhang X, Wang X, Zhang C, Zheng S. RUNX2 mutation impairs osteogenic differentiation of dental follicle cells. Arch Oral Biol 2019; 97:156-164. [DOI: 10.1016/j.archoralbio.2018.10.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 10/04/2018] [Accepted: 10/26/2018] [Indexed: 12/12/2022]
|
10
|
Owen R, Reilly GC. In vitro Models of Bone Remodelling and Associated Disorders. Front Bioeng Biotechnol 2018; 6:134. [PMID: 30364287 PMCID: PMC6193121 DOI: 10.3389/fbioe.2018.00134] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 09/07/2018] [Indexed: 01/02/2023] Open
Abstract
Disruption of bone remodelling by diseases such as osteoporosis results in an imbalance between bone formation by osteoblasts and resorption by osteoclasts. Research into these metabolic bone disorders is primarily performed in vivo; however, in the last decade there has been increased interest in generating in vitro models that can reduce or replace our reliance on animal testing. With recent advances in biomaterials and tissue engineering the feasibility of laboratory-based alternatives is growing; however, to date there are no established in vitro models of bone remodelling. In vivo, remodelling is performed by organised packets of osteoblasts and osteoclasts called bone multicellular units (BMUs). The key determinant of whether osteoclasts form and remodelling occurs is the ratio between RANKL, a cytokine which stimulates osteoclastogenesis, and OPG, its inhibitor. This review initially details the different circumstances, conditions, and factors which have been found to modulate the RANKL:OPG ratio, and fundamental factors to be considered if a robust in vitro model is to be developed. Following this, an examination of what has been achieved thus far in replicating remodelling in vitro using three-dimensional co-cultures is performed, before overviewing how such systems are already being utilised in the study of associated diseases, such as metastatic cancer and dental disorders. Finally, a discussion of the most important considerations to be incorporated going forward is presented. This details the need for the use of cells capable of endogenously producing the required cytokines, application of mechanical stimulation, and the presence of appropriate hormones in order to produce a robust model of bone remodelling.
Collapse
Affiliation(s)
| | - Gwendolen C. Reilly
- Department of Materials Science and Engineering, University of Sheffield, Insigneo Institute for in silico Medicine, Sheffield, United Kingdom
| |
Collapse
|
11
|
Liu Y, Wang Y, Sun X, Zhang X, Wang X, Zhang C, Zheng S. RUNX2 mutation reduces osteogenic differentiation of dental follicle cells in cleidocranial dysplasia. Mutagenesis 2018; 33:203-214. [PMID: 29947791 DOI: 10.1093/mutage/gey010] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Accepted: 06/01/2018] [Indexed: 01/09/2023] Open
Abstract
Disturbed permanent tooth eruption is common in cleidocranial dysplasia (CCD), a skeletal disorder caused by heterozygous mutation of RUNX2, but the mechanism underlying is still unclear. As it is well known that dental follicle cells (DFCs) play a critical role in tooth eruption, the changed biological characteristics of DFCs might give rise to disturbance of permanent tooth eruption in CCD patients. Thus, primary DFCs from one CCD patient and normal controls were collected to investigate the effect of RUNX2 mutation on the bone remodeling activity of DFCs and explore the mechanism of impaired permanent tooth eruption in this disease. Conservation and secondary structure analysis revealed that the RUNX2 mutation (c.514delT, p.172fs) found in the present CCD patient was located in the highly conserved RUNT domain and converted the structure of RUNX2. After osteogenic induction, we found that the mineralised capacity of DFCs and the expression of osteoblast-related genes, including RUNX2, ALP, OSX, OCN and Col Iα1, in DFCs was severely interfered by the RUNX2 mutation found in CCD patients. To investigate whether the osteogenic deficiency of DFCs from the CCD patient can be rescued by RUNX2 restoration, we performed 'rescue' experiments. Surprisingly, the osteogenic deficiency and the abnormal expression of osteoblast-associated genes in DFCs from the CCD patient were almost rescued by overexpression of wild-type RUNX2 using lentivirus. All these findings indicate that RUNX2 mutation can reduce the osteogenic capacity of DFCs through inhibiting osteoblast-associated genes, thereby disturbing alveolar bone formation, which serves as a motive force for tooth eruption. This effect may provide valuable explanations and implications for the mechanism of delayed permanent tooth eruption in CCD patients.
Collapse
Affiliation(s)
- Yang Liu
- Department of Preventive Dentistry, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Haidian District, Beijing, PR China
| | - Yixiang Wang
- Central Laboratory, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Haidian District, Beijing, PR China
| | - Xiangyu Sun
- Department of Preventive Dentistry, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Haidian District, Beijing, PR China
| | - Xianli Zhang
- Department of Preventive Dentistry, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Haidian District, Beijing, PR China
- Department of Stomatology, Xuanwu Hospital Capital Medical University, Xicheng District, Beijing, PR China
| | - Xiaozhe Wang
- Department of Preventive Dentistry, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Haidian District, Beijing, PR China
| | - Chenying Zhang
- Department of Preventive Dentistry, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Haidian District, Beijing, PR China
| | - Shuguo Zheng
- Department of Preventive Dentistry, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Haidian District, Beijing, PR China
| |
Collapse
|
12
|
Kreiborg S, Jensen BL. Tooth formation and eruption – lessons learnt from cleidocranial dysplasia. Eur J Oral Sci 2018; 126 Suppl 1:72-80. [DOI: 10.1111/eos.12418] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/28/2018] [Indexed: 12/31/2022]
Affiliation(s)
- Sven Kreiborg
- Section of Pediatric Dentistry and Clinical Genetics Department of Odontology Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
| | - B. L. Jensen
- Section of Pediatric Dentistry and Clinical Genetics Department of Odontology Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
| |
Collapse
|
13
|
Liu Y, Zhang X, Sun X, Wang X, Zhang C, Zheng S. Abnormal bone remodelling activity of dental follicle cells from a cleidocranial dysplasia patient. Oral Dis 2018; 24:1270-1281. [PMID: 29787635 DOI: 10.1111/odi.12900] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Revised: 05/07/2018] [Accepted: 05/15/2018] [Indexed: 11/29/2022]
Abstract
OBJECTIVES To explore the role of dental follicle cells (DFCs) with a novel cleidocranial dysplasia (CCD) causative gene RUNX2 mutation (DFCsRUNX2+/m ) in delayed permanent tooth eruption. MATERIALS AND METHODS A CCD patient with typical clinical features was involved in this study. DFCsRUNX2+/m were cultured and DNA was extracted for RUNX2 mutation screening. Measurements of cell proliferation, alkaline phosphatase (ALP) activity, alizarin red staining and osteoblast-specific genes expression were performed to assess osteogenesis of DFCsRUNX2+/m . Co-culture of DFCs and peripheral blood mononuclear cells (PBMCs), followed tartrate-resistant acid phosphatase (TRAP) staining, real-time PCR and western blot were performed to evaluate osteoclast-inductive capacity of DFCsRUNX2+/m . RESULTS A missense RUNX2 mutation (c. 557G>C) was found in DFCsRUNX2+/m from the CCD patient. Compared with normal controls, this mutation did not affect the proliferation of DFCsRUNX2+/m , but down-regulated the expression of osteogenesis-related genes, leading to a decrease in ALP activity and mineralisation. Co-culture results showed that DFCsRUNX2+/m reduced the formation of TRAP+ multinucleated cells and the expression of osteoclastogenesis-associated genes. Furthermore, the mutation reduced the ratio of RANKL/OPG in DFCsRUNX2+/m . CONCLUSIONS DFCsRUNX2+/m disturbs bone remodelling activity during tooth eruption through RANK/RANKL/OPG signalling pathway and may thus be responsible for impaired permanent tooth eruption in CCD patients.
Collapse
Affiliation(s)
- Yang Liu
- Department of Preventive Dentistry, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Xianli Zhang
- Department of Preventive Dentistry, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, China.,Department of Stomatology, Xuanwu Hospital Capital Medical University, Beijing, China
| | - Xiangyu Sun
- Department of Preventive Dentistry, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Xiaozhe Wang
- Department of Preventive Dentistry, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Chenying Zhang
- Department of Preventive Dentistry, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Shuguo Zheng
- Department of Preventive Dentistry, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, China
| |
Collapse
|
14
|
A novel gene mutation of Runx2 in cleidocranial dysplasia. Curr Med Sci 2017; 37:772-776. [PMID: 29058294 DOI: 10.1007/s11596-017-1803-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 06/24/2017] [Indexed: 10/18/2022]
Abstract
Haploinsufficiency of the runt-related transcription factor 2 (Runx2) gene is widely known to be responsible for cleidocranial dysplasia (CCD). To date, more than 190 mutations in Runx2 gene have been reported to be related to CCD. In this study, a novel mutation of Runx2 gene was observed in a female with CCD. Genomic DNA was extracted from peripheral venous blood of the proband and eleven members of her family. Genetic testing on these twelve people identified a novel missense mutation (c.895 T>C, Y299H) in exon 5 of the RUNX2 gene in the proband. This mutation results in an amino acid change at codon 895 (P.Tyr 299 His.) from a tryptophan codon (TAT) to a histidine codon (CAT). Our finding may further extend the known mutation spectrum of the RUNX2 gene, and facilitate prenatal genetic diagnosis of CCD in the future.
Collapse
|