1
|
Georgiev NFK, Andersson AL, Ruppe Z, Kattwinkel L, Frankenberg‐Dinkel N. Archaeal Signalling Networks-New Insights Into the Structure and Function of Histidine Kinases and Response Regulators of the Methanogenic Archaeon Methanosarcina acetivorans. Environ Microbiol 2025; 27:e70047. [PMID: 39888151 PMCID: PMC11784639 DOI: 10.1111/1462-2920.70047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 01/13/2025] [Accepted: 01/16/2025] [Indexed: 02/01/2025]
Abstract
The methanogenic archaeon Methanosarcina acetivorans has one of the largest known archaeal genomes. With 53 histidine kinases (HK), it also has the largest set of signal transduction systems. To gain insight into the hitherto not very well understood signal transduction in Archaea and M. acetivorans in particular, we have categorised the predicted HK into four types based on their H-box using an in silico analysis. Representatives of three types were recombinantly produced in Escherichia coli and purified by affinity chromatography. All investigated kinases showed ATP binding and hydrolysis. The MA_type 2 kinase, which lacks the classical H-box, showed no autokinase activity. Furthermore, we could show that M. acetivorans possesses an above-average number of response regulators (RR), consisting of only a REC domain (REC-only). Using the hybrid kinase MA4377 as an example we show that both intra-and intermolecular transphosphorylation to REC domains occur. These experiments are furthermore indicative of complex phosphorelay systems in M. acetivorans and suggest that REC-only proteins act as a central hub in signal transduction in M. acetivorans.
Collapse
Affiliation(s)
- Nora F. K. Georgiev
- Department of MicrobiologyRheinland‐Pfälzische Technische Universität Kaiserslautern‐LandauKaiserslauternGermany
| | - Anne L. Andersson
- Department of MicrobiologyRheinland‐Pfälzische Technische Universität Kaiserslautern‐LandauKaiserslauternGermany
| | - Zoe Ruppe
- Department of MicrobiologyRheinland‐Pfälzische Technische Universität Kaiserslautern‐LandauKaiserslauternGermany
| | - Loriana Kattwinkel
- Department of MicrobiologyRheinland‐Pfälzische Technische Universität Kaiserslautern‐LandauKaiserslauternGermany
| | - Nicole Frankenberg‐Dinkel
- Department of MicrobiologyRheinland‐Pfälzische Technische Universität Kaiserslautern‐LandauKaiserslauternGermany
| |
Collapse
|
2
|
Gallo G, Aulitto M. Advances in Extremophile Research: Biotechnological Applications through Isolation and Identification Techniques. Life (Basel) 2024; 14:1205. [PMID: 39337987 PMCID: PMC11433292 DOI: 10.3390/life14091205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/13/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024] Open
Abstract
Extremophiles, organisms thriving in extreme environments such as hot springs, deep-sea hydrothermal vents, and hypersaline ecosystems, have garnered significant attention due to their remarkable adaptability and biotechnological potential. This review presents recent advancements in isolating and characterizing extremophiles, highlighting their applications in enzyme production, bioplastics, environmental management, and space exploration. The unique biological mechanisms of extremophiles offer valuable insights into life's resilience and potential uses in industry and astrobiology.
Collapse
Affiliation(s)
- Giovanni Gallo
- Division of Microbiology, Faculty of Biology, Ludwig-Maximilians-Universität München, 82152 Martinsried, Germany
| | - Martina Aulitto
- Department of Biology, University of Napoli Federico II, Complesso Universitario Monte Sant'Angelo, 80126 Napoli, Italy
| |
Collapse
|
3
|
Liu W, Cong B, Lin J, Liu S, Deng A, Zhao L. Taxonomic identification and temperature stress tolerance mechanisms of Aequorivita marisscotiae sp. nov. Commun Biol 2023; 6:1186. [PMID: 37990058 PMCID: PMC10663628 DOI: 10.1038/s42003-023-05559-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 11/08/2023] [Indexed: 11/23/2023] Open
Abstract
The deep sea harbours microorganisms with unique life characteristics and activities due to adaptation to particular environmental conditions, but the limited sample collection and pure culture techniques available constrain the study of deep-sea microorganisms. In this study, strain Ant34-E75 was isolated from Antarctic deep-sea sediment samples and showed the highest 16 S rRNA gene sequence similarity (97.18%) with the strain Aequorivita viscosa 8-1bT. Strain Ant34-E75 is psychrotrophic and can effectively increase the cold tolerance of Chlamydomonas reinhardtii (a model organism). Subsequent transcriptome analysis revealed multiple mechanisms involved in the Ant34-E75 response to temperature stress, and weighted gene co-expression network analysis (WGCNA) showed that the peptidoglycan synthesis pathway was the key component. Overall, this study provides insights into the characteristics of a deep-sea microorganism and elucidates mechanisms of temperature adaptation at the molecular level.
Collapse
Affiliation(s)
- Wenqi Liu
- First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China
| | - Bailin Cong
- First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China.
| | - Jing Lin
- First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China
| | - Shenghao Liu
- First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China
| | - Aifang Deng
- First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China
| | - Linlin Zhao
- First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China
| |
Collapse
|
4
|
Jia X, Zhao K, Liu F, Lin J, Lin C, Chen J. Transcriptional factor OmpR positively regulates prodigiosin biosynthesis in Serratia marcescens FZSF02 by binding with the promoter of the prodigiosin cluster. Front Microbiol 2022; 13:1041146. [PMID: 36466667 PMCID: PMC9712742 DOI: 10.3389/fmicb.2022.1041146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 11/01/2022] [Indexed: 10/27/2023] Open
Abstract
Prodigiosin is a promising secondary metabolite mainly produced by Serratia marcescens. The production of prodigiosin by S. marcescens is regulated by different kinds of regulatory systems, including the EnvZ/OmpR system. In this study, we demonstrated that the regulatory factor OmpR positively regulated prodigiosin production in S. marcescens FZSF02 by directly binding to the promoter region of the prodigiosin biosynthesis cluster with a lacZ reporter assay and electrophoretic mobility shift assay (EMSA). The binding sequence with the pig promoter was identified by a DNase I footprinting assay. We further demonstrate that OmpR regulates its own expression by directly binding to the promoter region of envZ/ompR. For the first time, the regulatory mechanism of prodigiosin production by the transcriptional factor OmpR was revealed.
Collapse
Affiliation(s)
- Xianbo Jia
- Institute of Soil and Fertilizer, Fujian Academy of Agricultural Sciences, Fujian Key Laboratory of Plant Nutrition and Fertilizer, Fuzhou, China
| | - Ke Zhao
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Fangchen Liu
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Junjie Lin
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Chenqiang Lin
- Institute of Soil and Fertilizer, Fujian Academy of Agricultural Sciences, Fujian Key Laboratory of Plant Nutrition and Fertilizer, Fuzhou, China
| | - Jichen Chen
- Institute of Soil and Fertilizer, Fujian Academy of Agricultural Sciences, Fujian Key Laboratory of Plant Nutrition and Fertilizer, Fuzhou, China
| |
Collapse
|
5
|
Fernández P, Díaz AR, Ré MF, Porrini L, de Mendoza D, Albanesi D, Mansilla MC. Identification of Novel Thermosensors in Gram-Positive Pathogens. Front Mol Biosci 2020; 7:592747. [PMID: 33324680 PMCID: PMC7726353 DOI: 10.3389/fmolb.2020.592747] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 10/28/2020] [Indexed: 11/13/2022] Open
Abstract
Temperature is a crucial variable that every living organism, from bacteria to humans, need to sense and respond to in order to adapt and survive. In particular, pathogenic bacteria exploit host-temperature sensing as a cue for triggering virulence gene expression. Here, we have identified and characterized two integral membrane thermosensor histidine kinases (HKs) from Gram-positive pathogens that exhibit high similarity to DesK, the extensively characterized cold sensor histidine kinase from Bacillus subtilis. Through in vivo experiments, we demonstrate that SA1313 from Staphylococcus aureus and BA5598 from Bacillus anthracis, which likely control the expression of putative ATP binding cassette (ABC) transporters, are regulated by environmental temperature. We show here that these HKs can phosphorylate the non-cognate response regulator DesR, partner of DesK, both in vitro and in vivo, inducing in B. subtilis the expression of the des gene upon a cold shock. In addition, we report the characterization of another DesK homolog from B. subtilis, YvfT, also closely associated to an ABC transporter. Although YvfT phosphorylates DesR in vitro, this sensor kinase can only induce des expression in B. subtilis when overexpressed together with its cognate response regulator YvfU. This finding evidences a physiological mechanism to avoid cross talk with DesK after a temperature downshift. Finally, we present data suggesting that the HKs studied in this work appear to monitor different ranges of membrane lipid properties variations to mount adaptive responses upon cooling. Overall, our findings point out that bacteria have evolved sophisticated mechanisms to assure specificity in the response to environmental stimuli. These findings pave the way to understand thermosensing mediated by membrane proteins that could have important roles upon host invasion by bacterial pathogens.
Collapse
Affiliation(s)
- Pilar Fernández
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Rosario, Argentina
| | - Alejandra Raquel Díaz
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Centro de Recursos Naturales Renovables de la Zona Semi-árida (CERZOS-CONICET), Bahía Blanca, Argentina
| | - María Florencia Ré
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Rosario, Argentina
| | - Lucía Porrini
- Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Diego de Mendoza
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Rosario, Argentina.,Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Daniela Albanesi
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Rosario, Argentina.,Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - María Cecilia Mansilla
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Rosario, Argentina.,Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| |
Collapse
|
6
|
Abstract
Signal transduction systems configured around a core phosphotransfer step between a histidine kinase and a cognate response regulator protein occur in organisms from all domains of life. These systems, termed two-component systems, constitute the majority of multi-component signaling pathways in Bacteria but are less prevalent in Archaea and Eukarya. The core signaling domains are modular, allowing versatility in configuration of components into single-step phosphotransfer and multi-step phosphorelay pathways, the former being predominant in bacteria and the latter in eukaryotes. Two-component systems regulate key cellular regulatory processes that provide adaptive responses to environmental stimuli and are of interest for the development of antimicrobial therapeutics, biotechnology applications, and biosensor engineering. In bacteria, two-component systems have been found to mediate responses to an extremely broad array of extracellular and intracellular chemical and physical stimuli, whereas in archaea and eukaryotes, the use of two-component systems is more limited. This review summarizes recent advances in exploring the repertoire of sensor histidine kinases in the Archaea and Eukarya domains of life.
Collapse
Affiliation(s)
- Nicolas Papon
- Groupe d'Etude des Interactions Hôte-Pathogène (GEIHP, EA 3142), SFR ICAT 4208, UNIV Angers, UNIV Brest, Angers, France
| | - Ann M Stock
- Department of Biochemistry and Molecular Biology, Center for Advanced Biotechnology and Medicine, Rutgers-Robert Wood Johnson Medical School, Piscataway, NJ, 08854, USA
| |
Collapse
|
7
|
Fiege K, Frankenberg‐Dinkel N. Thiol‐based redox sensing in the methyltransferase associated sensor kinase RdmS in
Methanosarcina acetivorans. Environ Microbiol 2019; 21:1597-1610. [DOI: 10.1111/1462-2920.14541] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 01/16/2019] [Accepted: 01/21/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Kerstin Fiege
- Technische Universität Kaiserslautern, Fachbereich BiologieAbteilung Mikrobiologie Paul‐Ehrlich‐Str. 23, 67663, Kaiserslautern Germany
| | - Nicole Frankenberg‐Dinkel
- Technische Universität Kaiserslautern, Fachbereich BiologieAbteilung Mikrobiologie Paul‐Ehrlich‐Str. 23, 67663, Kaiserslautern Germany
| |
Collapse
|
8
|
Abstract
Microbes are the most abundant lifeforms on the planet and perform functions critical for all other life to exist. Environmental 'omic' technologies provide the capacity to discover the 'what, how and why' of indigenous species. However, in order to accurately interpret this data, sound conceptual frameworks are required. Here I argue that our understanding of microbes will advance much more effectively if we adopt a microbcentric, and not anthropocentric view of the world.
Collapse
Affiliation(s)
- Ricardo Cavicchioli
- School of Biotechnology and Biomolecular SciencesUNSW SydneySydneyNSWAustralia
| |
Collapse
|
9
|
Wang Q, Ji F, Guo J, Wang Y, Li Y, Wang J, An L, Bao Y. LotS/LotR/Clp, a novel signal pathway responding to temperature, modulating protease expression via c-di-GMP mediated manner in Stenotrophomonas maltophilia FF11. Microbiol Res 2018; 214:60-73. [PMID: 30031482 DOI: 10.1016/j.micres.2018.05.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 04/30/2018] [Accepted: 05/17/2018] [Indexed: 11/25/2022]
Abstract
Stenotrophomonas maltophilia as one of increasing food spoilage bacteria and fish pathogens has become a threat to aquiculture industry. A major factor contributing to the success of bacterium is its outstanding ability to secrete protease at low temperatures. Here, a cAMP receptor like protein (Clp) shows a positive regulation on this protease, named S. maltophilia temperature-response protease (SmtP). Interestingly, a two-component system, comprising of LotS sensor and LotR regulator, for low-temperature response is also confirmed to modulate SmtP expression with similar effect to Clp. Evidence is presented that LotS/LotR modulates smtP (coding SmtP) expression via Clp: clp promoter activity was reduced significantly at low temperatures and protease activity was partially restored by Clp overexpressed in lotS or lotR deletion strain. Furthermore, as a Clp negative effector, the binding ability of c-di-GMP with Clp is not impacted by temperature. c-di-GMP level was increased in S. maltophilia growing at high temperature, but not exhibited significantly in lotR deleted strain, these indicate that LotR is required for temperature modulating c-di-GMP level, although the synthesis or degradation activity of c-di-GMP by LotR was not detected. These findings suggest that LotS/LotR/Clp play an important role in responding to temperature stimuli via c-di-GMP mediated manner.
Collapse
Affiliation(s)
- Qingling Wang
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116024, China
| | - Fangling Ji
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116024, China
| | - Jianli Guo
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116024, China
| | - Yuepeng Wang
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116024, China
| | - Yanyan Li
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116024, China
| | - Jingyun Wang
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116024, China
| | - Lijia An
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116024, China
| | - Yongming Bao
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116024, China; School of Food and Environment Science and Technology, Dalian University of Technology, Panjin, 124221, China.
| |
Collapse
|
10
|
Phyletic Distribution and Lineage-Specific Domain Architectures of Archaeal Two-Component Signal Transduction Systems. J Bacteriol 2018; 200:JB.00681-17. [PMID: 29263101 PMCID: PMC5847659 DOI: 10.1128/jb.00681-17] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 12/11/2017] [Indexed: 12/14/2022] Open
Abstract
The two-component signal transduction (TCS) machinery is a key mechanism of sensing environmental changes in the prokaryotic world. TCS systems have been characterized thoroughly in bacteria but to a much lesser extent in archaea. Here, we provide an updated census of more than 2,000 histidine kinases and response regulators encoded in 218 complete archaeal genomes, as well as unfinished genomes available from metagenomic data. We describe the domain architectures of the archaeal TCS components, including several novel output domains, and discuss the evolution of the archaeal TCS machinery. The distribution of TCS systems in archaea is strongly biased, with high levels of abundance in haloarchaea and thaumarchaea but none detected in the sequenced genomes from the phyla Crenarchaeota, Nanoarchaeota, and Korarchaeota The archaeal sensor histidine kinases are generally similar to their well-studied bacterial counterparts but are often located in the cytoplasm and carry multiple PAS and/or GAF domains. In contrast, archaeal response regulators differ dramatically from the bacterial ones. Most archaeal genomes do not encode any of the major classes of bacterial response regulators, such as the DNA-binding transcriptional regulators of the OmpR/PhoB, NarL/FixJ, NtrC, AgrA/LytR, and ActR/PrrA families and the response regulators with GGDEF and/or EAL output domains. Instead, archaea encode multiple copies of response regulators containing either the stand-alone receiver (REC) domain or combinations of REC with PAS and/or GAF domains. Therefore, the prevailing mechanism of archaeal TCS signaling appears to be via a variety of protein-protein interactions, rather than direct transcriptional regulation.IMPORTANCE Although the Archaea represent a separate domain of life, their signaling systems have been assumed to be closely similar to the bacterial ones. A study of the domain architectures of the archaeal two-component signal transduction (TCS) machinery revealed an overall similarity of archaeal and bacterial sensory modules but substantial differences in the signal output modules. The prevailing mechanism of archaeal TCS signaling appears to involve various protein-protein interactions rather than direct transcription regulation. The complete list of histidine kinases and response regulators encoded in the analyzed archaeal genomes is available online at http://www.ncbi.nlm.nih.gov/Complete_Genomes/TCSarchaea.html.
Collapse
|
11
|
Dynamic domain arrangement of CheA-CheY complex regulates bacterial thermotaxis, as revealed by NMR. Sci Rep 2017; 7:16462. [PMID: 29184123 PMCID: PMC5705603 DOI: 10.1038/s41598-017-16755-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 11/16/2017] [Indexed: 01/19/2023] Open
Abstract
Bacteria utilize thermotaxis signal transduction proteins, including CheA, and CheY, to switch the direction of the cell movement. However, the thermally responsive machinery enabling warm-seeking behavior has not been identified. Here we examined the effects of temperature on the structure and dynamics of the full-length CheA and CheY complex, by NMR. Our studies revealed that the CheA-CheY complex exists in equilibrium between multiple states, including one state that is preferable for the autophosphorylation of CheA, and another state that is preferable for the phosphotransfer from CheA to CheY. With increasing temperature, the equilibrium shifts toward the latter state. The temperature-dependent population shift of the dynamic domain arrangement of the CheA-CheY complex induced changes in the concentrations of phosphorylated CheY that are comparable to those induced by chemical attractants or repellents. Therefore, the dynamic domain arrangement of the CheA-CheY complex functions as the primary thermally responsive machinery in warm-seeking behavior.
Collapse
|
12
|
Williams TJ, Liao Y, Ye J, Kuchel RP, Poljak A, Raftery MJ, Cavicchioli R. Cold adaptation of the Antarctic haloarchaea
Halohasta litchfieldiae
and
Halorubrum lacusprofundi. Environ Microbiol 2017; 19:2210-2227. [DOI: 10.1111/1462-2920.13705] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Revised: 01/17/2017] [Accepted: 02/08/2017] [Indexed: 12/23/2022]
Affiliation(s)
- Timothy J. Williams
- School of Biotechnology and Biomolecular SciencesThe University of New South WalesSydney New South Wales2052 Australia
| | - Yan Liao
- School of Biotechnology and Biomolecular SciencesThe University of New South WalesSydney New South Wales2052 Australia
| | - Jun Ye
- School of Biotechnology and Biomolecular SciencesThe University of New South WalesSydney New South Wales2052 Australia
- Centre for Marine Bio‐InnovationThe University of New South WalesSydney New South Wales2052 Australia
| | - Rhiannon P. Kuchel
- Electron Microscopy UnitThe University of New South WalesSydney New South Wales2052 Australia
| | - Anne Poljak
- Bioanalytical Mass Spectrometry FacilityThe University of New South WalesSydney New South Wales2052 Australia
| | - Mark J. Raftery
- Bioanalytical Mass Spectrometry FacilityThe University of New South WalesSydney New South Wales2052 Australia
| | - Ricardo Cavicchioli
- School of Biotechnology and Biomolecular SciencesThe University of New South WalesSydney New South Wales2052 Australia
| |
Collapse
|
13
|
Transcription Factor-Mediated Gene Regulation in Archaea. RNA METABOLISM AND GENE EXPRESSION IN ARCHAEA 2017. [DOI: 10.1007/978-3-319-65795-0_2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
14
|
Liao Y, Williams TJ, Walsh JC, Ji M, Poljak A, Curmi PMG, Duggin IG, Cavicchioli R. Developing a genetic manipulation system for the Antarctic archaeon, Halorubrum lacusprofundi: investigating acetamidase gene function. Sci Rep 2016; 6:34639. [PMID: 27708407 PMCID: PMC5052560 DOI: 10.1038/srep34639] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 09/16/2016] [Indexed: 01/04/2023] Open
Abstract
No systems have been reported for genetic manipulation of cold-adapted Archaea. Halorubrum lacusprofundi is an important member of Deep Lake, Antarctica (~10% of the population), and is amendable to laboratory cultivation. Here we report the development of a shuttle-vector and targeted gene-knockout system for this species. To investigate the function of acetamidase/formamidase genes, a class of genes not experimentally studied in Archaea, the acetamidase gene, amd3, was disrupted. The wild-type grew on acetamide as a sole source of carbon and nitrogen, but the mutant did not. Acetamidase/formamidase genes were found to form three distinct clades within a broad distribution of Archaea and Bacteria. Genes were present within lineages characterized by aerobic growth in low nutrient environments (e.g. haloarchaea, Starkeya) but absent from lineages containing anaerobes or facultative anaerobes (e.g. methanogens, Epsilonproteobacteria) or parasites of animals and plants (e.g. Chlamydiae). While acetamide is not a well characterized natural substrate, the build-up of plastic pollutants in the environment provides a potential source of introduced acetamide. In view of the extent and pattern of distribution of acetamidase/formamidase sequences within Archaea and Bacteria, we speculate that acetamide from plastics may promote the selection of amd/fmd genes in an increasing number of environmental microorganisms.
Collapse
Affiliation(s)
- Y Liao
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - T J Williams
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - J C Walsh
- School of Physics, The University of New South Wales, Sydney, New South Wales, 2052, Australia.,The ithree institute, University of Technology Sydney, Broadway, New South Wales, 2007, Australia
| | - M Ji
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - A Poljak
- Bioanalytical Mass Spectrometry Facility, The University of New South Wales, Sydney, New South Wales, Australia
| | - P M G Curmi
- School of Physics, The University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - I G Duggin
- The ithree institute, University of Technology Sydney, Broadway, New South Wales, 2007, Australia
| | - R Cavicchioli
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, New South Wales, 2052, Australia
| |
Collapse
|