1
|
Zhang S, Zhang XY, Zheng XC, Ye XL, Huang P, Liu WT, Jiang HJ. Downregulation of MGAT3 Promotes Benzo[ a]pyrene-Mediated Lung Carcinogenesis by Regulating Cell Invasion and Migration Activity. ACS OMEGA 2025; 10:17404-17415. [PMID: 40352502 PMCID: PMC12060035 DOI: 10.1021/acsomega.4c10682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 04/13/2025] [Accepted: 04/17/2025] [Indexed: 05/14/2025]
Abstract
Environmental chemical carcinogens are major factors in the induction of lung cancer, with benzo[a]pyrene (B[a]P) being one of the most widespread and highly carcinogenic among them. Although studies have reported that B[a]P exerts its carcinogenic effects by causing mutations, inducing cytotoxicity, and inhibiting DNA synthesis, the early molecular regulatory events and mechanisms involved in B[a]P-induced tumor initiation remain unclear. This study found that the MGAT3 gene was significantly downregulated in B[a]P-induced mouse lung tumorigenesis, suggesting its important tumor-suppressive function. Further investigation revealed that suppression of MGAT3 expression promoted the invasion and migration abilities of lung cancer cells, while overexpression of MGAT3 in these cells inhibited these effects. Western blot analysis also showed that MGAT3 regulated the expression of epithelial-mesenchymal transition markers, thereby affecting the motility of lung cancer cells. Xenograft assay also confirmed the inhibitory effect of MGAT3 overexpression on tumor proliferation. Analysis of lung cancer tissue expression further validated that MGAT3 is significantly downregulated in lung cancer tissues, and this decrease in expression is associated with a poor prognosis in lung cancer patients. Our research indicates that the suppression of MGAT3 expression and its downstream regulatory molecules plays a crucial role in lung cancer development induced by environmental chemical carcinogens.
Collapse
Affiliation(s)
- Su Zhang
- Center
for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People’s Hospital, Affiliated
People’s Hospital, Hangzhou Medical College, Shangtang Road No. 158, Hangzhou 310014, Zhejiang, China
| | - Xia-Yan Zhang
- Department
of Pharmacy, the Fifth Affiliated Hospital
of Wenzhou Medical University, Kuocang Road No. 289, Lishui 323000, Zhejiang, China
| | - Xiao-Chun Zheng
- Center
for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People’s Hospital, Affiliated
People’s Hospital, Hangzhou Medical College, Shangtang Road No. 158, Hangzhou 310014, Zhejiang, China
| | - Xiao-Lan Ye
- Center
for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People’s Hospital, Affiliated
People’s Hospital, Hangzhou Medical College, Shangtang Road No. 158, Hangzhou 310014, Zhejiang, China
| | - Ping Huang
- Center
for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People’s Hospital, Affiliated
People’s Hospital, Hangzhou Medical College, Shangtang Road No. 158, Hangzhou 310014, Zhejiang, China
| | - Wen-tong Liu
- School
of Pharmacy, Hangzhou Normal University, Binwen Road No. 481, Hangzhou 311121, Zhejiang, China
| | - Hong-juan Jiang
- Center
for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People’s Hospital, Affiliated
People’s Hospital, Hangzhou Medical College, Shangtang Road No. 158, Hangzhou 310014, Zhejiang, China
| |
Collapse
|
2
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2021-2022. MASS SPECTROMETRY REVIEWS 2025; 44:213-453. [PMID: 38925550 PMCID: PMC11976392 DOI: 10.1002/mas.21873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/05/2024] [Accepted: 02/12/2024] [Indexed: 06/28/2024]
Abstract
The use of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry for the analysis of carbohydrates and glycoconjugates is a well-established technique and this review is the 12th update of the original article published in 1999 and brings coverage of the literature to the end of 2022. As with previous review, this review also includes a few papers that describe methods appropriate to analysis by MALDI, such as sample preparation, even though the ionization method is not MALDI. The review follows the same format as previous reviews. It is divided into three sections: (1) general aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, fragmentation, quantification and the use of computer software for structural identification. (2) Applications to various structural types such as oligo- and polysaccharides, glycoproteins, glycolipids, glycosides and biopharmaceuticals, and (3) other general areas such as medicine, industrial processes, natural products and glycan synthesis where MALDI is extensively used. Much of the material relating to applications is presented in tabular form. MALDI is still an ideal technique for carbohydrate analysis, particularly in its ability to produce single ions from each analyte and advancements in the technique and range of applications show little sign of diminishing.
Collapse
|
3
|
Stupin Polančec D, Homar S, Jakšić D, Kopjar N, Šegvić Klarić M, Dabelić S. Citrinin Provoke DNA Damage and Cell-Cycle Arrest Related to Chk2 and FANCD2 Checkpoint Proteins in Hepatocellular and Adenocarcinoma Cell Lines. Toxins (Basel) 2024; 16:321. [PMID: 39057961 PMCID: PMC11281099 DOI: 10.3390/toxins16070321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/11/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Citrinin (CIT), a polyketide mycotoxin produced by Penicillium, Aspergillus, and Monascus species, is a contaminant that has been found in various food commodities and was also detected in house dust. Several studies showed that CIT can impair the kidney, liver, heart, immune, and reproductive systems in animals by mechanisms so far not completely elucidated. In this study, we investigated the CIT mode of action on two human tumor cell lines, HepG2 (hepatocellular carcinoma) and A549 (lung adenocarcinoma). Cytotoxic concentrations were determined using an MTT proliferation assay. The genotoxic effect of sub-IC50 concentrations was investigated using the alkaline comet assay and the impact on the cell cycle using flow cytometry. Additionally, the CIT effect on the total amount and phosphorylation of two cell-cycle-checkpoint proteins, the serine/threonine kinase Chk2 and Fanconi anemia (FA) group D2 (FANCD2), was determined by the cell-based ELISA. The data were analyzed using GraphPad Prism statistical software. The CIT IC50 for HepG2 was 107.3 µM, and for A549, it was >250 µM. The results showed that sensitivity to CIT is cell-type dependent and that CIT in sub-IC50 and near IC50 induces significant DNA damage and cell-cycle arrest in the G2/M phase, which is related to the increase in total and phosphorylated Chk2 and FANCD2 checkpoint proteins in HepG2 and A549 cells.
Collapse
Affiliation(s)
| | - Sonja Homar
- University of Zagreb Faculty of Pharmacy and Biochemistry, Department of Biochemistry and Molecular Biology, 10000 Zagreb, Croatia;
| | - Daniela Jakšić
- University of Zagreb Faculty of Pharmacy and Biochemistry, Department of Microbiology, 10000 Zagreb, Croatia;
| | - Nevenka Kopjar
- Mutagenesis Unit, Institute for Medical Research and Occupational Health, 10000 Zagreb, Croatia;
| | - Maja Šegvić Klarić
- University of Zagreb Faculty of Pharmacy and Biochemistry, Department of Microbiology, 10000 Zagreb, Croatia;
| | - Sanja Dabelić
- University of Zagreb Faculty of Pharmacy and Biochemistry, Department of Biochemistry and Molecular Biology, 10000 Zagreb, Croatia;
| |
Collapse
|
4
|
Li X, Loh TJ, Lim JJ, Er Saw P, Liao Y. Glycan-RNA: a new class of non-coding RNA. BIO INTEGRATION 2022. [DOI: 10.15212/bioi-2021-0032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Xiuling Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Tiing Jen Loh
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Jia Jia Lim
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Phei Er Saw
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yong Liao
- Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Institute for Viral Hepatitis, and Department of Infectious Diseases, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| |
Collapse
|
5
|
Histone demethylase IBM1-mediated meiocyte gene expression ensures meiotic chromosome synapsis and recombination. PLoS Genet 2022; 18:e1010041. [PMID: 35192603 PMCID: PMC8896719 DOI: 10.1371/journal.pgen.1010041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 03/04/2022] [Accepted: 01/17/2022] [Indexed: 11/19/2022] Open
Abstract
Histone methylation and demethylation play important roles in plant growth and development, but the involvement of histone demethylation during meiosis is poorly understood. Here we show that disruption of Arabidopsis thaliana INCREASE IN BONSAI METHYLATION 1 (IBM1) causes incomplete synapsis, chromosome entanglement and reduction of recombination during meiosis, leading to sterility. Interestingly, these ibm1 meiotic defects are rescued by mutations in either SUVH4/KYP or CMT3. Using transcriptomic analyses we show that mutation of IBM1 down-regulates thousands of genes expressed in meiocytes, and that expression of about 38% of these genes are restored to wild type levels in ibm1 cmt3 double mutants. Changes in the expression of 437 of these, including the ARABIDOPSIS MEI2-LIKE AML3-5 genes, are correlated with a significant reduction of gene body CHG methylation. Consistently, the aml3 aml4 aml5 triple have defects in synapsis and chromosome entanglement similar to ibm1. Genetic analysis shows that aml3 aml4 aml5 ibm1 quadruple mutants resembles the ibm1 single mutant. Strikingly, over expression of AML5 in ibm1 can partially rescue the ibm1 meiotic defects. Taken together, our results demonstrate that histone demethylase IBM1 is required for meiosis likely via coordinated regulation of meiocyte gene expression during meiosis.
Collapse
|
6
|
Rosa-Fernandes L, Oba-Shinjo SM, Macedo-da-Silva J, Marie SKN, Palmisano G. Aberrant Protein Glycosylation in Brain Cancers, with Emphasis on Glioblastoma. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1382:39-70. [DOI: 10.1007/978-3-031-05460-0_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
|
7
|
Klasić M, Zoldoš V. Epigenetics of Immunoglobulin G Glycosylation. EXPERIENTIA SUPPLEMENTUM (2012) 2021; 112:289-301. [PMID: 34687014 DOI: 10.1007/978-3-030-76912-3_9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Alternative glycosylation of immunoglobulin G (IgG) affects its effector functions during the immune response. IgG glycosylation is altered in many diseases, but also during a healthy life of an individual. Currently, there is limited knowledge of factors that alter IgG glycosylation in the healthy state and factors involved in specific IgG glycosylation patterns associated with pathophysiology. Genetic background plays an important role, but epigenetic mechanisms also contribute to the alteration of IgG glycosylation patterns in healthy life and in disease. It is known that the expression of many glycosyltransferases is regulated by DNA methylation and by microRNA (miRNA) molecules, but the involvement of other epigenetic mechanisms, such as histone modifications, in the regulation of glycosylation-related genes (glycogenes) is still poorly understood. Recent studies have identified several differentially methylated loci associated with IgG glycosylation, but the mechanisms involved in the formation of specific IgG glycosylation patterns remain poorly understood.
Collapse
Affiliation(s)
- Marija Klasić
- Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Vlatka Zoldoš
- Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, Zagreb, Croatia.
| |
Collapse
|
8
|
Abstract
Expression of glycosylation-related genes (or glycogenes) is strictly regulated by transcription factors and epigenetic processes, both in normal and in pathological conditions. In fact, glycosylation is an essential mechanism through which proteins and lipids are modified to perform a variety of biological events, to adapt to environment, and to interact with microorganisms.Many glycogenes with a role in normal development are epigenetically regulated. Essential studies were performed in the brain, where expression of glycogenes like MGAT5B, B4GALNT1, and ST8Sia1 are under the control of histone modifications, and in the immune system, where expression of FUT7 is regulated by both DNA methylation and histone modifications. At present, epigenetic regulation of glycosylation is still poorly described under physiological conditions, since the majority of the studies were focused on cancer. In fact, virtually all types of cancers display aberrant glycosylation, because of both genetic and epigenetic modifications on glycogenes. This is also true for many other diseases, such as inflammatory bowel disease, diabetes, systemic lupus erythematosus, IgA nephropathy, multiple sclerosis, and cardiovascular diseases.A deeper knowledge in epigenetic regulation of glycogenes is essential, since research in this field could be helpful in finding novel and personalized therapeutics.
Collapse
|
9
|
Harvey DJ. ANALYSIS OF CARBOHYDRATES AND GLYCOCONJUGATES BY MATRIX-ASSISTED LASER DESORPTION/IONIZATION MASS SPECTROMETRY: AN UPDATE FOR 2015-2016. MASS SPECTROMETRY REVIEWS 2021; 40:408-565. [PMID: 33725404 DOI: 10.1002/mas.21651] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 07/24/2020] [Indexed: 06/12/2023]
Abstract
This review is the ninth update of the original article published in 1999 on the application of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2016. Also included are papers that describe methods appropriate to analysis by MALDI, such as sample preparation techniques, even though the ionization method is not MALDI. Topics covered in the first part of the review include general aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, fragmentation and arrays. The second part of the review is devoted to applications to various structural types such as oligo- and poly-saccharides, glycoproteins, glycolipids, glycosides and biopharmaceuticals. Much of this material is presented in tabular form. The third part of the review covers medical and industrial applications of the technique, studies of enzyme reactions and applications to chemical synthesis. The reported work shows increasing use of combined new techniques such as ion mobility and the enormous impact that MALDI imaging is having. MALDI, although invented over 30 years ago is still an ideal technique for carbohydrate analysis and advancements in the technique and range of applications show no sign of deminishing. © 2020 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- David J Harvey
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Roosevelt Drive, Oxford, OX3 7FZ, United Kingdom
| |
Collapse
|
10
|
Indellicato R, Trinchera M. Epigenetic Regulation of Glycosylation in Cancer and Other Diseases. Int J Mol Sci 2021; 22:ijms22062980. [PMID: 33804149 PMCID: PMC7999748 DOI: 10.3390/ijms22062980] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/10/2021] [Accepted: 03/12/2021] [Indexed: 12/12/2022] Open
Abstract
In the last few decades, the newly emerging field of epigenetic regulation of glycosylation acquired more importance because it is unraveling physiological and pathological mechanisms related to glycan functions. Glycosylation is a complex process in which proteins and lipids are modified by the attachment of monosaccharides. The main actors in this kind of modification are the glycoenzymes, which are translated from glycosylation-related genes (or glycogenes). The expression of glycogenes is regulated by transcription factors and epigenetic mechanisms (mainly DNA methylation, histone acetylation and noncoding RNAs). This review focuses only on these last ones, in relation to cancer and other diseases, such as inflammatory bowel disease and IgA1 nephropathy. In fact, it is clear that a deeper knowledge in the fine-tuning of glycogenes is essential for acquiring new insights in the glycan field, especially if this could be useful for finding novel and personalized therapeutics.
Collapse
Affiliation(s)
- Rossella Indellicato
- Department of Health Sciences, University of Milan, 20142 Milan, Italy
- Correspondence:
| | - Marco Trinchera
- Department of Medicine and Surgery, University of Insubria, 21100 Varese, Italy;
| |
Collapse
|
11
|
Greville G, Llop E, Howard J, Madden SF, Perry AS, Peracaula R, Rudd PM, McCann A, Saldova R. 5-AZA-dC induces epigenetic changes associated with modified glycosylation of secreted glycoproteins and increased EMT and migration in chemo-sensitive cancer cells. Clin Epigenetics 2021; 13:34. [PMID: 33579350 PMCID: PMC7881483 DOI: 10.1186/s13148-021-01015-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 01/18/2021] [Indexed: 12/16/2022] Open
Abstract
Background Glycosylation, one of the most fundamental post-translational modifications, is altered in cancer and is subject in part, to epigenetic regulation. As there are many epigenetic-targeted therapies currently in clinical trials for the treatment of a variety of cancers, it is important to understand the impact epi-therapeutics have on glycosylation. Results Ovarian and triple negative breast cancer cells were treated with the DNA methyltransferase inhibitor, 5-AZA-2-deoxycytidine (5-AZA-dC). Branching and sialylation were increased on secreted N-glycans from chemo-sensitive/non-metastatic cell lines following treatment with 5-AZA-dC. These changes correlated with increased mRNA expression levels in MGAT5 and ST3GAL4 transcripts in ovarian cancer cell lines. Using siRNA transient knock down of GATA2 and GATA3 transcription factors, we show that these regulate the glycosyltransferases ST3GAL4 and MGAT5, respectively. Moreover, 5-AZA-dC-treated cells displayed an increase in migration, with a greater effect seen in chemo-sensitive cell lines. Western blots showed an increase in apoptotic and senescence (p21) markers in all 5-AZA-dC-treated cells. The alterations seen in N-glycans from secreted glycoproteins in 5-AZA-dC-treated breast and ovarian cancer cells were similar to the N-glycans previously known to potentiate tumour cell survival. Conclusions While the FDA has approved epi-therapeutics for some cancer treatments, their global effect is still not fully understood. This study gives insight into the effects that epigenetic alterations have on cancer cell glycosylation, and how this potentially impacts on the overall fate of those cells. Graphic abstract ![]()
Collapse
Affiliation(s)
- Gordon Greville
- GlycoScience Group, the National Institute for Bioprocessing, Research and Training (NIBRT), Fosters Avenue, Mount Merrion, Blackrock, Co Dublin, Ireland.,College of Health and Agricultural Science (CHAS), UCD School of Medicine, University College Dublin (UCD), Belfield, Dublin 4, Ireland
| | - Esther Llop
- Biochemistry and Molecular Biology Unit, Department of Biology, University of Girona, Girona, Spain.,Girona Biomedical Research Institute (IDIBGI), Girona, Spain
| | - Jane Howard
- College of Health and Agricultural Science (CHAS), UCD School of Medicine, University College Dublin (UCD), Belfield, Dublin 4, Ireland.,UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin (UCD), Belfield, Dublin 4, Ireland
| | - Stephen F Madden
- Data Science Centre, Royal College of Surgeons in Ireland (RCSI), Dublin 2, Ireland
| | - Antoinette S Perry
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin (UCD), Belfield, Dublin 4, Ireland.,School of Biology and Environmental Science, University College Dublin (UCD), Belfield, Dublin 4, Ireland
| | - Rosa Peracaula
- Biochemistry and Molecular Biology Unit, Department of Biology, University of Girona, Girona, Spain.,Girona Biomedical Research Institute (IDIBGI), Girona, Spain
| | - Pauline M Rudd
- GlycoScience Group, the National Institute for Bioprocessing, Research and Training (NIBRT), Fosters Avenue, Mount Merrion, Blackrock, Co Dublin, Ireland.,UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin (UCD), Belfield, Dublin 4, Ireland
| | - Amanda McCann
- College of Health and Agricultural Science (CHAS), UCD School of Medicine, University College Dublin (UCD), Belfield, Dublin 4, Ireland.,UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin (UCD), Belfield, Dublin 4, Ireland
| | - Radka Saldova
- GlycoScience Group, the National Institute for Bioprocessing, Research and Training (NIBRT), Fosters Avenue, Mount Merrion, Blackrock, Co Dublin, Ireland. .,College of Health and Agricultural Science (CHAS), UCD School of Medicine, University College Dublin (UCD), Belfield, Dublin 4, Ireland.
| |
Collapse
|
12
|
Aguilar Díaz de León JS, Borges CR. Glycosylation Profiling of Glycoproteins Secreted from Cultured Cells Using Glycan Node Analysis and GC-MS. Methods Mol Biol 2021; 2271:317-330. [PMID: 33908017 DOI: 10.1007/978-1-0716-1241-5_22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Glycan "node" analysis is the process by which pooled glycans within complex biological samples are chemically deconstructed in a way that facilitates the analytical quantification of uniquely linked monosaccharide units (glycan "nodes"). It is based on glycan methylation analysis (a.k.a. linkage analysis) that has historically been applied to pre-isolated glycans. Thus, when using glycan node analysis, unique glycan features within whole biospecimens such as "core fucosylation," "α2-6 sialylation," "β1-6 branching," "β1-4 branching," and "bisecting GlcNAc," are captured as single analytical signals by GC-MS. Here we describe the use of this methodology in cell culture supernatant and in the analysis of IgG (alpha-1 antitrypsin) glycans. The effect of IL-6 and IL-1β cytokines on secreted hepatocyte protein glycan features is demonstrated; likewise, the impact of neuraminidase treatment of IgG is illustrated. For the majority of glycan nodes, the assay is consistent and reproducible on a day-to-day basis; because of this, relatively subtle shifts in the relative abundance of glycan features can be captured using this approach.
Collapse
Affiliation(s)
- Jesús S Aguilar Díaz de León
- School of Molecular Sciences, The Biodesign Institute-Center for Personalized Diagnostics, Arizona State University, Tempe, AZ, USA
| | - Chad R Borges
- School of Molecular Sciences, The Biodesign Institute-Center for Personalized Diagnostics, Arizona State University, Tempe, AZ, USA.
| |
Collapse
|
13
|
de Haan N, Falck D, Wuhrer M. Monitoring of immunoglobulin N- and O-glycosylation in health and disease. Glycobiology 2020; 30:226-240. [PMID: 31281930 PMCID: PMC7225405 DOI: 10.1093/glycob/cwz048] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 07/02/2019] [Accepted: 07/03/2019] [Indexed: 12/11/2022] Open
Abstract
Protein N- and O-glycosylation are well known co- and post-translational modifications of immunoglobulins. Antibody glycosylation on the Fab and Fc portion is known to influence antigen binding and effector functions, respectively. To study associations between antibody glycosylation profiles and (patho) physiological states as well as antibody functionality, advanced technologies and methods are required. In-depth structural characterization of antibody glycosylation usually relies on the separation and tandem mass spectrometric (MS) analysis of released glycans. Protein- and site-specific information, on the other hand, may be obtained by the MS analysis of glycopeptides. With the development of high-resolution mass spectrometers, antibody glycosylation analysis at the intact or middle-up level has gained more interest, providing an integrated view of different post-translational modifications (including glycosylation). Alongside the in-depth methods, there is also great interest in robust, high-throughput techniques for routine glycosylation profiling in biopharma and clinical laboratories. With an emphasis on IgG Fc glycosylation, several highly robust separation-based techniques are employed for this purpose. In this review, we describe recent advances in MS methods, separation techniques and orthogonal approaches for the characterization of immunoglobulin glycosylation in different settings. We put emphasis on the current status and expected developments of antibody glycosylation analysis in biomedical, biopharmaceutical and clinical research.
Collapse
Affiliation(s)
- Noortje de Haan
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Albinusdreef 2, 2333ZA Leiden, The Netherlands
| | - David Falck
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Albinusdreef 2, 2333ZA Leiden, The Netherlands
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Albinusdreef 2, 2333ZA Leiden, The Netherlands
| |
Collapse
|
14
|
Wang J, Tian GG, Li X, Sun Y, Cheng L, Li Y, Shen Y, Chen X, Tang W, Tao S, Wu J. Integrated Glycosylation Patterns of Glycoproteins and DNA Methylation Landscapes in Mammalian Oogenesis and Preimplantation Embryo Development. Front Cell Dev Biol 2020; 8:555. [PMID: 32754589 PMCID: PMC7365846 DOI: 10.3389/fcell.2020.00555] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 06/11/2020] [Indexed: 12/19/2022] Open
Abstract
Glycosylation is one of the most fundamental post-translational modifications. However, the glycosylation patterns of glycoproteins have not been analyzed in mammalian preimplantation embryos, because of technical difficulties and scarcity of the required materials. Using high-throughput lectin microarrays of low-input cells and electrochemical techniques, an integration analysis of the DNA methylation and glycosylation landscapes of mammal oogenesis and preimplantation embryo development was performed. Highly noticeable changes occurred in the level of protein glycosylation during these events. Further analysis identified several stage-specific lectins including LEL, MNA-M, and MAL I. It was later confirmed that LEL was involved in mammalian oogenesis and preimplantation embryogenesis, and might be a marker of FGSC differentiation. Modified nanocomposite polyaniline/AuNPs were characterized by electron microscopy and modification on bare gold electrodes using layer-by-layer assembly technology. These nanoparticles were further subjected to accuracy measurements by analyzing the protein level of ten-eleven translocation protein (TET), which is an important enzyme in DNA demethylation that is regulated by O-glycosylation. Subsequent results showed that the variations in the glycosylation patterns of glycoproteins were opposite to those of the TET levels. Moreover, analysis of correlation between the changes in glyco-gene expression and female germline stem cell glycosylation profiles indicated that glycosylation was related to DNA methylation. Subsequent integration analysis showed that the trend in the variations of glycosylation patterns of glycoproteins was similar to that of DNA methylation and opposite to that of the TET protein levels during female germ cell and preimplantation embryo development. Our findings provide insight into the complex molecular mechanisms that regulate human embryo development, and a foundation for further elucidation of early embryonic development and informed reproductive medicine.
Collapse
Affiliation(s)
- Jian Wang
- Renji Hospital, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Geng G. Tian
- Renji Hospital, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoyong Li
- Renji Hospital, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yangyang Sun
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Li Cheng
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Yanfei Li
- Renji Hospital, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yue Shen
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan, China
| | - Xuejin Chen
- Department of Laboratory Animal Sciences, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wenwei Tang
- School of Chemistry Science and Technology, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, Shanghai, China
| | - Shengce Tao
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Ji Wu
- Renji Hospital, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan, China
| |
Collapse
|
15
|
Zhang S, Zhou Y, Wang Y, Wang Z, Xiao Q, Zhang Y, Lou Y, Qiu Y, Zhu F. The mechanistic, diagnostic and therapeutic novel nucleic acids for hepatocellular carcinoma emerging in past score years. Brief Bioinform 2020; 22:1860-1883. [PMID: 32249290 DOI: 10.1093/bib/bbaa023] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/09/2020] [Accepted: 02/12/2020] [Indexed: 02/07/2023] Open
Abstract
Despite The Central Dogma states the destiny of gene as 'DNA makes RNA and RNA makes protein', the nucleic acids not only store and transmit genetic information but also, surprisingly, join in intracellular vital movement as a regulator of gene expression. Bioinformatics has contributed to knowledge for a series of emerging novel nucleic acids molecules. For typical cases, microRNA (miRNA), long noncoding RNA (lncRNA) and circular RNA (circRNA) exert crucial role in regulating vital biological processes, especially in malignant diseases. Due to extraordinarily heterogeneity among all malignancies, hepatocellular carcinoma (HCC) has emerged enormous limitation in diagnosis and therapy. Mechanistic, diagnostic and therapeutic nucleic acids for HCC emerging in past score years have been systematically reviewed. Particularly, we have organized recent advances on nucleic acids of HCC into three facets: (i) summarizing diverse nucleic acids and their modification (miRNA, lncRNA, circRNA, circulating tumor DNA and DNA methylation) acting as potential biomarkers in HCC diagnosis; (ii) concluding different patterns of three key noncoding RNAs (miRNA, lncRNA and circRNA) in gene regulation and (iii) outlining the progress of these novel nucleic acids for HCC diagnosis and therapy in clinical trials, and discuss their possibility for clinical applications. All in all, this review takes a detailed look at the advances of novel nucleic acids from potential of biomarkers and elaboration of mechanism to early clinical application in past 20 years.
Collapse
Affiliation(s)
- Song Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang Provincial Key Laboratory for Drug Clinical Research and Evaluation, The First Affiliated Hospital in Zhejiang University, China.,College of Pharmaceutical Sciences in Zhejiang University, China
| | - Ying Zhou
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang Provincial Key Laboratory for Drug Clinical Research and Evaluation, The First Affiliated Hospital in Zhejiang University, China
| | - Yanan Wang
- School of Life Sciences in Nanchang University, China
| | - Zhengwen Wang
- College of Pharmaceutical Sciences in Zhejiang University, China
| | - Qitao Xiao
- College of Pharmaceutical Sciences in Zhejiang University, China
| | - Ying Zhang
- College of Pharmaceutical Sciences in Zhejiang University, China
| | - Yan Lou
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang Provincial Key Laboratory for Drug Clinical Research and Evaluation, The First Affiliated Hospital in Zhejiang University, China
| | - Yunqing Qiu
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang Provincial Key Laboratory for Drug Clinical Research and Evaluation, The First Affiliated Hospital in Zhejiang University, China
| | - Feng Zhu
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang Provincial Key Laboratory for Drug Clinical Research and Evaluation, The First Affiliated Hospital in Zhejiang University, China.,College of Pharmaceutical Sciences in Zhejiang University, China
| |
Collapse
|
16
|
Nakano M, Mishra SK, Tokoro Y, Sato K, Nakajima K, Yamaguchi Y, Taniguchi N, Kizuka Y. Bisecting GlcNAc Is a General Suppressor of Terminal Modification of N-glycan. Mol Cell Proteomics 2019; 18:2044-2057. [PMID: 31375533 PMCID: PMC6773561 DOI: 10.1074/mcp.ra119.001534] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 08/01/2019] [Indexed: 12/18/2022] Open
Abstract
Glycoproteins are decorated with complex glycans for protein functions. However, regulation mechanisms of complex glycan biosynthesis are largely unclear. Here we found that bisecting GlcNAc, a branching sugar residue in N-glycan, suppresses the biosynthesis of various types of terminal epitopes in N-glycans, including fucose, sialic acid and human natural killer-1. Expression of these epitopes in N-glycan was elevated in mice lacking the biosynthetic enzyme of bisecting GlcNAc, GnT-III, and was conversely suppressed by GnT-III overexpression in cells. Many glycosyltransferases for N-glycan terminals were revealed to prefer a nonbisected N-glycan as a substrate to its bisected counterpart, whereas no up-regulation of their mRNAs was found. This indicates that the elevated expression of the terminal N-glycan epitopes in GnT-III-deficient mice is attributed to the substrate specificity of the biosynthetic enzymes. Molecular dynamics simulations further confirmed that nonbisected glycans were preferentially accepted by those glycosyltransferases. These findings unveil a new regulation mechanism of protein N-glycosylation.
Collapse
Affiliation(s)
- Miyako Nakano
- Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashihiroshima, Hiroshima 739-8530, Japan
| | - Sushil K Mishra
- Glycoscience Group, National University of Ireland, Galway, Ireland; Structural Glycobiology Team, RIKEN-Max Planck Joint Research Center, Global Research Cluster, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Yuko Tokoro
- Center for Highly Advanced Integration of Nano and Life Sciences (G-CHAIN), Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Keiko Sato
- Disease Glycomics Team, RIKEN-Max Planck Joint Research Center, Global Research Cluster, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Kazuki Nakajima
- Division of Clinical Research Promotion and Support, Center for Research Promotion, Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan.
| | - Yoshiki Yamaguchi
- Structural Glycobiology Team, RIKEN-Max Planck Joint Research Center, Global Research Cluster, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; Synthetic Cellular Chemistry Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Naoyuki Taniguchi
- Disease Glycomics Team, RIKEN-Max Planck Joint Research Center, Global Research Cluster, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; Department of Glyco-Oncology and Medical Biochemistry, Osaka International Cancer Institute, 3-1-69 Otemae, Chuoku, Osaka 541-8567, Japan
| | - Yasuhiko Kizuka
- Center for Highly Advanced Integration of Nano and Life Sciences (G-CHAIN), Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan; Disease Glycomics Team, RIKEN-Max Planck Joint Research Center, Global Research Cluster, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
17
|
Montgomery MR, Hull EE. Alterations in the glycome after HDAC inhibition impact oncogenic potential in epigenetically plastic SW13 cells. BMC Cancer 2019; 19:79. [PMID: 30651077 PMCID: PMC6335691 DOI: 10.1186/s12885-018-5129-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 11/23/2018] [Indexed: 02/07/2023] Open
Abstract
Background Defects in the type and degree of cellular glycosylation impact oncogenesis on multiple levels. Although the type of glycosylation is determined by protein sequence encoded by the genome, the extent and modifications of glycosylation depends on the activity of biosynthetic enzymes and recent data suggests that the glycome is also subject to epigenetic regulation. This study focuses on the ability of HDAC inhibition to alter glycosylation and to lead to pro-oncogenic alterations in the glycome as assessed by metastatic potential and chemoresistance. Methods Epigenetically plastic SW13 adrenocortical carcinoma cells were treated with FK228, an HDAC inhibitor with high affinity for HDAC1 and, to a lesser extent, HDAC2. In comparing HDAC inhibitor treated and control cells, differential expression of glycome-related genes were assessed by microarray. Differential glycosylation was then assessed by lectin binding arrays and the ability of cellular proteins to bind to glycans was assessed by glycan binding arrays. Differential sensitivity to paclitaxel, proliferation, and MMP activity were also assessed. Results Treatment with FK228 alters expression of enzymes in the biosynthetic pathways for a large number of glycome related genes including enzymes in all major glycosylation pathways and several glycan binding proteins. 84% of these differentially expressed glycome-related genes are linked to cancer, some as prognostic markers and others contributing basic oncogenic functions such as metastasis or chemoresistance. Glycan binding proteins also appear to be differentially expressed as protein extracts from treated and untreated cells show differential binding to glycan arrays. The impact of differential mRNA expression of glycosylation enzymes was documented by differential lectin binding. However, the assessment of changes in the glycome is complicated by the fact that detection of differential glycosylation through lectin binding is dependent on the methods used to prepare samples as protein-rich lysates show different binding than fixed cells in several cases. Paralleling the alterations in the glycome, treatment of SW13 cells with FK228 increases metastatic potential and reduces sensitivity to paclitaxel. Conclusions The glycome is substantially altered by HDAC inhibition and these changes may have far-reaching impacts on oncogenesis. Electronic supplementary material The online version of this article (10.1186/s12885-018-5129-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- McKale R Montgomery
- College of Human Sciences, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Elizabeth E Hull
- Biomedical Sciences Program, College of Graduate Studies, Midwestern University, Glendale, AZ, 85308, USA.
| |
Collapse
|
18
|
Profiling of N-linked glycans from 100 cells by capillary electrophoresis with large-volume dual preconcentration by isotachophoresis and stacking. J Chromatogr A 2018; 1565:138-144. [DOI: 10.1016/j.chroma.2018.06.034] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 06/06/2018] [Accepted: 06/14/2018] [Indexed: 01/19/2023]
|
19
|
The Role of Abnormal Methylation of Wnt5a Gene Promoter Regions in Human Epithelial Ovarian Cancer: A Clinical and Experimental Study. Anal Cell Pathol (Amst) 2018; 2018:6567081. [PMID: 30079293 PMCID: PMC6069701 DOI: 10.1155/2018/6567081] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Revised: 02/10/2018] [Accepted: 02/26/2018] [Indexed: 12/28/2022] Open
Abstract
Objective In the current study, the role of abnormal methylation of Wnt5a gene promoter regions in human epithelial ovarian cancer was investigated. Methods Wnt5a expressions were examined by immunohistochemistry in epithelial ovarian tissues (30 normal and 79 human EOC tissues). SKOV3 cells were treated with different concentrations of 5-Aza-CdR (0.5, 5, and 50 μmol/L). The methylation status of the Wnt5a promoter was analyzed using a methylation-specific polymerase chain reaction (MSP), and the expression level of Wnt5a mRNA was detected using quantitative real-time polymerase chain reaction (qRT-PCR). Cell proliferation was measured by MTT assay, and apoptosis was analyzed using flow cytometry. Results (1) Compared with normal tissues, Wnt5a expressions were reduced or lost in EOC (P < 0.05). Wnt5a expression had a close relationship with histological grade, FIGO stage, and lymph node metastasis (P = 0.005, P = 0.022, and P = 0.037, resp.). (2) Wnt5a abnormal methylation status existed in ovarian cancer tissues and was higher than that of normal ovarian tissue (P < 0.01). (3) Before treatment with 5-Aza-CdR, the promoter of the Wnt5a gene was methylated in SKOV3 cells; accordingly, Wnt5a mRNA levels were low to absent in SKOV3 cells. (4) Following 5-Aza-CdR treatment, MSP analysis revealed complete demethylation of the Wnt5a promoter in the SKOV3 cell line, particularly at 5 μmol/L 5-Aza-CdR. Wnt5a expression increased in SKOV3 cells following treatment with a demethylating agent (P ≤ 0.001). (5) The growth rate of the cells was inhibited in a dose-dependent manner by treatment with 5-Aza-CdR. (6) The cell apoptosis rate increased gradually after treatment with 0.5, 5, and 50 μmol/L 5-Aza-CdR. The apoptosis rate exists in a dose-dependent relationship with 5-Aza-CdR concentration (F = 779.73, P < 0.01). Conclusions Wnt5a gene region promoter aberrant methylation existed in epithelial ovarian cancer, and abnormal methylation of Wnt5a gene promoter regions may be a new target for the treatment of epithelial ovarian cancer.
Collapse
|
20
|
Klasić M, Markulin D, Vojta A, Samaržija I, Biruš I, Dobrinić P, Ventham NT, Trbojević-Akmačić I, Šimurina M, Štambuk J, Razdorov G, Kennedy NA, Satsangi J, Dias AM, Pinho S, Annese V, Latiano A, D’Inca R, Lauc G, Zoldoš V. Promoter methylation of the MGAT3 and BACH2 genes correlates with the composition of the immunoglobulin G glycome in inflammatory bowel disease. Clin Epigenetics 2018; 10:75. [PMID: 29991969 PMCID: PMC5987481 DOI: 10.1186/s13148-018-0507-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 05/22/2018] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Many genome- and epigenome-wide association studies (GWAS and EWAS) and studies of promoter methylation of candidate genes for inflammatory bowel disease (IBD) have demonstrated significant associations between genetic and epigenetic changes and IBD. Independent GWA studies have identified genetic variants in the BACH2, IL6ST, LAMB1, IKZF1, and MGAT3 loci to be associated with both IBD and immunoglobulin G (IgG) glycosylation. METHODS Using bisulfite pyrosequencing, we analyzed CpG methylation in promoter regions of these five genes from peripheral blood of several hundred IBD patients and healthy controls (HCs) from two independent cohorts, respectively. RESULTS We found significant differences in the methylation levels in the MGAT3 and BACH2 genes between both Crohn's disease and ulcerative colitis when compared to HC. The same pattern of methylation changes was identified for both genes in CD19+ B cells isolated from the whole blood of a subset of the IBD patients. A correlation analysis was performed between the MGAT3 and BACH2 promoter methylation and individual IgG glycans, measured in the same individuals of the two large cohorts. MGAT3 promoter methylation correlated significantly with galactosylation, sialylation, and bisecting GlcNAc on IgG of the same patients, suggesting that activity of the GnT-III enzyme, encoded by this gene, might be altered in IBD. The correlations between the BACH2 promoter methylation and IgG glycans were less obvious, since BACH2 is not a glycosyltransferase and therefore may affect IgG glycosylation only indirectly. CONCLUSIONS Our results suggest that epigenetic deregulation of key glycosylation genes might lead to an increase in pro-inflammatory properties of IgG in IBD through a decrease in galactosylation and sialylation and an increase of bisecting GlcNAc on digalactosylated glycan structures. Finally, we showed that CpG methylation in the promoter of the MGAT3 gene is altered in CD3+ T cells isolated from inflamed mucosa of patients with ulcerative colitis from a third smaller cohort, for which biopsies were available, suggesting a functional role of this glyco-gene in IBD pathogenesis.
Collapse
Affiliation(s)
- Marija Klasić
- Department of Biology, Division of Molecular Biology, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia
| | - Dora Markulin
- Department of Biology, Division of Molecular Biology, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia
| | - Aleksandar Vojta
- Department of Biology, Division of Molecular Biology, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia
| | - Ivana Samaržija
- Department of Biology, Division of Molecular Biology, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia
| | - Ivan Biruš
- Department of Biology, Division of Molecular Biology, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia
| | - Paula Dobrinić
- Department of Biology, Division of Molecular Biology, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia
| | - Nicholas T. Ventham
- Gastrointestinal Unit, Centre for Genomics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 6XU UK
| | | | - Mirna Šimurina
- Genos Glycoscience Research Laboratory, Borongajska cesta 83h, 10000 Zagreb, Croatia
| | - Jerko Štambuk
- Genos Glycoscience Research Laboratory, Borongajska cesta 83h, 10000 Zagreb, Croatia
| | - Genadij Razdorov
- Genos Glycoscience Research Laboratory, Borongajska cesta 83h, 10000 Zagreb, Croatia
| | - Nicholas A. Kennedy
- Gastrointestinal Unit, Centre for Genomics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 6XU UK
- IBD Pharmacogenetics, University of Exeter, Exeter, UK
| | - Jack Satsangi
- Gastrointestinal Unit, Centre for Genomics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 6XU UK
- Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Ana M. Dias
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
| | - Salome Pinho
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
| | - Vito Annese
- Department of Medical and Surgical Sciences, Division of Gastroenterology, University Hospital Careggi, Florence, Italy
| | - Anna Latiano
- Department of Medical Sciences, Division of Gastroenterology, IRCCS-CSS Hospital, Viale Cappuccini, Rotondo, Italy
| | - Renata D’Inca
- Gastrointestinal Unit, University of Padua, Padua, Italy
| | - Gordan Lauc
- Genos Glycoscience Research Laboratory, Borongajska cesta 83h, 10000 Zagreb, Croatia
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | - Vlatka Zoldoš
- Department of Biology, Division of Molecular Biology, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia
| |
Collapse
|
21
|
Wahl A, Kasela S, Carnero-Montoro E, van Iterson M, Štambuk J, Sharma S, van den Akker E, Klaric L, Benedetti E, Razdorov G, Trbojević-Akmačić I, Vučković F, Ugrina I, Beekman M, Deelen J, van Heemst D, Heijmans BT, B.I.O.S. Consortium, Wuhrer M, Plomp R, Keser T, Šimurina M, Pavić T, Gudelj I, Krištić J, Grallert H, Kunze S, Peters A, Bell JT, Spector TD, Milani L, Slagboom PE, Lauc G, Gieger C. IgG glycosylation and DNA methylation are interconnected with smoking. Biochim Biophys Acta Gen Subj 2018; 1862:637-648. [DOI: 10.1016/j.bbagen.2017.10.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 10/01/2017] [Accepted: 10/16/2017] [Indexed: 01/18/2023]
|
22
|
Ferdosi S, Rehder DS, Maranian P, Castle EP, Ho TH, Pass HI, Cramer DW, Anderson KS, Fu L, Cole DEC, Le T, Wu X, Borges CR. Stage Dependence, Cell-Origin Independence, and Prognostic Capacity of Serum Glycan Fucosylation, β1-4 Branching, β1-6 Branching, and α2-6 Sialylation in Cancer. J Proteome Res 2018; 17:543-558. [PMID: 29129073 PMCID: PMC5978412 DOI: 10.1021/acs.jproteome.7b00672] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Glycans represent a promising but only marginally accessed source of cancer markers. We previously reported the development of a molecularly bottom-up approach to plasma and serum (P/S) glycomics based on glycan linkage analysis that captures features such as α2-6 sialylation, β1-6 branching, and core fucosylation as single analytical signals. Based on the behavior of P/S glycans established to date, we hypothesized that the alteration of P/S glycans observed in cancer would be independent of the tissue in which the tumor originated yet exhibit stage dependence that varied little between cancers classified on the basis of tumor origin. Herein, the diagnostic utility of this bottom-up approach as applied to lung cancer patients (n = 127 stage I; n = 20 stage II; n = 81 stage III; and n = 90 stage IV) as well as prostate (n = 40 stage II), serous ovarian (n = 59 stage III), and pancreatic cancer patients (n = 15 rapid autopsy) compared to certifiably healthy individuals (n = 30), nominally healthy individuals (n = 166), and risk-matched controls (n = 300) is reported. Diagnostic performance in lung cancer was stage-dependent, with markers for terminal (total) fucosylation, α2-6 sialylation, β1-4 branching, β1-6 branching, and outer-arm fucosylation most able to differentiate cases from controls. These markers behaved in a similar stage-dependent manner in other types of cancer as well. Notable differences between certifiably healthy individuals and case-matched controls were observed. These markers were not significantly elevated in liver fibrosis. Using a Cox proportional hazards regression model, the marker for α2-6 sialylation was found to predict both progression and survival in lung cancer patients after adjusting for age, gender, smoking status, and stage. The potential mechanistic role of aberrant P/S glycans in cancer progression is discussed.
Collapse
Affiliation(s)
- Shadi Ferdosi
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
- Virginia G. Piper Center for Personalized Diagnostics, The Biodesign Institute at Arizona State University, Tempe, Arizona 85287, United States
| | - Douglas S. Rehder
- Virginia G. Piper Center for Personalized Diagnostics, The Biodesign Institute at Arizona State University, Tempe, Arizona 85287, United States
| | - Paul Maranian
- Virginia G. Piper Center for Personalized Diagnostics, The Biodesign Institute at Arizona State University, Tempe, Arizona 85287, United States
| | - Erik P. Castle
- Department of Urology, Mayo Clinic, Phoenix, Arizona 85054, United States
| | - Thai H. Ho
- Division of Hematology and Medical Oncology, Mayo Clinic, Phoenix, Arizona 85054, United States
| | - Harvey I. Pass
- Cardiothoracic Surgery, NYU Langone Medical Center, New York, New York 10016, United States
| | - Daniel W. Cramer
- Obstetrics and Gynecology Epidemiology Center, Department of Obstetrics and Gynecology, Brigham and Women’s Hospital, Boston, Massachusetts 02115, United States
- Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts 02115, United States
| | - Karen S. Anderson
- Virginia G. Piper Center for Personalized Diagnostics, The Biodesign Institute at Arizona State University, Tempe, Arizona 85287, United States
| | - Lei Fu
- Department of Clinical Pathology, Sunnybrook Health Sciences Centre, Toronto, Ontario M4N 3M5, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - David E. C. Cole
- Department of Clinical Pathology, Sunnybrook Health Sciences Centre, Toronto, Ontario M4N 3M5, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Tao Le
- University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Xifeng Wu
- University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Chad R. Borges
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
- Virginia G. Piper Center for Personalized Diagnostics, The Biodesign Institute at Arizona State University, Tempe, Arizona 85287, United States
| |
Collapse
|
23
|
Epigenetic Bases of Aberrant Glycosylation in Cancer. Int J Mol Sci 2017; 18:ijms18050998. [PMID: 28481247 PMCID: PMC5454911 DOI: 10.3390/ijms18050998] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 04/27/2017] [Accepted: 05/02/2017] [Indexed: 02/07/2023] Open
Abstract
In this review, the sugar portions of glycoproteins, glycolipids, and glycosaminoglycans constitute the glycome, and the genes involved in their biosynthesis, degradation, transport and recognition are referred to as “glycogenes“. The extreme complexity of the glycome requires the regulatory layer to be provided by the epigenetic mechanisms. Almost all types of cancers present glycosylation aberrations, giving rise to phenotypic changes and to the expression of tumor markers. In this review, we discuss how cancer-associated alterations of promoter methylation, histone methylation/acetylation, and miRNAs determine glycomic changes associated with the malignant phenotype. Usually, increased promoter methylation and miRNA expression induce glycogene silencing. However, treatment with demethylating agents sometimes results in silencing, rather than in a reactivation of glycogenes, suggesting the involvement of distant methylation-dependent regulatory elements. From a therapeutic perspective aimed at the normalization of the malignant glycome, it appears that miRNA targeting of cancer-deranged glycogenes can be a more specific and promising approach than the use of drugs, which broad target methylation/acetylation. A very specific type of glycosylation, the addition of GlcNAc to serine or threonine (O-GlcNAc), is not only regulated by epigenetic mechanisms, but is an epigenetic modifier of histones and transcription factors. Thus, glycosylation is both under the control of epigenetic mechanisms and is an integral part of the epigenetic code.
Collapse
|
24
|
Hepatoepigenetic Alterations in Viral and Nonviral-Induced Hepatocellular Carcinoma. BIOMED RESEARCH INTERNATIONAL 2016; 2016:3956485. [PMID: 28105421 PMCID: PMC5220417 DOI: 10.1155/2016/3956485] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Accepted: 11/30/2016] [Indexed: 12/13/2022]
Abstract
Hepatocellular carcinoma (HCC) is a major public health concern and one of the leading causes of tumour-related deaths worldwide. Extensive evidence endorses that HCC is a multifactorial disease characterised by hepatic cirrhosis mostly associated with chronic inflammation and hepatitis B/C viral infections. Interaction of viral products with the host cell machinery may lead to increased frequency of genetic and epigenetic aberrations that cause harmful alterations in gene transcription. This may provide a progressive selective advantage for neoplastic transformation of hepatocytes associated with phenotypic heterogeneity of intratumour HCC cells, thus posing even more challenges in HCC treatment development. Epigenetic aberrations involving DNA methylation, histone modifications, and noncoding miRNA dysregulation have been shown to be intimately linked with and play a critical role in tumour initiation, progression, and metastases. The current review focuses on the aberrant hepatoepigenetics events that play important roles in hepatocarcinogenesis and their utilities in the development of HCC therapy.
Collapse
|
25
|
Lauc G. Precision medicine that transcends genomics: Glycans as integrators of genes and environment. Biochim Biophys Acta Gen Subj 2016; 1860:1571-3. [DOI: 10.1016/j.bbagen.2016.05.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|