1
|
Krasnova O, Sopova J, Kovaleva A, Semenova P, Zhuk A, Smirnova D, Perepletchikova D, Bystrova O, Martynova M, Karelkin V, Lesnyak O, Neganova I. Unraveling the Mechanism of Impaired Osteogenic Differentiation in Osteoporosis: Insights from ADRB2 Gene Polymorphism. Cells 2024; 13:2110. [PMID: 39768200 PMCID: PMC11674950 DOI: 10.3390/cells13242110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/14/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
Osteoporosis is characterized by increased resorption and decreased bone formation; it is predominantly influenced by genetic factors. G-protein coupled receptors (GPCRs) play a vital role in bone homeostasis, and mutations in these genes are associated with osteoporosis. This study aimed to investigate the impact of single nucleotide polymorphism (SNP) rs1042713 in the ADRB2 gene, encoding the beta-2-adrenergic receptor, on osteoblastogenesis. Herein, using quantitative polymerase chain reaction, western immunoblotting, immunofluorescence assays, and flow cytometry, we examined the expression of ADRB2 and markers of bone matrix synthesis in mesenchymal stem cells (MSCs) derived from osteoporosis patient (OP-MSCs) carrying ADRB2 SNP in comparison with MSCs from healthy donor (HD-MSCs). The results showed significantly reduced ADRB2 expression in OP-MSCs at both the mRNA and protein levels, alongside decreased type 1 collagen expression, a key bone matrix component. Notably, OP-MSCs exhibited increased ERK kinase expression during differentiation, indicating sustained cell cycle progression, unlike that going to HD-MSC. These results provide novel insights into the association of ADRB2 gene polymorphisms with osteogenic differentiation. The preserved proliferative activity of OP-MSCs with rs1042713 in ADRB2 contributes to their inability to undergo effective osteogenic differentiation. This research suggests that targeting genetic factors may offer new therapeutic strategies to mitigate osteoporosis progression.
Collapse
Affiliation(s)
- Olga Krasnova
- Laboratory of Molecular Science, Institute of Cytology, Russian Academy of Sciences, Saint Petersburg 194064, Russia
| | - Julia Sopova
- Laboratory of Molecular Science, Institute of Cytology, Russian Academy of Sciences, Saint Petersburg 194064, Russia
| | - Anastasiia Kovaleva
- Laboratory of Molecular Science, Institute of Cytology, Russian Academy of Sciences, Saint Petersburg 194064, Russia
| | - Polina Semenova
- Laboratory of Molecular Science, Institute of Cytology, Russian Academy of Sciences, Saint Petersburg 194064, Russia
| | - Anna Zhuk
- Institute of Applied Computer Science, Saint Petersburg National Research University of Information Technologies, Mechanics and Optics (ITMO University), Saint Petersburg 197101, Russia
| | - Daria Smirnova
- Laboratory of Regenerative Biomedicine, Institute of Cytology, Russian Academy of Sciences, Saint Petersburg 194064, Russia
| | - Daria Perepletchikova
- Laboratory of Regenerative Biomedicine, Institute of Cytology, Russian Academy of Sciences, Saint Petersburg 194064, Russia
| | - Olga Bystrova
- Laboratory of Cell Morphology, Institute of Cytology, Russian Academy of Sciences, Saint Petersburg 194064, Russia
| | - Marina Martynova
- Laboratory of Cell Morphology, Institute of Cytology, Russian Academy of Sciences, Saint Petersburg 194064, Russia
| | - Vitaly Karelkin
- Russian Scientific Research Institute of Traumatology and Orthopedics Named After Roman Romanovich Vreden, Saint Petersburg 195427, Russia
| | - Olga Lesnyak
- Department of Family Medicine, North-Western State Medical University Named After Ilya Ilyich Mechnikov, Saint Petersburg 191015, Russia
| | - Irina Neganova
- Laboratory of Molecular Science, Institute of Cytology, Russian Academy of Sciences, Saint Petersburg 194064, Russia
| |
Collapse
|
2
|
Sonawani A, Naglekar A, Kharche S, Sengupta D. Assessing Protein-Protein Docking Protocols: Case Studies of G-Protein-Coupled Receptor Interactions. Methods Mol Biol 2024; 2780:257-280. [PMID: 38987472 DOI: 10.1007/978-1-0716-3985-6_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
The interactions of G-protein-coupled receptors (GPCRs) with other proteins are critical in several cellular processes but resolving their structural dynamics remains challenging. An increasing number of GPCR complexes have been experimentally resolved but others including receptor variants are yet to be characterized, necessitating computational predictions of their interactions. Although integrative approaches with multi-scale simulations would provide rigorous estimates of their conformational dynamics, protein-protein docking remains a first tool of choice of many researchers due to the availability of open-source programs and easy to use web servers with reasonable predictive power. Protein-protein docking algorithms have limited ability to consider protein flexibility, environment effects, and entropy contributions and are usually a first step towards more integrative approaches. The two critical steps of docking: the sampling and scoring algorithms have improved considerably and their performance has been validated against experimental data. In this chapter, we provide an overview and generalized protocol of a few docking protocols using GPCRs as test cases. In particular, we demonstrate the interactions of GPCRs with extracellular protein ligands and an intracellular protein effectors (G-protein) predicted from docking approaches and test their limitations. The current chapter will help researchers critically assess docking protocols and predict experimentally testable structures of GPCR complexes.
Collapse
Affiliation(s)
- Archana Sonawani
- School of Biotechnology and Bioinformatics, D.Y. Patil Deemed to be University, Navi Mumbai, India
| | - Amit Naglekar
- CSIR-National Chemical Laboratory, Pune, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | | | - Durba Sengupta
- CSIR-National Chemical Laboratory, Pune, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.
| |
Collapse
|
3
|
Han Y, Dawson JRD, DeMarco KR, Rouen KC, Bekker S, Yarov-Yarovoy V, Clancy CE, Xiang YK, Vorobyov I. Elucidation of a dynamic interplay between a beta-2 adrenergic receptor, its agonist, and stimulatory G protein. Proc Natl Acad Sci U S A 2023; 120:e2215916120. [PMID: 36853938 PMCID: PMC10013855 DOI: 10.1073/pnas.2215916120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 01/27/2023] [Indexed: 03/01/2023] Open
Abstract
G protein-coupled receptors (GPCRs) represent the largest group of membrane receptors for transmembrane signal transduction. Ligand-induced activation of GPCRs triggers G protein activation followed by various signaling cascades. Understanding the structural and energetic determinants of ligand binding to GPCRs and GPCRs to G proteins is crucial to the design of pharmacological treatments targeting specific conformations of these proteins to precisely control their signaling properties. In this study, we focused on interactions of a prototypical GPCR, beta-2 adrenergic receptor (β2AR), with its endogenous agonist, norepinephrine (NE), and the stimulatory G protein (Gs). Using molecular dynamics (MD) simulations, we demonstrated the stabilization of cationic NE, NE(+), binding to β2AR by Gs protein recruitment, in line with experimental observations. We also captured the partial dissociation of the ligand from β2AR and the conformational interconversions of Gs between closed and open conformations in the NE(+)-β2AR-Gs ternary complex while it is still bound to the receptor. The variation of NE(+) binding poses was found to alter Gs α subunit (Gsα) conformational transitions. Our simulations showed that the interdomain movement and the stacking of Gsα α1 and α5 helices are significant for increasing the distance between the Gsα and β2AR, which may indicate a partial dissociation of Gsα The distance increase commences when Gsα is predominantly in an open state and can be triggered by the intracellular loop 3 (ICL3) of β2AR interacting with Gsα, causing conformational changes of the α5 helix. Our results help explain molecular mechanisms of ligand and GPCR-mediated modulation of G protein activation.
Collapse
Affiliation(s)
- Yanxiao Han
- Department of Physiology and Membrane Biology, University of California, Davis, CA95616
| | - John R. D. Dawson
- Department of Physiology and Membrane Biology, University of California, Davis, CA95616
- Biophysics Graduate Group, University of California, Davis, CA95616
| | - Kevin R. DeMarco
- Department of Physiology and Membrane Biology, University of California, Davis, CA95616
| | - Kyle C. Rouen
- Department of Physiology and Membrane Biology, University of California, Davis, CA95616
- Biophysics Graduate Group, University of California, Davis, CA95616
| | - Slava Bekker
- Department of Physiology and Membrane Biology, University of California, Davis, CA95616
- Department of Science and Engineering, American River College, Sacramento, CA95841
| | - Vladimir Yarov-Yarovoy
- Department of Physiology and Membrane Biology, University of California, Davis, CA95616
- Department of Anesthesiology and Pain Medicine, University of California, Davis, CA95616
| | - Colleen E. Clancy
- Department of Physiology and Membrane Biology, University of California, Davis, CA95616
- Department of Pharmacology, University of California, Davis, CA95616
| | - Yang K. Xiang
- Department of Pharmacology, University of California, Davis, CA95616
- VA Northern California Health Care System, Mather, CA95655
| | - Igor Vorobyov
- Department of Physiology and Membrane Biology, University of California, Davis, CA95616
- Department of Pharmacology, University of California, Davis, CA95616
| |
Collapse
|
4
|
Caniceiro AB, Bueschbell B, Barreto CA, Preto AJ, Moreira IS. MUG: A mutation overview of GPCR subfamily A17 receptors. Comput Struct Biotechnol J 2022; 21:586-600. [PMID: 36659920 PMCID: PMC9822836 DOI: 10.1016/j.csbj.2022.12.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/15/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
G protein-coupled receptors (GPCRs) mediate several signaling pathways through a general mechanism that involves their activation, upholding a chain of events that lead to the release of molecules responsible for cytoplasmic action and further regulation. These physiological functions can be severely altered by mutations in GPCR genes. GPCRs subfamily A17 (dopamine, serotonin, adrenergic and trace amine receptors) are directly related with neurodegenerative diseases, and as such it is crucial to explore known mutations on these systems and their impact in structure and function. A comprehensive and detailed computational framework - MUG (Mutations Understanding GPCRs) - was constructed, illustrating key reported mutations and their effect on receptors of the subfamily A17 of GPCRs. We explored the type of mutations occurring overall and in the different families of subfamily A17, as well their localization within the receptor and potential effects on receptor functionality. The mutated residues were further analyzed considering their pathogenicity. The results reveal a high diversity of mutations in the GPCR subfamily A17 structures, drawing attention to the considerable number of mutations in conserved residues and domains. Mutated residues were typically hydrophobic residues enriched at the ligand binding pocket and known activating microdomains, which may lead to disruption of receptor function. MUG as an interactive web application is available for the management and visualization of this dataset. We expect that this interactive database helps the exploration of GPCR mutations, their influence, and their familywise and receptor-specific effects, constituting the first step in elucidating their structures and molecules at the atomic level.
Collapse
Affiliation(s)
- Ana B. Caniceiro
- CNC - Center for Neuroscience and Cell Biology, Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- PhD in Biosciences, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - Beatriz Bueschbell
- CNC - Center for Neuroscience and Cell Biology, Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- PhD Programme in Experimental Biology and Biomedicine, Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Casa Costa Alemão, 3030-789 Coimbra, Portugal
| | - Carlos A.V. Barreto
- CNC - Center for Neuroscience and Cell Biology, Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- PhD Programme in Experimental Biology and Biomedicine, Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Casa Costa Alemão, 3030-789 Coimbra, Portugal
| | - António J. Preto
- CNC - Center for Neuroscience and Cell Biology, Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- PhD Programme in Experimental Biology and Biomedicine, Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Casa Costa Alemão, 3030-789 Coimbra, Portugal
| | - Irina S. Moreira
- CNC - Center for Neuroscience and Cell Biology, Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
- Corresponding author at: Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal.
| |
Collapse
|
5
|
Joshi M, Nikte SV, Sengupta D. Molecular determinants of GPCR pharmacogenetics: Deconstructing the population variants in β 2-adrenergic receptor. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2022; 128:361-396. [PMID: 35034724 DOI: 10.1016/bs.apcsb.2021.08.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
G protein-coupled receptors (GPCRs) are membrane proteins that play a central role in cell signaling and constitute one of the largest classes of drug targets. The molecular mechanisms underlying GPCR function have been characterized by several experimental and computational methods and provide an understanding of their role in physiology and disease. Population variants arising from nsSNPs affect the native function of GPCRs and have been implicated in differential drug response. In this chapter, we provide an overview on GPCR structure and activation, with a special focus on the β2-adrenergic receptor (β2-AR). First, we discuss the current understanding of the structural and dynamic features of the wildtype receptor. Subsequently, the population variants identified in this receptor from clinical and large-scale genomic studies are described. We show how computational approaches such as bioinformatics tools and molecular dynamics simulations can be used to characterize the variant receptors in comparison to the wildtype receptor. In particular, we discuss three examples of clinically important variants and discuss how the structure and function of these variants differ from the wildtype receptor at a molecular level. Overall, the chapter provides an overview of structure and function of GPCR variants and is a step towards the study of inter-individual differences and personalized medicine.
Collapse
Affiliation(s)
- Manali Joshi
- Bioinformatics Centre, Savitribai Phule Pune University, Pune, India.
| | - Siddhanta V Nikte
- CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Durba Sengupta
- CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.
| |
Collapse
|
6
|
Nikte SV, Sonar K, Tandale A, Joshi M, Sengupta D. Loss of a water-mediated network results in reduced agonist affinity in a β 2-adrenergic receptor clinical variant. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2021; 1869:140605. [PMID: 33453412 DOI: 10.1016/j.bbapap.2021.140605] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 12/19/2020] [Accepted: 01/07/2021] [Indexed: 11/26/2022]
Abstract
The β2-adrenergic receptor (β2AR) is a member of the G protein-coupled receptor (GPCR) family that is an important drug target for asthma and COPD. Clinical studies coupled with biochemical data have identified a critical receptor variant, Thr164Ile, to have a reduced response to agonist-based therapy, although the molecular mechanism underlying this seemingly "non-deleterious" substitution is not clear. Here, we couple molecular dynamics simulations with network analysis and free-energy calculations to identify the molecular determinants underlying the differential drug response. We are able to identify hydration sites in the transmembrane domain that are essential to maintain the integrity of the binding site but are absent in the variant. The loss of these hydration sites in the variant correlates with perturbations in the intra-protein interaction network and rearrangements in the orthosteric ligand binding site. In conjunction, we observe an altered binding and reduced free energy of a series of agonists, in line with experimental trends. Our work identifies a functional allosteric pathway connected by specific hydration sites in β2AR that has not been reported before and provides insight into water-mediated networks in GPCRs in general. Overall, the work is one of the first step towards developing variant-specific potent and selective agonists.
Collapse
Affiliation(s)
- Siddhanta V Nikte
- Physical Chemistry Division, National Chemical Laboratory, Pune 411 008, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Krushna Sonar
- Physical Chemistry Division, National Chemical Laboratory, Pune 411 008, India
| | - Aditi Tandale
- Physical Chemistry Division, National Chemical Laboratory, Pune 411 008, India
| | - Manali Joshi
- Bioinformatics Centre, S. P. University, Pune 411 007, India.
| | - Durba Sengupta
- Physical Chemistry Division, National Chemical Laboratory, Pune 411 008, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India.
| |
Collapse
|
7
|
Torrens-Fontanals M, Stepniewski TM, Aranda-García D, Morales-Pastor A, Medel-Lacruz B, Selent J. How Do Molecular Dynamics Data Complement Static Structural Data of GPCRs. Int J Mol Sci 2020; 21:E5933. [PMID: 32824756 PMCID: PMC7460635 DOI: 10.3390/ijms21165933] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/11/2020] [Accepted: 08/15/2020] [Indexed: 01/08/2023] Open
Abstract
G protein-coupled receptors (GPCRs) are implicated in nearly every physiological process in the human body and therefore represent an important drug targeting class. Advances in X-ray crystallography and cryo-electron microscopy (cryo-EM) have provided multiple static structures of GPCRs in complex with various signaling partners. However, GPCR functionality is largely determined by their flexibility and ability to transition between distinct structural conformations. Due to this dynamic nature, a static snapshot does not fully explain the complexity of GPCR signal transduction. Molecular dynamics (MD) simulations offer the opportunity to simulate the structural motions of biological processes at atomic resolution. Thus, this technique can incorporate the missing information on protein flexibility into experimentally solved structures. Here, we review the contribution of MD simulations to complement static structural data and to improve our understanding of GPCR physiology and pharmacology, as well as the challenges that still need to be overcome to reach the full potential of this technique.
Collapse
Affiliation(s)
- Mariona Torrens-Fontanals
- Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Medical Research Institute (IMIM)—Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), 08003 Barcelona, Spain; (M.T.-F.); (T.M.S.); (D.A.-G.); (A.M.-P.); (B.M.-L.)
| | - Tomasz Maciej Stepniewski
- Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Medical Research Institute (IMIM)—Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), 08003 Barcelona, Spain; (M.T.-F.); (T.M.S.); (D.A.-G.); (A.M.-P.); (B.M.-L.)
- InterAx Biotech AG, PARK innovAARE, 5234 Villigen, Switzerland
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, 02-093 Warsaw, Poland
| | - David Aranda-García
- Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Medical Research Institute (IMIM)—Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), 08003 Barcelona, Spain; (M.T.-F.); (T.M.S.); (D.A.-G.); (A.M.-P.); (B.M.-L.)
| | - Adrián Morales-Pastor
- Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Medical Research Institute (IMIM)—Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), 08003 Barcelona, Spain; (M.T.-F.); (T.M.S.); (D.A.-G.); (A.M.-P.); (B.M.-L.)
| | - Brian Medel-Lacruz
- Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Medical Research Institute (IMIM)—Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), 08003 Barcelona, Spain; (M.T.-F.); (T.M.S.); (D.A.-G.); (A.M.-P.); (B.M.-L.)
| | - Jana Selent
- Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Medical Research Institute (IMIM)—Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), 08003 Barcelona, Spain; (M.T.-F.); (T.M.S.); (D.A.-G.); (A.M.-P.); (B.M.-L.)
| |
Collapse
|
8
|
Special Issue: Membrane and Receptor Dynamics. J Membr Biol 2020; 252:207-211. [PMID: 31583440 DOI: 10.1007/s00232-019-00096-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
9
|
Bhosale S, Nikte SV, Sengupta D, Joshi M. Differential Dynamics Underlying the Gln27Glu Population Variant of the β 2-Adrenergic Receptor. J Membr Biol 2019; 252:499-507. [PMID: 31520159 DOI: 10.1007/s00232-019-00093-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Accepted: 08/23/2019] [Indexed: 12/21/2022]
Abstract
The β2-adrenergic receptor (β2AR) is a membrane-bound G-protein-coupled receptor and an important drug target for asthma. Clinical studies report that the population variant Gln27Glu is associated with a differential response to common asthma drugs, such as albuterol, isoproterenol and terbutaline. Interestingly, the 27th amino acid is positioned on the N-terminal region that is the most flexible and consequently the least studied part of the receptor. In this study, we probe the molecular origin of the differential drug binding by performing structural modeling and simulations of the wild-type (Gln) and variant (Glu) receptors followed by ensemble docking with the ligands, albuterol, isoproterenol and terbutaline. In line with clinical studies, the ligands were observed to interact preferentially with the Glu variant. Our results indicate that the Glu residue at the 27th position perturbs the network of electrostatic interactions that connects the N-terminal region to the binding site in the wild-type receptor. As a result, the Glu variant is observed to bind better to the three ligands tested in this study. Our study provides a structural basis to explain the variable drug response associated with the 27th position polymorphism in the β2AR and is a starting step to identify genotype-specific therapeutics.
Collapse
Affiliation(s)
- Sumedha Bhosale
- Bioinformatics Centre, S. P. University, Pune, 411 007, India
| | - Siddhanta V Nikte
- Physical Chemistry Division, National Chemical Laboratory, Pune, 411 008, India
| | - Durba Sengupta
- Physical Chemistry Division, National Chemical Laboratory, Pune, 411 008, India.
| | - Manali Joshi
- Bioinformatics Centre, S. P. University, Pune, 411 007, India.
| |
Collapse
|
10
|
Syed Haneef SA, Ranganathan S. Structural bioinformatics analysis of variants on GPCR function. Curr Opin Struct Biol 2019; 55:161-177. [PMID: 31174013 DOI: 10.1016/j.sbi.2019.04.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 04/20/2019] [Accepted: 04/22/2019] [Indexed: 10/26/2022]
Abstract
G protein-coupled receptors (GPCRs) are key membrane-embedded receptor proteins, with critical roles in cellular signal transduction. In the era of precision medicine, understanding the role of natural variants on GPCR function is critical, especially from a pharmacogenomics viewpoint. Studies involved in mapping variants to GPCR structures are briefly reviewed here. The endocannabinoid system involving the central nervous system (CNS), the human cannabinoid receptor 1 (CB1), is an important drug target and its variability has implications for disease susceptibility and altered drug and pain response. We have carried out a computational study to map deleterious non-synonymous single nucleotide polymorphisms (nsSNPs) to CB1. CB1 mutations were computationally evaluated from neutral to deleterious, and the top twelve deleterious mutations, with structural information, were found to be either close to the ligand binding region or the G-protein binding site. We have mapped these to the active and inactive CB1 X-ray crystallographic structures to correlate variants with available phenotypic information. We have also carried out molecular dynamics simulations to functionally characterize four selected mutants.
Collapse
Affiliation(s)
- Syed Askar Syed Haneef
- Department of Molecular Sciences, Faculty of Science and Engineering, Macquarie University, NSW 2109, Australia
| | - Shoba Ranganathan
- Department of Molecular Sciences, Faculty of Science and Engineering, Macquarie University, NSW 2109, Australia.
| |
Collapse
|
11
|
Wu L, Tai Y, Hu S, Zhang M, Wang R, Zhou W, Tao J, Han Y, Wang Q, Wei W. Bidirectional Role of β2-Adrenergic Receptor in Autoimmune Diseases. Front Pharmacol 2018; 9:1313. [PMID: 30538630 PMCID: PMC6277539 DOI: 10.3389/fphar.2018.01313] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 10/29/2018] [Indexed: 12/20/2022] Open
Abstract
Disorder of the sympathetic nervous system (SNS) is closely related to the pathogenesis of various autoimmune diseases (ADs). Catecholamine triggered beta2-adrenergic receptor (β2-AR) signaling is important in creating a bidirectional response in the progression of ADs due to factors including diverse expression patterns, single nucleotide polymorphisms (SNPs), biased signals, and desensitization of β2-AR, as well as different subtypes of Gα binding to β2-AR. In this review, we summarize the actions of β2-AR signaling in regulating the functions of immunocytes and in the pathogenesis of ADs, and the application of β2-AR agonists or antagonists in treating major types of ADs is also discussed. We suggest that restoring the immune balance via a soft regulation of the expression or activation of β2-AR is one of the promising therapeutic strategies for systematic ADs.
Collapse
Affiliation(s)
- Li Wu
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Yu Tai
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Shanshan Hu
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Mei Zhang
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Rui Wang
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Weijie Zhou
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Juan Tao
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Yongsheng Han
- Department of Emergency Medicine, The First Affiliated Hospital, University of Science and Technology of China, Hefei, China
| | - Qingtong Wang
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Wei Wei
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| |
Collapse
|
12
|
ALS-causing mutations in profilin-1 alter its conformational dynamics: A computational approach to explain propensity for aggregation. Sci Rep 2018; 8:13102. [PMID: 30166578 PMCID: PMC6117255 DOI: 10.1038/s41598-018-31199-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 08/07/2018] [Indexed: 12/11/2022] Open
Abstract
Profilin-1 (PFN1) is a 140-amino-acid protein with two distinct binding sites―one for actin and one for poly-L-proline (PLP). The best-described function of PFN1 is to catalyze actin elongation and polymerization. Thus far, eight DNA mutations in the PFN1 gene encoding the PFN1 protein are associated with human amyotrophic lateral sclerosis (ALS). We and others recently showed that two of these mutations (Gly118Val or G118V and Cys71Gly or C71G) cause ALS in rodents. In vitro studies suggested that Met114Thr and Thr109Met cause the protein to behave abnormally and cause neurotoxicity. The mechanism by which a single amino acid change in human PFN1 causes the degeneration of motor neurons is not known. In this study, we investigated the structural perturbations of PFN1 caused by each ALS-associated mutation. We used molecular dynamics simulations to assess how these mutations alter the secondary and tertiary structures of human PFN1. Herein, we present our in silico data and analysis on the effect of G118V and T109M mutations on PFN1 and its interactions with actin and PLP. The substitution of valine for glycine reduces the conformational flexibility of the loop region between the α-helix and β-strand and enhances the hydrophobicity of the region. Our in silico analysis of T109M indicates that this mutation alters the shape of the PLP-binding site and reduces the flexibility of this site. Simulation studies of PFN1 in its wild type (WT) and mutant forms (both G118V and T109M mutants) revealed differential fluctuation patterns and the formation of salt bridges and hydrogen bonds between critical residues that may shed light on differences between WT and mutant PFN1. In particular, we hypothesize that the flexibility of the actin- and PLP-binding sites in WT PFN1 may allow the protein to adopt slightly different conformations in its free and bound forms. These findings provide new insights into how each of these mutations in PFN1 might increase its propensity for misfolding and aggregation, leading to its dysfunction.
Collapse
|
13
|
Plazinska A, Plazinski W, Luchowski R, Wnorowski A, Grudzinski W, Gruszecki WI. Ligand-induced action of the W286 6.48 rotamer toggle switch in the β 2-adrenergic receptor. Phys Chem Chem Phys 2017; 20:581-594. [PMID: 29226293 DOI: 10.1039/c7cp04808d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Studies focused on GPCRs, particularly on the β2-adrenergic receptor (β2-AR), have demonstrated the relationship between ligand structure, receptor conformational changes and the corresponding pharmacological outcomes. Herein, we studied the molecular details of the rotameric flip of the W2866.48 sidechain, i.e. a presumed action switch that has not been reported in native β2-AR thus far. It is believed that although both the 'active' and 'inactive' conformers of β2-AR exhibit similar conformations of this switch, it may still play a substantial role in the ligand-induced activation of the receptor. By using both experimental methods (time-resolved fluorescence spectroscopy) and molecular modeling techniques (enhanced-sampling molecular dynamics), we characterized the conformational rearrangements of W2866.48 in relation to the type of ligand present in the binding cavity and to the conformation of the receptor ('active' vs. 'inactive' β2-AR). We found that the conformational behaviour of W2866.48 is correlated with the pharmacological character of the ligand present in the binding cavity but not with the instantaneous conformation of the receptor. Namely, agonists promote the W2866.48 conformations that facilitate the increase of the solvation within the inner receptor channel. In contrast, antagonists and inverse agonists act toward the decrease of the solvation in the inner channel. This creates an opportunity for using computational methodologies in determining the pharmacological properties of various ligands. The combination of the time-resolved fluorescence spectroscopy technique with the enhanced-sampling molecular dynamics simulations is shown to be a powerful tool for studying the ligand-induced conformational rearrangements in GPCRs.
Collapse
Affiliation(s)
- Anita Plazinska
- Department of Biopharmacy, Faculty of Pharmacy, Medical University of Lublin, W. Chodzki Str., 4a, 20-093 Lublin, Poland.
| | | | | | | | | | | |
Collapse
|
14
|
Li Y, Yin C, Liu P, Li D, Lin J. Identification of a Different Agonist-Binding Site and Activation Mechanism of the Human P2Y 1 Receptor. Sci Rep 2017; 7:13764. [PMID: 29062134 PMCID: PMC5653743 DOI: 10.1038/s41598-017-14268-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 10/09/2017] [Indexed: 02/03/2023] Open
Abstract
The human P2Y1 receptor (P2Y1R) is a purinergic G-protein-coupled receptor (GPCR) that functions as a receptor for adenosine 5'-diphosphate (ADP). An antagonist of P2Y1R might potentially have antithrombotic effects, whereas agonists might serve as antidiabetic agents. On the basis of the antagonist-bound MRS2500-P2Y1R crystal structure, we constructed computational models of apo-P2Y1R and the agonist-receptor complex 2MeSADP-P2Y1R. We then performed conventional molecular dynamics (cMD) and accelerated molecular dynamics (aMD) simulations to study the conformational dynamics after binding with agonist/antagonist as well as the P2Y1R activation mechanism. We identified a new agonist-binding site of P2Y1R that is consistent with previous mutagenesis data. This new site is deeper than those of the agonist ADP in the recently simulated ADP-P2Y1R structure and the antagonist MRS2500 in the MRS2500-P2Y1R crystal structure. During P2Y1R activation, the cytoplasmic end of helix VI shifts outward 9.1 Å, the Ser1463.47-Tyr2375.58 hydrogen bond breaks, a Tyr2375.58-Val2626.37 hydrogen bond forms, and the conformation of the χ1 rotamer of Phe2696.44 changes from parallel to perpendicular to helix VI. The apo-P2Y1R system and the MRS2500-P2Y1R system remain inactive. The newly identified agonist binding site and activation mechanism revealed in this study may aid in the design of P2Y1R antagonists/agonists as antithrombotic/antidiabetic agents, respectively.
Collapse
Affiliation(s)
- Yang Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, China
| | - Can Yin
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, China
- Pharmaceutical Intelligence Platform, Tianjin Joint Academy of Biomedicine and Technology, Tianjin, 300457, China
| | - Pi Liu
- Biodesign Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Dongmei Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, China.
| | - Jianping Lin
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, China.
- Pharmaceutical Intelligence Platform, Tianjin Joint Academy of Biomedicine and Technology, Tianjin, 300457, China.
- Biodesign Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.
| |
Collapse
|
15
|
Desai M, Chauhan JB. Computational analysis for the determination of deleterious nsSNPs in human MTHFD1 gene. Comput Biol Chem 2017; 70:7-14. [PMID: 28734179 DOI: 10.1016/j.compbiolchem.2017.07.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 06/20/2017] [Accepted: 07/09/2017] [Indexed: 11/24/2022]
Abstract
Single nucleotide polymorphisms (SNPs) are the most common genetic polymorphisms and play a major role in many inherited diseases. Methylenetetrahydrofolate dehydrogenase 1 (MTHFD1) is one of the enzymes involved in folate metabolism. In the present study, the functional and structural consequences of nsSNPs of human MTHFD1 gene was analyzed using various computational tools like SIFT, PolyPhen2, PANTHER, PROVEAN, SNAP2, nsSNPAnalyzer, PhD-SNP, SNPs&GO, I-Mutant, MuPro, ConSurf, InterPro, NCBI Conserved Domain Search tool, ModPred, SPARKS-X, RAMPAGE, FT Site and PyMol. Out of 327 nsSNPs form human MTHFD1 gene, total 45 SNPs were predicted as functionally most significant SNPs, among which 17 were highly conserved and functional, 17 were highly conserved and structural residues. Among 45 most significant SNPs, 15 were predicted to be involved in post translational modifications. The p.Gly165Arg may interfere in homodimer interface formation. The p.Asn439Lys and p.Asp445Asn may interfere in binding interactions of MTHFD1 protein with cesium cation and potassium. The two SNPs (p.Asp562Gly and p.Gly637Cys) might interfere in interactions of MTHFD1 with ligand.
Collapse
Affiliation(s)
- Mansi Desai
- Department of Genetics, Ashok and Rita Patel Institute of Integrated Study and Research in Biotechnology and Allied Science (ARIBAS), Affiliated to Sardar Patel University, New Vallabh Vidyanagar 388121, Gujarat, India.
| | - J B Chauhan
- Department of Genetics, Ashok and Rita Patel Institute of Integrated Study and Research in Biotechnology and Allied Science (ARIBAS), Affiliated to Sardar Patel University, New Vallabh Vidyanagar 388121, Gujarat, India.
| |
Collapse
|
16
|
Sengupta D, Sonar K, Joshi M. Characterizing clinically relevant natural variants of GPCRs using computational approaches. Methods Cell Biol 2017; 142:187-204. [DOI: 10.1016/bs.mcb.2017.07.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|