1
|
Tian X, Liu H, Chen HF. Catalytic mechanism of butane anaerobic oxidation for alkyl-coenzyme M reductase. Chem Biol Drug Des 2021; 98:701-712. [PMID: 34328701 DOI: 10.1111/cbdd.13931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/02/2021] [Accepted: 07/24/2021] [Indexed: 12/18/2022]
Abstract
Methane is among the most potent of the greenhouse gases, which plays a key role in global climate change. As an excellent carbon and energy source, methane can be utilized by anaerobic methane oxidizing archaea and aerobic methane oxidizing bacteria. The previous work shows that an anaerobic thermophilic enrichment culture composed of dense consortia of archaea and bacteria apparently uses partly similar pathways to oxidize the C4 hydrocarbon butane. However, the catalytic mechanism of butane anaerobic oxidation for alkyl-coenzyme M reductase is still unknown. Therefore, molecular dynamics (MD) simulation was used to investigate the dynamics differences of catalytic mechanism between methane coenzyme M reductase (MCR) and alkyl-coenzyme M reductase (ACR). At first, the binding pocket of ACR is larger than that of MCR. Then, the complex of butane and ACR is more stable than that of methane and ACR. Protein conformation cloud suggests that the position of methane is dynamics and methane escapes from the binding pocket of ACR during most of the simulation time, while butane tightly binds in the pocket of ACR. The hydrophobic interactions between butane and ACR are more and stronger than those between methane and ACR. At the same time, the binding free energy between butane and ACR is significantly lower than that between methane and ACR. The dynamics correlation network indicates that the transformation of information flow for ACR-butane is smoother than that for ACR-methane. The shortest pathway for ACR-butane is from Gln144, Ala141, Hie135, Ile133, Ala160, Arg206, Asp97, Met94, Tyr347 to Phe345 with synergistic effect for two butane molecules. This study can insight into the catalytic mechanism for butane/ACR complex.
Collapse
Affiliation(s)
- Xiaopian Tian
- State Key Laboratory of Microbial Metabolism, Department of Bioinformatics and Biostatistics, SJTU-Yale Joint Center for Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Hao Liu
- Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai, China
| | - Hai-Feng Chen
- State Key Laboratory of Microbial Metabolism, Department of Bioinformatics and Biostatistics, SJTU-Yale Joint Center for Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Center for Bioinformation Technology, Shanghai, China
| |
Collapse
|
2
|
Zhao T, Genchev GZ, Wu S, Yu G, Lu H, Feng J. Pitt-Hopkins syndrome: phenotypic and genotypic description of four unrelated patients and structural analysis of corresponding missense mutations. Neurogenetics 2021; 22:161-169. [PMID: 34128147 DOI: 10.1007/s10048-021-00651-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 05/30/2021] [Indexed: 11/25/2022]
Abstract
Pitt-Hopkins syndrome is an underdiagnosed neurodevelopmental disorder which is characterized by specific facial features, early-onset developmental delay, and moderate to severe intellectual disability. The genetic cause, a deficiency of the TCF4 gene, has been established; however, the underlying pathological mechanisms of this disease are still unclear. Herein, we report four unrelated children with different de novo mutations (T606A, K607E, R578C, and V617I) located at highly conserved sites and with clinical phenotypes which present variable degrees of developmental delay and intellectual disability. Three of these four missense mutations have not yet been reported. The patient with V617I mutation exhibits mild intellectual disability and has attained more advanced motor and verbal skills, which is significantly different from other cases reported to date. Molecular dynamics simulations are used to explore the atomic level mechanism of how missense mutations impair the functions of TCF4. Mutations T606A, K607E, and R578C are found to affect DNA binding directly or indirectly, while V617I only induces subtle conformational changes, which is consistent with the milder clinical phenotype of the corresponding patient. The study expands the mutation spectrum and phenotypic characteristics of Pitt-Hopkins syndrome, and reinforces the genotype-phenotype correlation and strengthens the understanding of phenotype variability, which is helpful for further investigation of pathogenetic mechanisms and improved genetic counseling.
Collapse
Affiliation(s)
- Tingting Zhao
- Shanghai Engineering Research Center for Big Data in Pediatric Precision Medicine, Center for Biomedical Informatics, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Georgi Z Genchev
- Shanghai Engineering Research Center for Big Data in Pediatric Precision Medicine, Center for Biomedical Informatics, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
- Bulgarian Institute for Genomics and Precision Medicine, Sofia, Bulgaria
- SJTU-Yale Joint Center for Biostatistics, Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Shengnan Wu
- Molecular Diagnostic Laboratory, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Guangjun Yu
- Shanghai Engineering Research Center for Big Data in Pediatric Precision Medicine, Center for Biomedical Informatics, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Hui Lu
- Shanghai Engineering Research Center for Big Data in Pediatric Precision Medicine, Center for Biomedical Informatics, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China.
- SJTU-Yale Joint Center for Biostatistics, Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
| | - Jincai Feng
- Department of Rehabilitation, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
3
|
Li Q, Luo R, Chen HF. Dynamical important residue network (DIRN): network inference via conformational change. Bioinformatics 2019; 35:4664-4670. [PMID: 31038692 PMCID: PMC6853687 DOI: 10.1093/bioinformatics/btz298] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 03/19/2019] [Accepted: 04/18/2019] [Indexed: 01/18/2023] Open
Abstract
MOTIVATION Protein residue interaction network has emerged as a useful strategy to understand the complex relationship between protein structures and functions and how functions are regulated. In a residue interaction network, every residue is used to define a network node, adding noises in network post-analysis and increasing computational burden. In addition, dynamical information is often necessary in deciphering biological functions. RESULTS We developed a robust and efficient protein residue interaction network method, termed dynamical important residue network, by combining both structural and dynamical information. A major departure from previous approaches is our attempt to identify important residues most important for functional regulation before a network is constructed, leading to a much simpler network with the important residues as its nodes. The important residues are identified by monitoring structural data from ensemble molecular dynamics simulations of proteins in different functional states. Our tests show that the new method performs well with overall higher sensitivity than existing approaches in identifying important residues and interactions in tested proteins, so it can be used in studies of protein functions to provide useful hypotheses in identifying key residues and interactions. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Quan Li
- State Key Laboratory of Microbial Metabolism, Department of Bioinformatics and Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ray Luo
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697, USA
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, CA 92697, USA
- Department of Materials Science and Engineering, University of California, Irvine, CA 92697, USA
- Department of Biomedical Engineering, University of California, Irvine, CA 92697, USA
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
| | - Hai-Feng Chen
- State Key Laboratory of Microbial Metabolism, Department of Bioinformatics and Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
4
|
Lee LYH, Loscalzo J. Network Medicine in Pathobiology. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 189:1311-1326. [PMID: 31014954 DOI: 10.1016/j.ajpath.2019.03.009] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 03/05/2019] [Indexed: 12/11/2022]
Abstract
The past decade has witnessed exponential growth in the generation of high-throughput human data across almost all known dimensions of biological systems. The discipline of network medicine has rapidly evolved in parallel, providing an unbiased, comprehensive biological framework through which to interrogate and integrate systematically these large-scale, multi-omic data to enhance our understanding of disease mechanisms and to design drugs that reflect a deep knowledge of molecular pathobiology. In this review, we discuss the key principles of network medicine and the human disease network and explore the latest applications of network medicine in this multi-omic era. We also highlight the current conceptual and technological challenges, which serve as exciting opportunities by which to improve and expand the network-based applications beyond the artificial boundaries of the current state of human pathobiology.
Collapse
Affiliation(s)
| | - Joseph Loscalzo
- Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
5
|
Dan A, Chen HF. Secondary structures transition of tau protein with intrinsically disordered proteins specific force field. Chem Biol Drug Des 2018; 93:242-253. [PMID: 30259679 DOI: 10.1111/cbdd.13407] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 09/13/2018] [Accepted: 09/15/2018] [Indexed: 02/06/2023]
Abstract
Microtubule-associated Tau protein plays a key role in assembling microtubule and modulating the functional organization of the neuron and developing axonal morphology, growth, and polarity. The pathological Tau can aggregate into cross-beta amyloid as one of the hallmarks for Alzheimer's disease (AD). Therefore, one of the top priorities in AD research is to figure out the structural model of Tau aggregation and to screen the inhibitors. The latest generation intrinsically disordered protein specific force field ff14IDPSFF significantly improved the distributions of heterogeneous conformations for intrinsically disordered proteins (IDPs). Here, the molecular dynamics (MD) simulations with three force fields of ff14SB, ff14IDPs, and ff14IDPSFF were employed to investigate the secondary structures transition of Tau (267-312) fragment. The results indicate that ff14IDPSFF can generate more heterogeneous conformers, and the predicted secondary structural distribution is closer to that of the experimental observation. In addition, predicted secondary chemical shifts from ff14IDPSFF are the most approach to those of experiment. Secondary structures transition kinetics for Tau(267-312) with ff14IDPSFF shows that the secondary structures were gradually transformed from α-helix to β-strand and the β-strand located at the regions of the residues 274-280 and residues 305-311. Besides, the driving force for the secondary structures transition of Tau(267-312) is mainly hydrophobic interactions which located at hexa-peptides 275 VQIINK280 and 306 VQIVYK311 . Secondary structure transition of Tau protein can give insight into the aggregation mechanism for AD.
Collapse
Affiliation(s)
- Aohuan Dan
- State Key Laboratory of Microbial Metabolism, Department of Bioinformatics and Biostatistics, SJTU-Yale Joint Center for Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Hai-Feng Chen
- State Key Laboratory of Microbial Metabolism, Department of Bioinformatics and Biostatistics, SJTU-Yale Joint Center for Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Center for Bioinformation Technology, Shanghai, China
| |
Collapse
|
6
|
Liu H, Guo X, Han J, Luo R, Chen HF. Order-disorder transition of intrinsically disordered kinase inducible transactivation domain of CREB. J Chem Phys 2018; 148:225101. [PMID: 29907037 DOI: 10.1063/1.5027869] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Transcription factor cyclic Adenosine monophosphate response-element binding protein plays a critical role in the cyclic AMP response pathway via its intrinsically disordered kinase inducible transactivation domain (KID). KID is one of the most studied intrinsically disordered proteins (IDPs), although most previous studies focus on characterizing its disordered state structures. An interesting question that remains to be answered is how the order-disorder transition occurs at experimental conditions. Thanks to the newly developed IDP-specific force field ff14IDPSFF, the quality of conformer sampling for IDPs has been dramatically improved. In this study, molecular dynamics (MD) simulations were used to study the order-to-disorder transition kinetics of KID based on the good agreement with the experiment on its disordered-state properties. Specifically, we tested four force fields, ff99SBildn, ff99IDPs, ff14IDPSFF, and ff14IDPs in the simulations of KID and found that ff14IDPSFF can generate more diversified disordered conformers and also reproduce more accurate experimental secondary chemical shifts. Kinetics analysis of MD simulations demonstrates that the order-disorder transition of KID obeys the first-order kinetics, and the transition nucleus is I127/L128/L141. The possible transition pathways from the nucleus to the last folded residues were identified as I127-R125-L138-L141-S143-A145 and L128-R125-L138-L141-S143-A145 based on a residue-level dynamical network analysis. These computational studies not only provide testable prediction/hypothesis on the order-disorder transition of KID but also confirm that the ff14IDPSFF force field can be used to explore the correlation between the structure and function of IDPs.
Collapse
Affiliation(s)
- Hao Liu
- State Key Laboratory of Microbial Metabolism, Department of Bioinformatics and Biostatistics, SJTU-Yale Joint Center for Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Xiang Guo
- State Key Laboratory of Microbial Metabolism, Department of Bioinformatics and Biostatistics, SJTU-Yale Joint Center for Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Jingcheng Han
- State Key Laboratory of Microbial Metabolism, Department of Bioinformatics and Biostatistics, SJTU-Yale Joint Center for Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Ray Luo
- Departments of Molecular Biology and Biochemistry, Chemical Engineering and Materials Science, Biomedical Engineering, University of California, Irvine, California 92697-3900, USA
| | - Hai-Feng Chen
- State Key Laboratory of Microbial Metabolism, Department of Bioinformatics and Biostatistics, SJTU-Yale Joint Center for Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
7
|
Li Q, Chen HF. Synergistic regulation mechanism of iperoxo and LY2119620 for muscarinic acetylcholine M2 receptor. RSC Adv 2018; 8:13067-13074. [PMID: 35542505 PMCID: PMC9079678 DOI: 10.1039/c8ra01545g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 03/30/2018] [Indexed: 11/21/2022] Open
Abstract
Muscarinic acetylcholine receptors are GPCRs that regulate the activity of a diverse array of central and peripheral functions in the human body, including the parasympathetic actions of acetylcholine. The M2 muscarinic receptor subtype plays a key role in modulating cardiac function and many important central processes. The orthosteric agonist and allosteric modulator can bind the pocket of M2. However, the detailed relationship between orthosteric agonist and allosteric modulator of M2 is still unclear. In this study, we intend to elucidate the residue-level regulation mechanism and pathway via a combined approach of dynamical correlation network and molecular dynamics simulation. Specifically computational residue-level fluctuation correlation data was analyzed to reveal detailed dynamics signatures in the regulation process. A hypothesis of "synergistic regulation" is proposed to reveal the cooperation affection between the orthosteric agonist and allosteric modulator, which is subsequently validated by perturbation and mutation analyses. Two possible synergistic regulation pathways of 2CU-I178-Y403-W400-F396-L114-Y440-Nb9 and IXO-V111-F396-L114-Y440-Nb9 were identified by the shortest path algorithm and were confirmed by the mutation of junction node. Furthermore, the efficiency of information transfer of bound M2 is significant higher than any single binding system. Our study shows that targeting the synergistic regulation pathways may better regulate the calcium channel of M2. The knowledge gained in this study may help develop drugs for diseases of the central nervous system and metabolic disorders.
Collapse
Affiliation(s)
- Quan Li
- State Key Laboratory of Microbial Metabolism, Department of Bioinformatics and Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, College of Life Sciences and Biotechnology, Shanghai Jiaotong University Shanghai 200240 China +86-21-34204348 +86-21-34204348
| | - Hai-Feng Chen
- State Key Laboratory of Microbial Metabolism, Department of Bioinformatics and Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, College of Life Sciences and Biotechnology, Shanghai Jiaotong University Shanghai 200240 China +86-21-34204348 +86-21-34204348
- Shanghai Center for Bioinformation Technology Shanghai 200235 China
| |
Collapse
|
8
|
Cai Y, Liu H, Chen H. Allosteric mechanism of quinoline inhibitors for HIV RT-associated RNase with MD simulation and dynamics fluctuation network. Chem Biol Drug Des 2017; 91:805-816. [DOI: 10.1111/cbdd.13146] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 10/23/2017] [Accepted: 11/01/2017] [Indexed: 11/30/2022]
Affiliation(s)
- Yi Cai
- Shanghai High School; Shanghai China
| | - Hao Liu
- State Key Laboratory of Microbial Metabolism; Department of Bioinformatics and Biostatistics; National Experimental Teaching Center for Life Sciences and Biotechnology; College of Life Sciences and Biotechnology; Shanghai Jiaotong University; Shanghai China
| | - Haifeng Chen
- State Key Laboratory of Microbial Metabolism; Department of Bioinformatics and Biostatistics; National Experimental Teaching Center for Life Sciences and Biotechnology; College of Life Sciences and Biotechnology; Shanghai Jiaotong University; Shanghai China
- Shanghai Center for Bioinformation Technology; Shanghai China
| |
Collapse
|
9
|
Kots ED, Lushchekina SV, Varfolomeev SD, Nemukhin AV. Role of Protein Dimeric Interface in Allosteric Inhibition of N-Acetyl-Aspartate Hydrolysis by Human Aspartoacylase. J Chem Inf Model 2017; 57:1999-2008. [PMID: 28737906 DOI: 10.1021/acs.jcim.7b00133] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The results of molecular modeling suggest a mechanism of allosteric inhibition upon hydrolysis of N-acetyl-aspartate (NAA), one of the most abundant amino acid derivatives in brain, by human aspartoacylase (hAsp). Details of this reaction are important to suggest the practical ways to control the enzyme activity. Search for allosteric sites using the Allosite web server and SiteMap analysis allowed us to identify substrate binding pockets located at the interface between the subunits of the hAsp dimer molecule. Molecular docking of NAA to the pointed areas at the dimer interface predicted a specific site, in which the substrate molecule interacts with the Gly237, Arg233, Glu290, and Lys292 residues. Analysis of multiple long-scaled molecular dynamics trajectories (the total simulation time exceeded 1.5 μs) showed that binding of NAA to the identified allosteric site induced significant rigidity to the protein loops with the amino acid side chains forming gates to the enzyme active site. Application of the protein dynamical network algorithms showed that substantial reorganization of the signal propagation pathways of intersubunit communication in the dimer occurred upon allosteric NAA binding to the remote site. The modeling approaches provide an explanation to the observed decrease of the reaction rate of NAA hydrolysis by hAsp at high substrate concentrations.
Collapse
Affiliation(s)
- Ekaterina D Kots
- Department of Chemistry, Lomonosov Moscow State University , Moscow 119991, Russia.,Emanuel Institute of Biochemical Physics, Russian Academy of Sciences , Moscow 119334, Russia
| | - Sofya V Lushchekina
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences , Moscow 119334, Russia
| | - Sergey D Varfolomeev
- Department of Chemistry, Lomonosov Moscow State University , Moscow 119991, Russia.,Emanuel Institute of Biochemical Physics, Russian Academy of Sciences , Moscow 119334, Russia
| | - Alexander V Nemukhin
- Department of Chemistry, Lomonosov Moscow State University , Moscow 119991, Russia.,Emanuel Institute of Biochemical Physics, Russian Academy of Sciences , Moscow 119334, Russia
| |
Collapse
|
10
|
Rahman MU, Liu H, Wadood A, Chen HF. Allosteric mechanism of cyclopropylindolobenzazepine inhibitors for HCV NS5B RdRp via dynamic correlation network analysis. MOLECULAR BIOSYSTEMS 2017; 12:3280-3293. [PMID: 27528077 DOI: 10.1039/c6mb00521g] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
HCV RNA dependent RNA polymerase (RdRp) nonstructural protein 5B (NS5B) is a major target against hepatitis C virus (HCV) for antiviral therapy. Recently discovered cyclopropylindolobenzazepine derivatives have been considered as the most potent for their ability to bind the thumb site 1 domain and allosterically inhibit HCV NS5B RdRp activity. However, the allosteric mechanism for these derivatives has not been clarified at the molecular level. In this study, fluctuation correlation networks were constructed based on all-atom molecular dynamics simulations to elucidate the allosteric mechanism. The fluctuation correlation networks between free and M2 bound NS5B are significantly different. Information can better transfer from the allosteric site to the catalytic site for bound NS5B than for free NS5B. Thus, the hypothesis of "binding induced allosteric regulation" is proposed to link the enzyme activation and inhibitor binding and then confirmed by the mutant network. Finally, one possible allosteric pathway was identified with the shortest path and evaluated by the perturbation of the network. These methods will be helpful to identify the allosteric pathway of other proteins and to design new drugs targeting the pathway.
Collapse
Affiliation(s)
- Mueed Ur Rahman
- State Key Laboratory of Microbial Metabolism, Department of Bioinformatics and Biostatistics, College of Life Sciences and Biotechnology, Shanghai Jiaotong University, 800 Dongchuan Road, Shanghai, 200240, China.
| | - Hao Liu
- State Key Laboratory of Microbial Metabolism, Department of Bioinformatics and Biostatistics, College of Life Sciences and Biotechnology, Shanghai Jiaotong University, 800 Dongchuan Road, Shanghai, 200240, China.
| | - Abdul Wadood
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan-23200, Pakistan.
| | - Hai-Feng Chen
- State Key Laboratory of Microbial Metabolism, Department of Bioinformatics and Biostatistics, College of Life Sciences and Biotechnology, Shanghai Jiaotong University, 800 Dongchuan Road, Shanghai, 200240, China. and Shanghai Center for Bioinformation Technology, 1278 Keyuan Road, Shanghai, 200235, China
| |
Collapse
|
11
|
Guo X, Han J, Luo R, Chen HF. Conformation Dynamics of the Intrinsically Disordered Protein c-Myb with the ff99IDPs Force Field. RSC Adv 2017; 7:29713-29721. [PMID: 29104751 DOI: 10.1039/c7ra04133k] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The intrinsically disordered protein c-Myb plays a critical role in cellular proliferation and differentiation. Loss of c-myb function results in embryonic lethality due to failure of fetal hepatic hematopoiesis. The conformation dynamics of the intrinsically disordered c-Myb are still unknown. Here, molecular dynamics (MD) simulations with the intrinsically disordered protein force field ff99IDPs were used to study the conformation dynamics. In comparison with ff99SBildn, ff99IDPs can reproduce more diverse disordered conformers of c-Myb. The predicted secondary chemical shift under ff99IDPs is more close to that of experiment data than that under ff99SBildn. Therefore, ff99IDPs can sample native molten globule, native pre-molten globule and native coil conformers for c-Myb. These results are consistent with those of other intrinsically disordered proteins. Kinetic analysis of MD simulations shows that c-Myb folds via a two-state process and indicates that c-Myb folds in the order of tertiary folding and helical folding. The folding nucleus of KEL plays an essential role in stabilizing the folding state with dynamic correlation networks. The influences of solvent models for TIP3P, TIP4P-EW and TIP5P were also investigated and it was found that TIP3P and ff99IDPs are the best combination to research the conformer sampling of c-Myb. These results reveal the conformation dynamics of c-Myb and confirm that the ff99IDPs force field can be used to research the relationship between structure and function of other intrinsically disordered proteins.
Collapse
Affiliation(s)
- Xiang Guo
- State Key Laboratory of Microbial metabolism, Department of Bioinformatics and Biostatistics, SJTU-Yale Joint Center for Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Jincheng Han
- State Key Laboratory of Microbial metabolism, Department of Bioinformatics and Biostatistics, SJTU-Yale Joint Center for Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Ray Luo
- Departments of Molecular Biology and Biochemistry, Chemical Engineering and Materials Science, and Biomedical Engineering, University of California, Irvine, California 92697-3900, USA
| | - Hai-Feng Chen
- State Key Laboratory of Microbial metabolism, Department of Bioinformatics and Biostatistics, SJTU-Yale Joint Center for Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.,Shanghai Center for Bioinformation Technology, 1278 Keyuan Road, Shanghai, 200235, China
| |
Collapse
|
12
|
Ye W, Qian T, Liu H, Luo R, Chen HF. Allosteric Autoinhibition Pathway in Transcription Factor ERG: Dynamics Network and Mutant Experimental Evaluations. J Chem Inf Model 2017; 57:1153-1165. [PMID: 28425706 DOI: 10.1021/acs.jcim.7b00073] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Allosteric autoinhibition exists in many transcription factors. The ERG proteins exhibit autoinhibition on DNA binding by the C-terminal and N-terminal inhibitory domains (CID and NID). However, the autoinhibition mechanism and allosteric pathway of ERG are unknown. In this study we intend to elucidate the residue-level allosteric mechanism and pathway via a combined approach of computational and experimental analyses. Specifically computational residue-level fluctuation correlation data was analyzed to reveal detailed dynamics signatures in the allosteric autoinhibition process. A hypothesis of "NID/CID binding induced allostery" is proposed to link similar structures and different protein functions, which is subsequently validated by perturbation and mutation analyses in both computation and experiment. Two possible allosteric autoinhibition pathways of L286-L382-A379-G377-I360-Y355-R353 and L286-L382-A379-G377-I360-Y355- A351-K347-R350 were identified computationally and were confirmed by the computational and experimental mutations. Specifically we identified two mutation sites on the allosteric inhibition pathways, L286P/Q383P (NID/CID binding site) and I360G (pathway junction), which completely restore the wild type DNA binding affinity. These results suggest that the putative protein structure-function relationship may be augmented with a general relationship of protein "structure/fluctuation-correlation/function" for more thorough analyses of protein functions.
Collapse
Affiliation(s)
- Wei Ye
- State Key Laboratory of Microbial Metabolism, Department of Bioinformatics and Biostatistics, SJTU-Yale Joint Center for Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University , 800 Dongchuan Road, Shanghai, 200240, China
| | - Tianle Qian
- State Key Laboratory of Microbial Metabolism, Department of Bioinformatics and Biostatistics, SJTU-Yale Joint Center for Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University , 800 Dongchuan Road, Shanghai, 200240, China
| | - Hao Liu
- State Key Laboratory of Microbial Metabolism, Department of Bioinformatics and Biostatistics, SJTU-Yale Joint Center for Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University , 800 Dongchuan Road, Shanghai, 200240, China
| | - Ray Luo
- Departments of Molecular Biology and Biochemistry, Chemical Engineering and Materials Science, and Biomedical Engineering, University of California , Irvine, California 92697-3900, United States
| | - Hai-Feng Chen
- State Key Laboratory of Microbial Metabolism, Department of Bioinformatics and Biostatistics, SJTU-Yale Joint Center for Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University , 800 Dongchuan Road, Shanghai, 200240, China.,Shanghai Center for Bioinformation Technology , 1278 Keyuan Road, Shanghai, 200235, China
| |
Collapse
|
13
|
Qian T, Wo J, Zhang Y, Song Q, Feng G, Luo R, Lin S, Wu G, Chen HF. Crystal Structure of StnA for the Biosynthesis of Antitumor Drug Streptonigrin Reveals a Unique Substrate Binding Mode. Sci Rep 2017; 7:40254. [PMID: 28074848 PMCID: PMC5225493 DOI: 10.1038/srep40254] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 12/02/2016] [Indexed: 01/16/2023] Open
Abstract
Streptonigrin methylesterase A (StnA) is one of the tailoring enzymes that modify the aminoquinone skeleton in the biosynthesis pathway of Streptomyces species. Although StnA has no significant sequence homology with the reported α/β-fold hydrolases, it shows typical hydrolytic activity in vivo and in vitro. In order to reveal its functional characteristics, the crystal structures of the selenomethionine substituted StnA (SeMet-StnA) and the complex (S185A mutant) with its substrate were resolved to the resolution of 2.71 Å and 2.90 Å, respectively. The overall structure of StnA can be described as an α-helix cap domain on top of a common α/β hydrolase domain. The substrate methyl ester of 10'-demethoxystreptonigrin binds in a hydrophobic pocket that mainly consists of cap domain residues and is close to the catalytic triad Ser185-His349-Asp308. The transition state is stabilized by an oxyanion hole formed by the backbone amides of Ala102 and Leu186. The substrate binding appears to be dominated by interactions with several specific hydrophobic contacts and hydrogen bonds in the cap domain. The molecular dynamics simulation and site-directed mutagenesis confirmed the important roles of the key interacting residues in the cap domain. Structural alignment and phylogenetic tree analysis indicate that StnA represents a new subfamily of lipolytic enzymes with the specific binding pocket located at the cap domain instead of the interface between the two domains.
Collapse
Affiliation(s)
- Tianle Qian
- State Key Laboratory of Microbial metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Jing Wo
- State Key Laboratory of Microbial metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Yan Zhang
- State Key Laboratory of Microbial metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China
| | - Quanwei Song
- State Key Laboratory of Microbial metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
- Key laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, China
| | - Guoqiang Feng
- Key laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, China
| | - Ray Luo
- Departments of Molecular Biology and Biochemistry, Chemical Engineering and Materials Science, and Biomedical Engineering, University of California, Irvine, California 92697-3900, USA
| | - Shuangjin Lin
- State Key Laboratory of Microbial metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Geng Wu
- State Key Laboratory of Microbial metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Hai-Feng Chen
- State Key Laboratory of Microbial metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
- Shanghai Center for Bioinformation Technology, 1278 Keyuan Road, Shanghai, 200235, China
| |
Collapse
|
14
|
Lv X, Liu H, Chen H, Gong H. Coupling between ATP hydrolysis and protein conformational change in maltose transporter. Proteins 2016; 85:207-220. [PMID: 27616441 DOI: 10.1002/prot.25160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 08/29/2016] [Accepted: 09/02/2016] [Indexed: 11/12/2022]
Abstract
As the intracellular part of maltose transporter, MalK dimer utilizes the energy of ATP hydrolysis to drive protein conformational change, which then facilitates substrate transport. Free energy evaluation of the complete conformational change before and after ATP hydrolysis is helpful to elucidate the mechanism of chemical-to-mechanical energy conversion in MalK dimer, but is lacking in previous studies. In this work, we used molecular dynamics simulations to investigate the structural transition of MalK dimer among closed, semi-open and open states. We observed spontaneous structural transition from closed to open state in the ADP-bound system and partial closure of MalK dimer from the semi-open state in the ATP-bound system. Subsequently, we calculated the reaction pathways connecting the closed and open states for the ATP- and ADP-bound systems and evaluated the free energy profiles along the paths. Our results suggested that the closed state is stable in the presence of ATP but is markedly destabilized when ATP is hydrolyzed to ADP, which thus explains the coupling between ATP hydrolysis and protein conformational change of MalK dimer in thermodynamics. Proteins 2017; 85:207-220. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Xiaoying Lv
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Hao Liu
- Department of Bioinformatics and Biostatistics, State Key Laboratory of Microbial metabolism, College of Life Sciences and Biotechnology, Shanghai Jiaotong University, Shanghai, 200240, China
| | - Haifeng Chen
- Department of Bioinformatics and Biostatistics, State Key Laboratory of Microbial metabolism, College of Life Sciences and Biotechnology, Shanghai Jiaotong University, Shanghai, 200240, China
| | - Haipeng Gong
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
15
|
Liu H, Ye W, Chen HF. Positive cooperative regulation of double binding sites for human acetylcholinesterase. Chem Biol Drug Des 2016; 89:694-704. [DOI: 10.1111/cbdd.12891] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 09/06/2016] [Accepted: 09/26/2016] [Indexed: 12/17/2022]
Affiliation(s)
- Hao Liu
- State Key Laboratory of Microbial Metabolism; Department of Bioinformatics and Biostatistics; College of Life Sciences and Biotechnology; Shanghai Jiaotong University; Shanghai China
| | - Wei Ye
- State Key Laboratory of Microbial Metabolism; Department of Bioinformatics and Biostatistics; College of Life Sciences and Biotechnology; Shanghai Jiaotong University; Shanghai China
| | - Hai-Feng Chen
- State Key Laboratory of Microbial Metabolism; Department of Bioinformatics and Biostatistics; College of Life Sciences and Biotechnology; Shanghai Jiaotong University; Shanghai China
- Shanghai Center for Bioinformation Technology; Shanghai China
| |
Collapse
|